OpenWrt – Rev 1

Subversion Repositories:
Rev:
/*
 * owipcalc - OpenWrt IP Calculator
 *
 *   Copyright (C) 2012 Jo-Philipp Wich <jo@mein.io>
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>

#include <string.h>
#include <unistd.h>

#include <arpa/inet.h>


struct cidr {
        uint8_t family;
        uint32_t prefix;
        union {
                struct in_addr v4;
                struct in6_addr v6;
        } addr;
        union {
                char v4[sizeof("255.255.255.255/255.255.255.255 ")];
                char v6[sizeof("FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.255/128 ")];
        } buf;
        struct cidr *next;
};

struct op {
        const char *name;
        const char *desc;
        struct {
                bool (*a1)(struct cidr *a);
                bool (*a2)(struct cidr *a, struct cidr *b);
        } f4;
        struct {
                bool (*a1)(struct cidr *a);
                bool (*a2)(struct cidr *a, struct cidr *b);
        } f6;
};


static bool quiet = false;
static bool printed = false;

static struct cidr *stack = NULL;

#define qprintf(...) \
        do { \
                if (!quiet) printf(__VA_ARGS__); \
                printed = true; \
        } while(0)

static void cidr_push(struct cidr *a)
{
        if (a)
        {
                a->next = stack;
                stack = a;
        }
}

static bool cidr_pop(struct cidr *a)
{
        struct cidr *old = stack;

        if (old)
        {
                stack = stack->next;
                free(old);

                return true;
        }

        return false;
}

static struct cidr * cidr_clone(struct cidr *a)
{
        struct cidr *b = malloc(sizeof(*b));

        if (!b)
        {
                fprintf(stderr, "out of memory\n");
                exit(255);
        }

        memcpy(b, a, sizeof(*b));
        cidr_push(b);

        return b;
}


static struct cidr * cidr_parse4(const char *s)
{
        char *p = NULL, *r;
        struct in_addr mask;
        struct cidr *addr = malloc(sizeof(struct cidr));

        if (!addr || (strlen(s) >= sizeof(addr->buf.v4)))
                goto err;

        snprintf(addr->buf.v4, sizeof(addr->buf.v4), "%s", s);

        addr->family = AF_INET;

        if ((p = strchr(addr->buf.v4, '/')) != NULL)
        {
                *p++ = 0;

                if (strchr(p, '.') != NULL)
                {
                        if (inet_pton(AF_INET, p, &mask) != 1)
                                goto err;

                        for (addr->prefix = 0; mask.s_addr; mask.s_addr >>= 1)
                                addr->prefix += (mask.s_addr & 1);
                }
                else
                {
                        addr->prefix = strtoul(p, &r, 10);

                        if ((p == r) || (*r != 0) || (addr->prefix > 32))
                                goto err;
                }
        }
        else
        {
                addr->prefix = 32;
        }

        if (p == addr->buf.v4+1)
                memset(&addr->addr.v4, 0, sizeof(addr->addr.v4));
        else if (inet_pton(AF_INET, addr->buf.v4, &addr->addr.v4) != 1)
                goto err;

        return addr;

err:
        if (addr)
                free(addr);

        return NULL;
}

static bool cidr_add4(struct cidr *a, struct cidr *b)
{
        uint32_t x = ntohl(a->addr.v4.s_addr);
        uint32_t y = ntohl(b->addr.v4.s_addr);

        struct cidr *n = cidr_clone(a);

        if ((n->family != AF_INET) || (b->family != AF_INET))
                return false;

        if ((uint32_t)(x + y) < x)
        {
                fprintf(stderr, "overflow during 'add'\n");
                return false;
        }

        n->addr.v4.s_addr = htonl(x + y);
        return true;
}

static bool cidr_sub4(struct cidr *a, struct cidr *b)
{
        uint32_t x = ntohl(a->addr.v4.s_addr);
        uint32_t y = ntohl(b->addr.v4.s_addr);

        struct cidr *n = cidr_clone(a);

        if ((n->family != AF_INET) || (b->family != AF_INET))
                return false;

        if ((uint32_t)(x - y) > x)
        {
                fprintf(stderr, "underflow during 'sub'\n");
                return false;
        }

        n->addr.v4.s_addr = htonl(x - y);
        return true;
}

static bool cidr_network4(struct cidr *a)
{
        struct cidr *n = cidr_clone(a);

        n->addr.v4.s_addr &= htonl(~((1 << (32 - n->prefix)) - 1));
        n->prefix = 32;

        return true;
}

static bool cidr_broadcast4(struct cidr *a)
{
        struct cidr *n = cidr_clone(a);

        n->addr.v4.s_addr |= htonl(((1 << (32 - n->prefix)) - 1));
        n->prefix = 32;

        return true;
}

static bool cidr_contains4(struct cidr *a, struct cidr *b)
{
        uint32_t net1 = a->addr.v4.s_addr & htonl(~((1 << (32 - a->prefix)) - 1));
        uint32_t net2 = b->addr.v4.s_addr & htonl(~((1 << (32 - a->prefix)) - 1));

        if (printed)
                qprintf(" ");

        if ((b->prefix >= a->prefix) && (net1 == net2))
        {
                qprintf("1");
                return true;
        }
        else
        {
                qprintf("0");
                return false;
        }
}

static bool cidr_netmask4(struct cidr *a)
{
        struct cidr *n = cidr_clone(a);

        n->addr.v4.s_addr = htonl(~((1 << (32 - n->prefix)) - 1));
        n->prefix = 32;

        return true;
}

static bool cidr_private4(struct cidr *a)
{
        uint32_t x = ntohl(a->addr.v4.s_addr);

        if (printed)
                qprintf(" ");

        if (((x >= 0x0A000000) && (x <= 0x0AFFFFFF)) ||
            ((x >= 0xAC100000) && (x <= 0xAC1FFFFF)) ||
            ((x >= 0xC0A80000) && (x <= 0xC0A8FFFF)))
        {
                qprintf("1");
                return true;
        }
        else
        {
                qprintf("0");
                return false;
        }
}

static bool cidr_linklocal4(struct cidr *a)
{
        uint32_t x = ntohl(a->addr.v4.s_addr);

        if (printed)
                qprintf(" ");

        if ((x >= 0xA9FE0000) && (x <= 0xA9FEFFFF))
        {
                qprintf("1");
                return true;
        }
        else
        {
                qprintf("0");
                return false;
        }
}

static bool cidr_prev4(struct cidr *a, struct cidr *b)
{
        struct cidr *n = cidr_clone(a);

        n->prefix = b->prefix;
        n->addr.v4.s_addr -= htonl(1 << (32 - b->prefix));

        return true;
}

static bool cidr_next4(struct cidr *a, struct cidr *b)
{
        struct cidr *n = cidr_clone(a);

        n->prefix = b->prefix;
        n->addr.v4.s_addr += htonl(1 << (32 - b->prefix));

        return true;
}

static bool cidr_6to4(struct cidr *a)
{
        struct cidr *n = cidr_clone(a);
        uint32_t x = a->addr.v4.s_addr;

        memset(&n->addr.v6.s6_addr, 0, sizeof(n->addr.v6.s6_addr));

        n->family = AF_INET6;
        n->prefix = 48;

        n->addr.v6.s6_addr[0] = 0x20;
        n->addr.v6.s6_addr[1] = 0x02;
        n->addr.v6.s6_addr[2] = (x >> 24);
        n->addr.v6.s6_addr[3] = (x >> 16) & 0xFF;
        n->addr.v6.s6_addr[4] = (x >>  8) & 0xFF;
        n->addr.v6.s6_addr[5] = x & 0xFF;

        return true;
}

static bool cidr_print4(struct cidr *a)
{
        char *p;

        if (!a || (a->family != AF_INET))
                return false;

        if (!(p = (char *)inet_ntop(AF_INET, &a->addr.v4, a->buf.v4, sizeof(a->buf.v4))))
                return false;

        if (printed)
                qprintf(" ");

        qprintf("%s", p);

        if (a->prefix < 32)
                qprintf("/%u", a->prefix);

        cidr_pop(a);

        return true;
}


static struct cidr * cidr_parse6(const char *s)
{
        char *p = NULL, *r;
        struct cidr *addr = malloc(sizeof(struct cidr));

        if (!addr || (strlen(s) >= sizeof(addr->buf.v6)))
                goto err;

        snprintf(addr->buf.v4, sizeof(addr->buf.v6), "%s", s);

        addr->family = AF_INET6;

        if ((p = strchr(addr->buf.v4, '/')) != NULL)
        {
                *p++ = 0;

                addr->prefix = strtoul(p, &r, 10);

                if ((p == r) || (*r != 0) || (addr->prefix > 128))
                        goto err;
        }
        else
        {
                addr->prefix = 128;
        }

        if (p == addr->buf.v4+1)
                memset(&addr->addr.v6, 0, sizeof(addr->addr.v6));
        else if (inet_pton(AF_INET6, addr->buf.v4, &addr->addr.v6) != 1)
                goto err;

        return addr;

err:
        if (addr)
                free(addr);

        return NULL;
}

static bool cidr_add6(struct cidr *a, struct cidr *b)
{
        uint8_t idx = 15, carry = 0, overflow = 0;

        struct cidr *n = cidr_clone(a);
        struct in6_addr *x = &n->addr.v6;
        struct in6_addr *y = &b->addr.v6;

        if ((a->family != AF_INET6) || (b->family != AF_INET6))
                return false;

        do {
                overflow = !!((x->s6_addr[idx] + y->s6_addr[idx] + carry) >= 256);
                x->s6_addr[idx] += y->s6_addr[idx] + carry;
                carry = overflow;
        }
        while (idx-- > 0);

        if (carry)
        {
                fprintf(stderr, "overflow during 'add'\n");
                return false;
        }

        return true;
}

static bool cidr_sub6(struct cidr *a, struct cidr *b)
{
        uint8_t idx = 15, carry = 0, underflow = 0;

        struct cidr *n = cidr_clone(a);
        struct in6_addr *x = &n->addr.v6;
        struct in6_addr *y = &b->addr.v6;

        if ((n->family != AF_INET6) || (b->family != AF_INET6))
                return false;

        do {
                underflow = !!((x->s6_addr[idx] - y->s6_addr[idx] - carry) < 0);
                x->s6_addr[idx] -= y->s6_addr[idx] + carry;
                carry = underflow;
        }
        while (idx-- > 0);

        if (carry)
        {
                fprintf(stderr, "underflow during 'sub'\n");
                return false;
        }

        return true;
}

static bool cidr_prev6(struct cidr *a, struct cidr *b)
{
        uint8_t idx, carry = 1, underflow = 0;
        struct cidr *n = cidr_clone(a);
        struct in6_addr *x = &n->addr.v6;

        if (b->prefix == 0)
        {
                fprintf(stderr, "underflow during 'prev'\n");
                return false;
        }

        idx = (b->prefix - 1) / 8;

        do {
                underflow = !!((x->s6_addr[idx] - carry) < 0);
                x->s6_addr[idx] -= carry;
                carry = underflow;
        }
        while (idx-- > 0);

        if (carry)
        {
                fprintf(stderr, "underflow during 'prev'\n");
                return false;
        }

        n->prefix = b->prefix;

        return true;
}

static bool cidr_next6(struct cidr *a, struct cidr *b)
{
        uint8_t idx, carry = 1, overflow = 0;
        struct cidr *n = cidr_clone(a);
        struct in6_addr *x = &n->addr.v6;

        if (b->prefix == 0)
        {
                fprintf(stderr, "overflow during 'next'\n");
                return false;
        }

        idx = (b->prefix - 1) / 8;

        do {
                overflow = !!((x->s6_addr[idx] + carry) >= 256);
                x->s6_addr[idx] += carry;
                carry = overflow;
        }
        while (idx-- > 0);

        if (carry)
        {
                fprintf(stderr, "overflow during 'next'\n");
                return false;
        }

        n->prefix = b->prefix;

        return true;
}

static bool cidr_network6(struct cidr *a)
{
        uint8_t i;
        struct cidr *n = cidr_clone(a);

        for (i = 0; i < (128 - n->prefix) / 8; i++)
                n->addr.v6.s6_addr[15-i] = 0;

        if ((128 - n->prefix) % 8)
                n->addr.v6.s6_addr[15-i] &= ~((1 << ((128 - n->prefix) % 8)) - 1);

        return true;
}

static bool cidr_contains6(struct cidr *a, struct cidr *b)
{
        struct cidr *n = cidr_clone(a);
        struct in6_addr *x = &n->addr.v6;
        struct in6_addr *y = &b->addr.v6;
        uint8_t i = (128 - n->prefix) / 8;
        uint8_t m = ~((1 << ((128 - n->prefix) % 8)) - 1);
        uint8_t net1 = x->s6_addr[15-i] & m;
        uint8_t net2 = y->s6_addr[15-i] & m;

        if (printed)
                qprintf(" ");

        if ((b->prefix >= n->prefix) && (net1 == net2) &&
            ((i == 15) || !memcmp(&x->s6_addr, &y->s6_addr, 15-i)))
        {
                qprintf("1");
                return true;
        }
        else
        {
                qprintf("0");
                return false;
        }
}

static bool cidr_linklocal6(struct cidr *a)
{
        if (printed)
                qprintf(" ");

        if ((a->addr.v6.s6_addr[0] == 0xFE) &&
            (a->addr.v6.s6_addr[1] >= 0x80) &&
            (a->addr.v6.s6_addr[1] <= 0xBF))
        {
                qprintf("1");
                return true;
        }
        else
        {
                qprintf("0");
                return false;
        }
}

static bool cidr_ula6(struct cidr *a)
{
        if (printed)
                qprintf(" ");

        if ((a->addr.v6.s6_addr[0] >= 0xFC) &&
            (a->addr.v6.s6_addr[0] <= 0xFD))
        {
                qprintf("1");
                return true;
        }
        else
        {
                qprintf("0");
                return false;
        }
}

static bool cidr_print6(struct cidr *a)
{
        char *p;

        if (!a || (a->family != AF_INET6))
                return NULL;

        if (!(p = (char *)inet_ntop(AF_INET6, &a->addr.v6, a->buf.v6, sizeof(a->buf.v6))))
                return false;

        if (printed)
                qprintf(" ");

        qprintf("%s", p);

        if (a->prefix < 128)
                qprintf("/%u", a->prefix);

        cidr_pop(a);

        return true;
}


static struct cidr * cidr_parse(const char *op, const char *s, int af_hint)
{
        char *r;
        struct cidr *a;

        uint8_t i;
        uint32_t sum = strtoul(s, &r, 0);

        if ((r > s) && (*r == 0))
        {
                a = malloc(sizeof(struct cidr));

                if (!a)
                        return NULL;

                if (af_hint == AF_INET)
                {
                        a->family = AF_INET;
                        a->prefix = sum;
                        a->addr.v4.s_addr = htonl(sum);
                }
                else
                {
                        a->family = AF_INET6;
                        a->prefix = sum;

                        for (i = 0; i <= 15; i++)
                        {
                                a->addr.v6.s6_addr[15-i] = sum % 256;
                                sum >>= 8;
                        }
                }

                return a;
        }

        if (strchr(s, ':'))
                a = cidr_parse6(s);
        else
                a = cidr_parse4(s);

        if (!a)
                return NULL;

        if (a->family != af_hint)
        {
                fprintf(stderr, "attempt to '%s' %s with %s address\n",
                                op,
                                (af_hint == AF_INET) ? "ipv4" : "ipv6",
                                (af_hint != AF_INET) ? "ipv4" : "ipv6");
                exit(4);
        }

        return a;
}

static bool cidr_howmany(struct cidr *a, struct cidr *b)
{
        if (printed)
                qprintf(" ");

        if (b->prefix < a->prefix)
                qprintf("0");
        else
                qprintf("%u", 1 << (b->prefix - a->prefix));

        return true;
}

static bool cidr_prefix(struct cidr *a, struct cidr *b)
{
        a->prefix = b->prefix;
        return true;
}

static bool cidr_quiet(struct cidr *a)
{
        quiet = true;
        return true;
}


struct op ops[] = {
        { .name = "add",
          .desc = "Add argument to base address",
          .f4.a2 = cidr_add4,
          .f6.a2 = cidr_add6 },

        { .name = "sub",
          .desc = "Substract argument from base address",
          .f4.a2 = cidr_sub4,
          .f6.a2 = cidr_sub6 },

        { .name = "next",
          .desc = "Advance base address to next prefix of given size",
          .f4.a2 = cidr_next4,
          .f6.a2 = cidr_next6 },

        { .name = "prev",
          .desc = "Lower base address to previous prefix of give size",
          .f4.a2 = cidr_prev4,
          .f6.a2 = cidr_prev6 },

        { .name = "network",
          .desc = "Turn base address into network address",
          .f4.a1 = cidr_network4,
          .f6.a1 = cidr_network6 },

        { .name = "broadcast",
          .desc = "Turn base address into broadcast address",
          .f4.a1 = cidr_broadcast4 },

        { .name = "prefix",
          .desc = "Set the prefix of base address to argument",
          .f4.a2 = cidr_prefix,
          .f6.a2 = cidr_prefix },

        { .name = "netmask",
          .desc = "Calculate netmask of base address",
          .f4.a1 = cidr_netmask4 },

        { .name = "6to4",
          .desc = "Calculate 6to4 prefix of given ipv4-address",
          .f4.a1 = cidr_6to4 },

        { .name = "howmany",
          .desc = "Print amount of righ-hand prefixes that fit into base address",
          .f4.a2 = cidr_howmany,
          .f6.a2 = cidr_howmany },

        { .name = "contains",
          .desc = "Print '1' if argument fits into base address or '0' if not",
          .f4.a2 = cidr_contains4,
          .f6.a2 = cidr_contains6 },

        { .name = "private",
          .desc = "Print '1' if base address is in RFC1918 private space or '0' "
                  "if not",
          .f4.a1 = cidr_private4 },

        { .name = "linklocal",
          .desc = "Print '1' if base address is in 169.254.0.0/16 or FE80::/10 "
                  "link local space or '0' if not",
          .f4.a1 = cidr_linklocal4,
          .f6.a1 = cidr_linklocal6 },

        { .name = "ula",
          .desc = "Print '1' if base address is in FC00::/7 unique local address "
                  "(ULA) space or '0' if not",
          .f6.a1 = cidr_ula6 },

        { .name = "quiet",
          .desc = "Suppress output, useful for test operation where the result can "
                  "be inferred from the exit code",
          .f4.a1 = cidr_quiet,
          .f6.a1 = cidr_quiet },

        { .name = "pop",
          .desc = "Pop intermediate result from stack",
          .f4.a1 = cidr_pop,
          .f6.a1 = cidr_pop },

        { .name = "print",
          .desc = "Print intermediate result and pop it from stack, invoked "
                  "implicitely at the end of calculation if no intermediate prints "
                  "happened",
          .f4.a1 = cidr_print4,
          .f6.a1 = cidr_print6 },
};

static void usage(const char *prog)
{
        int i;

        fprintf(stderr,
                "\n"
                "Usage:\n\n"
                "  %s {base address} operation [argument] "
                "[operation [argument] ...]\n\n"
                "Operations:\n\n",
                prog);

        for (i = 0; i < sizeof(ops) / sizeof(ops[0]); i++)
        {
                if (ops[i].f4.a2 || ops[i].f6.a2)
                {
                        fprintf(stderr, "  %s %s\n",
                                ops[i].name,
                                (ops[i].f4.a2 && ops[i].f6.a2) ? "{ipv4/ipv6/amount}" :
                                 (ops[i].f6.a2 ? "{ipv6/amount}" : "{ipv4/amount}"));
                }
                else
                {
                        fprintf(stderr, "  %s\n", ops[i].name);
                }

                fprintf(stderr, "    %s.\n", ops[i].desc);

                if ((ops[i].f4.a1 && ops[i].f6.a1) || (ops[i].f4.a2 && ops[i].f6.a2))
                        fprintf(stderr, "    Applicable to ipv4- and ipv6-addresses.\n\n");
                else if (ops[i].f6.a2 || ops[i].f6.a1)
                        fprintf(stderr, "    Only applicable to ipv6-addresses.\n\n");
                else
                        fprintf(stderr, "    Only applicable to ipv4-addresses.\n\n");
        }

        fprintf(stderr,
                "Examples:\n\n"
                " Calculate a DHCP range:\n\n"
                "  $ %s 192.168.1.1/255.255.255.0 network add 100 print add 150 print\n"
                        "  192.168.1.100\n"
                        "  192.168.1.250\n\n"
                        " Count number of prefixes:\n\n"
                        "  $ %s 2001:0DB8:FDEF::/48 howmany ::/64\n"
                        "  65536\n\n",
                prog, prog);

        exit(1);
}

static bool runop(char ***arg, int *status)
{
        int i;
        char *arg1 = **arg;
        char *arg2 = *(*arg+1);
        struct cidr *a = stack;
        struct cidr *b = NULL;

        if (!arg1)
                return false;

        for (i = 0; i < sizeof(ops) / sizeof(ops[0]); i++)
        {
                if (!strcmp(ops[i].name, arg1))
                {
                        if (ops[i].f4.a2 || ops[i].f6.a2)
                        {
                                if (!arg2)
                                {
                                        fprintf(stderr, "'%s' requires an argument\n",
                                                        ops[i].name);

                                        *status = 2;
                                        return false;
                                }

                                b = cidr_parse(ops[i].name, arg2, a->family);

                                if (!b)
                                {
                                        fprintf(stderr, "invalid address argument for '%s'\n",
                                                        ops[i].name);

                                        *status = 3;
                                        return false;
                                }

                                *arg += 2;

                                if (((a->family == AF_INET)  && !ops[i].f4.a2) ||
                                        ((a->family == AF_INET6) && !ops[i].f6.a2))
                                {
                                        fprintf(stderr, "'%s' not supported for %s addresses\n",
                                                ops[i].name,
                                                        (a->family == AF_INET) ? "ipv4" : "ipv6");

                                        *status = 5;
                                        return false;
                                }

                                *status = !((a->family == AF_INET) ? ops[i].f4.a2(a, b)
                                                                   : ops[i].f6.a2(a, b));

                                return true;
                        }
                        else
                        {
                                *arg += 1;

                                if (((a->family == AF_INET)  && !ops[i].f4.a1) ||
                                        ((a->family == AF_INET6) && !ops[i].f6.a1))
                                {
                                        fprintf(stderr, "'%s' not supported for %s addresses\n",
                                                ops[i].name,
                                                        (a->family == AF_INET) ? "ipv4" : "ipv6");

                                        *status = 5;
                                        return false;
                                }

                                *status = !((a->family == AF_INET) ? ops[i].f4.a1(a)
                                                                   : ops[i].f6.a1(a));

                                return true;
                        }
                }
        }

        return false;
}

int main(int argc, char **argv)
{
        int status = 0;
        char **arg = argv+2;
        struct cidr *a;

        if (argc < 3)
                usage(argv[0]);

        a = strchr(argv[1], ':') ? cidr_parse6(argv[1]) : cidr_parse4(argv[1]);

        if (!a)
                usage(argv[0]);

        cidr_push(a);

        while (runop(&arg, &status));

        if (*arg)
        {
                fprintf(stderr, "unknown operation '%s'\n", *arg);
                exit(6);
        }

        if (!printed && (status < 2))
        {
                if (stack->family == AF_INET)
                        cidr_print4(stack);
                else
                        cidr_print6(stack);
        }

        qprintf("\n");

        exit(status);
}