OpenWrt – Rev 1

Subversion Repositories:
Rev:
/*
 * (C) Copyright 2005
 * Oxford Semiconductor Ltd
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,`
 * MA 02111-1307 USA
 */
#include <common.h>
#include <asm/arch/clock.h>

/**
 * SATA related definitions
 */
#define ATA_PORT_CTL        0
#define ATA_PORT_FEATURE    1
#define ATA_PORT_NSECT      2
#define ATA_PORT_LBAL       3
#define ATA_PORT_LBAM       4
#define ATA_PORT_LBAH       5
#define ATA_PORT_DEVICE     6
#define ATA_PORT_COMMAND    7

/* The offsets to the SATA registers */
#define SATA_ORB1_OFF           0
#define SATA_ORB2_OFF           1
#define SATA_ORB3_OFF           2
#define SATA_ORB4_OFF           3
#define SATA_ORB5_OFF           4

#define SATA_FIS_ACCESS         11
#define SATA_INT_STATUS_OFF     12  /* Read only */
#define SATA_INT_CLR_OFF        12  /* Write only */
#define SATA_INT_ENABLE_OFF     13  /* Read only */
#define SATA_INT_ENABLE_SET_OFF 13  /* Write only */
#define SATA_INT_ENABLE_CLR_OFF 14  /* Write only */
#define SATA_VERSION_OFF        15
#define SATA_CONTROL_OFF        23
#define SATA_COMMAND_OFF        24
#define SATA_PORT_CONTROL_OFF   25
#define SATA_DRIVE_CONTROL_OFF  26

/* The offsets to the link registers that are access in an asynchronous manner */
#define SATA_LINK_DATA     28
#define SATA_LINK_RD_ADDR  29
#define SATA_LINK_WR_ADDR  30
#define SATA_LINK_CONTROL  31

/* SATA interrupt status register fields */
#define SATA_INT_STATUS_EOC_RAW_BIT     ( 0 + 16)
#define SATA_INT_STATUS_ERROR_BIT       ( 2 + 16)
#define SATA_INT_STATUS_EOADT_RAW_BIT   ( 1 + 16)

/* SATA core command register commands */
#define SATA_CMD_WRITE_TO_ORB_REGS              2
#define SATA_CMD_WRITE_TO_ORB_REGS_NO_COMMAND   4

#define SATA_CMD_BUSY_BIT 7

#define SATA_SCTL_CLR_ERR 0x00000316UL

#define SATA_LBAL_BIT    0
#define SATA_LBAM_BIT    8
#define SATA_LBAH_BIT    16
#define SATA_HOB_LBAH_BIT 24
#define SATA_DEVICE_BIT  24
#define SATA_NSECT_BIT   0
#define SATA_HOB_NSECT_BIT   8
#define SATA_LBA32_BIT       0
#define SATA_LBA40_BIT       8
#define SATA_FEATURE_BIT 16
#define SATA_COMMAND_BIT 24
#define SATA_CTL_BIT     24

/* ATA status (7) register field definitions */
#define ATA_STATUS_BSY_BIT     7
#define ATA_STATUS_DRDY_BIT    6
#define ATA_STATUS_DF_BIT      5
#define ATA_STATUS_DRQ_BIT     3
#define ATA_STATUS_ERR_BIT     0

/* ATA device (6) register field definitions */
#define ATA_DEVICE_FIXED_MASK 0xA0
#define ATA_DEVICE_DRV_BIT 4
#define ATA_DEVICE_DRV_NUM_BITS 1
#define ATA_DEVICE_LBA_BIT 6

/* ATA Command register initiated commands */
#define ATA_CMD_INIT    0x91
#define ATA_CMD_IDENT   0xEC

#define SATA_STD_ASYNC_REGS_OFF 0x20
#define SATA_SCR_STATUS      0
#define SATA_SCR_ERROR       1
#define SATA_SCR_CONTROL     2
#define SATA_SCR_ACTIVE      3
#define SATA_SCR_NOTIFICAION 4

#define SATA_BURST_BUF_FORCE_EOT_BIT        0
#define SATA_BURST_BUF_DATA_INJ_ENABLE_BIT  1
#define SATA_BURST_BUF_DIR_BIT              2
#define SATA_BURST_BUF_DATA_INJ_END_BIT     3
#define SATA_BURST_BUF_FIFO_DIS_BIT         4
#define SATA_BURST_BUF_DIS_DREQ_BIT         5
#define SATA_BURST_BUF_DREQ_BIT             6

#define SATA_OPCODE_MASK 0x3

#define SATA_DMA_CHANNEL 0

#define DMA_CTRL_STATUS      (0x0)
#define DMA_BASE_SRC_ADR     (0x4)
#define DMA_BASE_DST_ADR     (0x8)
#define DMA_BYTE_CNT         (0xC)
#define DMA_CURRENT_SRC_ADR  (0x10)
#define DMA_CURRENT_DST_ADR  (0x14)
#define DMA_CURRENT_BYTE_CNT (0x18)
#define DMA_INTR_ID          (0x1C)
#define DMA_INTR_CLEAR_REG   (DMA_CURRENT_SRC_ADR)

#define DMA_CALC_REG_ADR(channel, register) ((volatile u32*)(DMA_BASE + ((channel) << 5) + (register)))

#define DMA_CTRL_STATUS_FAIR_SHARE_ARB            (1 << 0)
#define DMA_CTRL_STATUS_IN_PROGRESS               (1 << 1)
#define DMA_CTRL_STATUS_SRC_DREQ_MASK             (0x0000003C)
#define DMA_CTRL_STATUS_SRC_DREQ_SHIFT            (2)
#define DMA_CTRL_STATUS_DEST_DREQ_MASK            (0x000003C0)
#define DMA_CTRL_STATUS_DEST_DREQ_SHIFT           (6)
#define DMA_CTRL_STATUS_INTR                      (1 << 10)
#define DMA_CTRL_STATUS_NXT_FREE                  (1 << 11)
#define DMA_CTRL_STATUS_RESET                     (1 << 12)
#define DMA_CTRL_STATUS_DIR_MASK                  (0x00006000)
#define DMA_CTRL_STATUS_DIR_SHIFT                 (13)
#define DMA_CTRL_STATUS_SRC_ADR_MODE              (1 << 15)
#define DMA_CTRL_STATUS_DEST_ADR_MODE             (1 << 16)
#define DMA_CTRL_STATUS_TRANSFER_MODE_A           (1 << 17)
#define DMA_CTRL_STATUS_TRANSFER_MODE_B           (1 << 18)
#define DMA_CTRL_STATUS_SRC_WIDTH_MASK            (0x00380000)
#define DMA_CTRL_STATUS_SRC_WIDTH_SHIFT           (19)
#define DMA_CTRL_STATUS_DEST_WIDTH_MASK           (0x01C00000)
#define DMA_CTRL_STATUS_DEST_WIDTH_SHIFT          (22)
#define DMA_CTRL_STATUS_PAUSE                     (1 << 25)
#define DMA_CTRL_STATUS_INTERRUPT_ENABLE          (1 << 26)
#define DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED      (1 << 27)
#define DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED (1 << 28)
#define DMA_CTRL_STATUS_STARVE_LOW_PRIORITY       (1 << 29)
#define DMA_CTRL_STATUS_INTR_CLEAR_ENABLE         (1 << 30)

#define DMA_BYTE_CNT_MASK        ((1 << 21) - 1)
#define DMA_BYTE_CNT_WR_EOT_MASK (1 << 30)
#define DMA_BYTE_CNT_RD_EOT_MASK (1 << 31)
#define DMA_BYTE_CNT_BURST_MASK  (1 << 28)

#define MAKE_FIELD(value, num_bits, bit_num) (((value) & ((1 << (num_bits)) - 1)) << (bit_num))

typedef enum oxnas_dma_mode {
        OXNAS_DMA_MODE_FIXED, OXNAS_DMA_MODE_INC
} oxnas_dma_mode_t;

typedef enum oxnas_dma_direction {
        OXNAS_DMA_TO_DEVICE, OXNAS_DMA_FROM_DEVICE
} oxnas_dma_direction_t;

/* The available buses to which the DMA controller is attached */
typedef enum oxnas_dma_transfer_bus {
        OXNAS_DMA_SIDE_A, OXNAS_DMA_SIDE_B
} oxnas_dma_transfer_bus_t;

/* Direction of data flow between the DMA controller's pair of interfaces */
typedef enum oxnas_dma_transfer_direction {
        OXNAS_DMA_A_TO_A, OXNAS_DMA_B_TO_A, OXNAS_DMA_A_TO_B, OXNAS_DMA_B_TO_B
} oxnas_dma_transfer_direction_t;

/* The available data widths */
typedef enum oxnas_dma_transfer_width {
        OXNAS_DMA_TRANSFER_WIDTH_8BITS,
        OXNAS_DMA_TRANSFER_WIDTH_16BITS,
        OXNAS_DMA_TRANSFER_WIDTH_32BITS
} oxnas_dma_transfer_width_t;

/* The mode of the DMA transfer */
typedef enum oxnas_dma_transfer_mode {
        OXNAS_DMA_TRANSFER_MODE_SINGLE, OXNAS_DMA_TRANSFER_MODE_BURST
} oxnas_dma_transfer_mode_t;

/* The available transfer targets */
typedef enum oxnas_dma_dreq {
        OXNAS_DMA_DREQ_SATA = 0, OXNAS_DMA_DREQ_MEMORY = 15
} oxnas_dma_dreq_t;

typedef struct oxnas_dma_device_settings {
        unsigned long address_;
        unsigned fifo_size_; // Chained transfers must take account of FIFO offset at end of previous transfer
        unsigned char dreq_;
        unsigned read_eot_ :1;
        unsigned read_final_eot_ :1;
        unsigned write_eot_ :1;
        unsigned write_final_eot_ :1;
        unsigned bus_ :1;
        unsigned width_ :2;
        unsigned transfer_mode_ :1;
        unsigned address_mode_ :1;
        unsigned address_really_fixed_ :1;
} oxnas_dma_device_settings_t;

static const int MAX_NO_ERROR_LOOPS = 100000; /* 1 second in units of 10uS */
static const int MAX_DMA_XFER_LOOPS = 300000; /* 30 seconds in units of 100uS */
static const int MAX_DMA_ABORT_LOOPS = 10000; /* 0.1 second in units of 10uS */
static const int MAX_SRC_READ_LOOPS = 10000; /* 0.1 second in units of 10uS */
static const int MAX_SRC_WRITE_LOOPS = 10000; /* 0.1 second in units of 10uS */
static const int MAX_NOT_BUSY_LOOPS = 10000; /* 1 second in units of 100uS */

/* The internal SATA drive on which we should attempt to find partitions */
static volatile u32* sata_regs_base[2] = { (volatile u32*) SATA_0_REGS_BASE,
                (volatile u32*) SATA_1_REGS_BASE,

};
static u32 wr_sata_orb1[2] = { 0, 0 };
static u32 wr_sata_orb2[2] = { 0, 0 };
static u32 wr_sata_orb3[2] = { 0, 0 };
static u32 wr_sata_orb4[2] = { 0, 0 };

#ifdef CONFIG_LBA48
/* need keeping a record of NSECT LBAL LBAM LBAH ide_outb values for lba48 support */
#define OUT_HISTORY_BASE        ATA_PORT_NSECT
#define OUT_HISTORY_MAX         ATA_PORT_LBAH
static unsigned char out_history[2][OUT_HISTORY_MAX - OUT_HISTORY_BASE + 1] = {};
#endif

static oxnas_dma_device_settings_t oxnas_sata_dma_settings = { .address_ =
        SATA_DATA_BASE, .fifo_size_ = 16, .dreq_ = OXNAS_DMA_DREQ_SATA,
                .read_eot_ = 0, .read_final_eot_ = 1, .write_eot_ = 0,
                .write_final_eot_ = 1, .bus_ = OXNAS_DMA_SIDE_B, .width_ =
                        OXNAS_DMA_TRANSFER_WIDTH_32BITS, .transfer_mode_ =
                        OXNAS_DMA_TRANSFER_MODE_BURST, .address_mode_ =
                        OXNAS_DMA_MODE_FIXED, .address_really_fixed_ = 0 };

oxnas_dma_device_settings_t oxnas_ram_dma_settings = { .address_ = 0,
                .fifo_size_ = 0, .dreq_ = OXNAS_DMA_DREQ_MEMORY, .read_eot_ = 1,
                .read_final_eot_ = 1, .write_eot_ = 1, .write_final_eot_ = 1,
                .bus_ = OXNAS_DMA_SIDE_A, .width_ =
                        OXNAS_DMA_TRANSFER_WIDTH_32BITS, .transfer_mode_ =
                        OXNAS_DMA_TRANSFER_MODE_BURST, .address_mode_ =
                        OXNAS_DMA_MODE_FIXED, .address_really_fixed_ = 1 };

static void xfer_wr_shadow_to_orbs(int device)
{
        *(sata_regs_base[device] + SATA_ORB1_OFF) = wr_sata_orb1[device];
        *(sata_regs_base[device] + SATA_ORB2_OFF) = wr_sata_orb2[device];
        *(sata_regs_base[device] + SATA_ORB3_OFF) = wr_sata_orb3[device];
        *(sata_regs_base[device] + SATA_ORB4_OFF) = wr_sata_orb4[device];
}

static inline void device_select(int device)
{
        /* master/slave has no meaning to SATA core */
}

static int disk_present[CONFIG_SYS_IDE_MAXDEVICE];

#include <ata.h>

unsigned char ide_inb(int device, int port)
{
        unsigned char val = 0;

        /* Only permit accesses to disks found to be present during ide_preinit() */
        if (!disk_present[device]) {
                return ATA_STAT_FAULT;
        }

        device_select(device);

        switch (port) {
        case ATA_PORT_CTL:
                val = (*(sata_regs_base[device] + SATA_ORB4_OFF)
                        & (0xFFUL << SATA_CTL_BIT)) >> SATA_CTL_BIT;
                break;
        case ATA_PORT_FEATURE:
                val = (*(sata_regs_base[device] + SATA_ORB2_OFF)
                        & (0xFFUL << SATA_FEATURE_BIT)) >> SATA_FEATURE_BIT;
                break;
        case ATA_PORT_NSECT:
                val = (*(sata_regs_base[device] + SATA_ORB2_OFF)
                        & (0xFFUL << SATA_NSECT_BIT)) >> SATA_NSECT_BIT;
                break;
        case ATA_PORT_LBAL:
                val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
                        & (0xFFUL << SATA_LBAL_BIT)) >> SATA_LBAL_BIT;
                break;
        case ATA_PORT_LBAM:
                val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
                        & (0xFFUL << SATA_LBAM_BIT)) >> SATA_LBAM_BIT;
                break;
        case ATA_PORT_LBAH:
                val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
                        & (0xFFUL << SATA_LBAH_BIT)) >> SATA_LBAH_BIT;
                break;
        case ATA_PORT_DEVICE:
                val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
                        & (0xFFUL << SATA_HOB_LBAH_BIT)) >> SATA_HOB_LBAH_BIT;
                val |= (*(sata_regs_base[device] + SATA_ORB1_OFF)
                        & (0xFFUL << SATA_DEVICE_BIT)) >> SATA_DEVICE_BIT;
                break;
        case ATA_PORT_COMMAND:
                val = (*(sata_regs_base[device] + SATA_ORB2_OFF)
                        & (0xFFUL << SATA_COMMAND_BIT)) >> SATA_COMMAND_BIT;
                val |= ATA_STAT_DRQ;
                break;
        default:
                printf("ide_inb() Unknown port = %d\n", port);
                break;
        }

        //    printf("inb: %d:%01x => %02x\n", device, port, val);

        return val;
}

/**
 * Possible that ATA status will not become no-error, so must have timeout
 * @returns An int which is zero on error
 */
static inline int wait_no_error(int device)
{
        int status = 0;

        /* Check for ATA core error */
        if (*(sata_regs_base[device] + SATA_INT_STATUS_OFF)
                & (1 << SATA_INT_STATUS_ERROR_BIT)) {
                printf("wait_no_error() SATA core flagged error\n");
        } else {
                int loops = MAX_NO_ERROR_LOOPS;
                do {
                        /* Check for ATA device error */
                        if (!(ide_inb(device, ATA_PORT_COMMAND)
                                & (1 << ATA_STATUS_ERR_BIT))) {
                                status = 1;
                                break;
                        }
                        udelay(10);
                } while (--loops);

                if (!loops) {
                        printf("wait_no_error() Timed out of wait for SATA no-error condition\n");
                }
        }

        return status;
}

/**
 * Expect SATA command to always finish, perhaps with error
 * @returns An int which is zero on error
 */
static inline int wait_sata_command_not_busy(int device)
{
        /* Wait for data to be available */
        int status = 0;
        int loops = MAX_NOT_BUSY_LOOPS;
        do {
                if (!(*(sata_regs_base[device] + SATA_COMMAND_OFF)
                        & (1 << SATA_CMD_BUSY_BIT))) {
                        status = 1;
                        break;
                }
                udelay(100);
        } while (--loops);

        if (!loops) {
                printf("wait_sata_command_not_busy() Timed out of wait for SATA command to finish\n");
        }

        return status;
}

void ide_outb(int device, int port, unsigned char val)
{
        typedef enum send_method {
                SEND_NONE, SEND_SIMPLE, SEND_CMD, SEND_CTL,
        } send_method_t;

        /* Only permit accesses to disks found to be present during ide_preinit() */
        if (!disk_present[device]) {
                return;
        }

        //    printf("outb: %d:%01x <= %02x\n", device, port, val);

        device_select(device);

#ifdef CONFIG_LBA48
        if (port >= OUT_HISTORY_BASE && port <= OUT_HISTORY_MAX) {
                out_history[0][port - OUT_HISTORY_BASE] =
                        out_history[1][port - OUT_HISTORY_BASE];
                out_history[1][port - OUT_HISTORY_BASE] = val;
        }
#endif
        send_method_t send_regs = SEND_NONE;
        switch (port) {
        case ATA_PORT_CTL:
                wr_sata_orb4[device] &= ~(0xFFUL << SATA_CTL_BIT);
                wr_sata_orb4[device] |= (val << SATA_CTL_BIT);
                send_regs = SEND_CTL;
                break;
        case ATA_PORT_FEATURE:
                wr_sata_orb2[device] &= ~(0xFFUL << SATA_FEATURE_BIT);
                wr_sata_orb2[device] |= (val << SATA_FEATURE_BIT);
                send_regs = SEND_SIMPLE;
                break;
        case ATA_PORT_NSECT:
                wr_sata_orb2[device] &= ~(0xFFUL << SATA_NSECT_BIT);
                wr_sata_orb2[device] |= (val << SATA_NSECT_BIT);
                send_regs = SEND_SIMPLE;
                break;
        case ATA_PORT_LBAL:
                wr_sata_orb3[device] &= ~(0xFFUL << SATA_LBAL_BIT);
                wr_sata_orb3[device] |= (val << SATA_LBAL_BIT);
                send_regs = SEND_SIMPLE;
                break;
        case ATA_PORT_LBAM:
                wr_sata_orb3[device] &= ~(0xFFUL << SATA_LBAM_BIT);
                wr_sata_orb3[device] |= (val << SATA_LBAM_BIT);
                send_regs = SEND_SIMPLE;
                break;
        case ATA_PORT_LBAH:
                wr_sata_orb3[device] &= ~(0xFFUL << SATA_LBAH_BIT);
                wr_sata_orb3[device] |= (val << SATA_LBAH_BIT);
                send_regs = SEND_SIMPLE;
                break;
        case ATA_PORT_DEVICE:
                wr_sata_orb1[device] &= ~(0xFFUL << SATA_DEVICE_BIT);
                wr_sata_orb1[device] |= (val << SATA_DEVICE_BIT);
                send_regs = SEND_SIMPLE;
                break;
        case ATA_PORT_COMMAND:
                wr_sata_orb2[device] &= ~(0xFFUL << SATA_COMMAND_BIT);
                wr_sata_orb2[device] |= (val << SATA_COMMAND_BIT);
                send_regs = SEND_CMD;
#ifdef CONFIG_LBA48
                if (val == ATA_CMD_READ_EXT || val == ATA_CMD_WRITE_EXT)
                {
                        /* fill high bytes of LBA48 && NSECT */
                        wr_sata_orb2[device] &= ~(0xFFUL << SATA_HOB_NSECT_BIT);
                        wr_sata_orb2[device] |=
                                (out_history[0][ATA_PORT_NSECT - OUT_HISTORY_BASE] << SATA_HOB_NSECT_BIT);

                        wr_sata_orb3[device] &= ~(0xFFUL << SATA_HOB_LBAH_BIT);
                        wr_sata_orb3[device] |=
                                (out_history[0][ATA_PORT_LBAL - OUT_HISTORY_BASE] << SATA_HOB_LBAH_BIT);

                        wr_sata_orb4[device] &= ~(0xFFUL << SATA_LBA32_BIT);
                        wr_sata_orb4[device] |=
                                (out_history[0][ATA_PORT_LBAM - OUT_HISTORY_BASE] << SATA_LBA32_BIT);

                        wr_sata_orb4[device] &= ~(0xFFUL << SATA_LBA40_BIT);
                        wr_sata_orb4[device] |=
                                (out_history[0][ATA_PORT_LBAH - OUT_HISTORY_BASE] << SATA_LBA40_BIT);
                }
#endif
                break;
        default:
                printf("ide_outb() Unknown port = %d\n", port);
        }

        u32 command;
        switch (send_regs) {
        case SEND_CMD:
                wait_sata_command_not_busy(device);
                command = *(sata_regs_base[device] + SATA_COMMAND_OFF);
                command &= ~SATA_OPCODE_MASK;
                command |= SATA_CMD_WRITE_TO_ORB_REGS;
                xfer_wr_shadow_to_orbs(device);
                wait_sata_command_not_busy(device);
                *(sata_regs_base[device] + SATA_COMMAND_OFF) = command;
                if (!wait_no_error(device)) {
                        printf("ide_outb() Wait for ATA no-error timed-out\n");
                }
                break;
        case SEND_CTL:
                wait_sata_command_not_busy(device);
                command = *(sata_regs_base[device] + SATA_COMMAND_OFF);
                command &= ~SATA_OPCODE_MASK;
                command |= SATA_CMD_WRITE_TO_ORB_REGS_NO_COMMAND;
                xfer_wr_shadow_to_orbs(device);
                wait_sata_command_not_busy(device);
                *(sata_regs_base[device] + SATA_COMMAND_OFF) = command;
                if (!wait_no_error(device)) {
                        printf("ide_outb() Wait for ATA no-error timed-out\n");
                }
                break;
        default:
                break;
        }
}

static u32 encode_start(u32 ctrl_status)
{
        return ctrl_status & ~DMA_CTRL_STATUS_PAUSE;
}

/* start a paused DMA transfer in channel 0 of the SATA DMA core */
static void dma_start(void)
{
        unsigned int reg;
        reg = readl(SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
        reg = encode_start(reg);
        writel(reg, SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
}

static unsigned long encode_control_status(
        oxnas_dma_device_settings_t* src_settings,
        oxnas_dma_device_settings_t* dst_settings)
{
        unsigned long ctrl_status;
        oxnas_dma_transfer_direction_t direction;

        ctrl_status = DMA_CTRL_STATUS_PAUSE;                           // Paused
        ctrl_status |= DMA_CTRL_STATUS_FAIR_SHARE_ARB;          // High priority
        ctrl_status |= (src_settings->dreq_ << DMA_CTRL_STATUS_SRC_DREQ_SHIFT); // Dreq
        ctrl_status |= (dst_settings->dreq_ << DMA_CTRL_STATUS_DEST_DREQ_SHIFT); // Dreq
        ctrl_status &= ~DMA_CTRL_STATUS_RESET;                         // !RESET

        // Use new interrupt clearing register
        ctrl_status |= DMA_CTRL_STATUS_INTR_CLEAR_ENABLE;

        // Setup the transfer direction and burst/single mode for the two DMA busses
        if (src_settings->bus_ == OXNAS_DMA_SIDE_A) {
                // Set the burst/single mode for bus A based on src device's settings
                if (src_settings->transfer_mode_
                        == OXNAS_DMA_TRANSFER_MODE_BURST) {
                        ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_A;
                } else {
                        ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_A;
                }

                if (dst_settings->bus_ == OXNAS_DMA_SIDE_A) {
                        direction = OXNAS_DMA_A_TO_A;
                } else {
                        direction = OXNAS_DMA_A_TO_B;

                        // Set the burst/single mode for bus B based on dst device's settings
                        if (dst_settings->transfer_mode_
                                == OXNAS_DMA_TRANSFER_MODE_BURST) {
                                ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_B;
                        } else {
                                ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_B;
                        }
                }
        } else {
                // Set the burst/single mode for bus B based on src device's settings
                if (src_settings->transfer_mode_
                        == OXNAS_DMA_TRANSFER_MODE_BURST) {
                        ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_B;
                } else {
                        ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_B;
                }

                if (dst_settings->bus_ == OXNAS_DMA_SIDE_A) {
                        direction = OXNAS_DMA_B_TO_A;

                        // Set the burst/single mode for bus A based on dst device's settings
                        if (dst_settings->transfer_mode_
                                == OXNAS_DMA_TRANSFER_MODE_BURST) {
                                ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_A;
                        } else {
                                ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_A;
                        }
                } else {
                        direction = OXNAS_DMA_B_TO_B;
                }
        }
        ctrl_status |= (direction << DMA_CTRL_STATUS_DIR_SHIFT);

        // Setup source address mode fixed or increment
        if (src_settings->address_mode_ == OXNAS_DMA_MODE_FIXED) {
                // Fixed address
                ctrl_status &= ~(DMA_CTRL_STATUS_SRC_ADR_MODE);

                // Set up whether fixed address is _really_ fixed
                if (src_settings->address_really_fixed_) {
                        ctrl_status |= DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED;
                } else {
                        ctrl_status &= ~DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED;
                }
        } else {
                // Incrementing address
                ctrl_status |= DMA_CTRL_STATUS_SRC_ADR_MODE;
                ctrl_status &= ~DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED;
        }

        // Setup destination address mode fixed or increment
        if (dst_settings->address_mode_ == OXNAS_DMA_MODE_FIXED) {
                // Fixed address
                ctrl_status &= ~(DMA_CTRL_STATUS_DEST_ADR_MODE);

                // Set up whether fixed address is _really_ fixed
                if (dst_settings->address_really_fixed_) {
                        ctrl_status |=
                                DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED;
                } else {
                        ctrl_status &=
                                ~DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED;
                }
        } else {
                // Incrementing address
                ctrl_status |= DMA_CTRL_STATUS_DEST_ADR_MODE;
                ctrl_status &= ~DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED;
        }

        // Set up the width of the transfers on the DMA buses
        ctrl_status |=
                (src_settings->width_ << DMA_CTRL_STATUS_SRC_WIDTH_SHIFT);
        ctrl_status |=
                (dst_settings->width_ << DMA_CTRL_STATUS_DEST_WIDTH_SHIFT);

        // Setup the priority arbitration scheme
        ctrl_status &= ~DMA_CTRL_STATUS_STARVE_LOW_PRIORITY; // !Starve low priority

        return ctrl_status;
}

static u32 encode_final_eot(oxnas_dma_device_settings_t* src_settings,
                                oxnas_dma_device_settings_t* dst_settings,
                                unsigned long length)
{
        // Write the length, with EOT configuration for a final transfer
        unsigned long encoded = length;
        if (dst_settings->write_final_eot_) {
                encoded |= DMA_BYTE_CNT_WR_EOT_MASK;
        } else {
                encoded &= ~DMA_BYTE_CNT_WR_EOT_MASK;
        }
        if (src_settings->read_final_eot_) {
                encoded |= DMA_BYTE_CNT_RD_EOT_MASK;
        } else {
                encoded &= ~DMA_BYTE_CNT_RD_EOT_MASK;
        }
        /*    if((src_settings->transfer_mode_) ||
         (src_settings->transfer_mode_)) {
         encoded |= DMA_BYTE_CNT_BURST_MASK;
         } else {
         encoded &= ~DMA_BYTE_CNT_BURST_MASK;
         }*/
        return encoded;
}

static void dma_start_write(const ulong* buffer, int num_bytes)
{
        // Assemble complete memory settings
        oxnas_dma_device_settings_t mem_settings = oxnas_ram_dma_settings;
        mem_settings.address_ = (unsigned long) buffer;
        mem_settings.address_mode_ = OXNAS_DMA_MODE_INC;

        writel(encode_control_status(&mem_settings, &oxnas_sata_dma_settings),
                SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
        writel(mem_settings.address_, SATA_DMA_REGS_BASE + DMA_BASE_SRC_ADR);
        writel(oxnas_sata_dma_settings.address_,
                SATA_DMA_REGS_BASE + DMA_BASE_DST_ADR);
        writel(encode_final_eot(&mem_settings, &oxnas_sata_dma_settings,
                                num_bytes),
                SATA_DMA_REGS_BASE + DMA_BYTE_CNT);

        dma_start();
}

static void dma_start_read(ulong* buffer, int num_bytes)
{
        // Assemble complete memory settings
        oxnas_dma_device_settings_t mem_settings = oxnas_ram_dma_settings;
        mem_settings.address_ = (unsigned long) buffer;
        mem_settings.address_mode_ = OXNAS_DMA_MODE_INC;

        writel(encode_control_status(&oxnas_sata_dma_settings, &mem_settings),
                SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
        writel(oxnas_sata_dma_settings.address_,
                SATA_DMA_REGS_BASE + DMA_BASE_SRC_ADR);
        writel(mem_settings.address_, SATA_DMA_REGS_BASE + DMA_BASE_DST_ADR);
        writel(encode_final_eot(&oxnas_sata_dma_settings, &mem_settings,
                                num_bytes),
                SATA_DMA_REGS_BASE + DMA_BYTE_CNT);

        dma_start();
}

static inline int dma_busy(void)
{
        return readl(SATA_DMA_REGS_BASE + DMA_CTRL_STATUS)
                & DMA_CTRL_STATUS_IN_PROGRESS;
}

static int wait_dma_not_busy(int device)
{
        unsigned int cleanup_required = 0;

        /* Poll for DMA completion */
        int loops = MAX_DMA_XFER_LOOPS;
        do {
                if (!dma_busy()) {
                        break;
                }
                udelay(100);
        } while (--loops);

        if (!loops) {
                printf("wait_dma_not_busy() Timed out of wait for DMA not busy\n");
                cleanup_required = 1;
        }

        if (cleanup_required) {
                /* Abort DMA to make sure it has finished. */
                unsigned int ctrl_status = readl(
                        SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
                ctrl_status |= DMA_CTRL_STATUS_RESET;
                writel(ctrl_status, SATA_DMA_CHANNEL + DMA_CTRL_STATUS);

                // Wait for the channel to become idle - should be quick as should
                // finish after the next AHB single or burst transfer
                loops = MAX_DMA_ABORT_LOOPS;
                do {
                        if (!dma_busy()) {
                                break;
                        }
                        udelay(10);
                } while (--loops);

                if (!loops) {
                        printf("wait_dma_not_busy() Timed out of wait for DMA channel abort\n");
                } else {
                        /* Successfully cleanup the DMA channel */
                        cleanup_required = 0;
                }

                // Deassert reset for the channel
                ctrl_status = readl(SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
                ctrl_status &= ~DMA_CTRL_STATUS_RESET;
                writel(ctrl_status, SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
        }

        return !cleanup_required;
}

/**
 * Possible that ATA status will not become not-busy, so must have timeout
 */
static unsigned int wait_not_busy(int device, unsigned long timeout_secs)
{
        int busy = 1;
        unsigned long loops = (timeout_secs * 1000) / 50;
        do {
                // Test the ATA status register BUSY flag
                if (!((*(sata_regs_base[device] + SATA_ORB2_OFF)
                        >> SATA_COMMAND_BIT) & (1UL << ATA_STATUS_BSY_BIT))) {
                        /* Not busy, so stop polling */
                        busy = 0;
                        break;
                }

                // Wait for 50mS before sampling ATA status register again
                udelay(50000);
        } while (--loops);

        return busy;
}

void ide_output_data(int device, const ulong *sect_buf, int words)
{
        /* Only permit accesses to disks found to be present during ide_preinit() */
        if (!disk_present[device]) {
                return;
        }

        /* Select the required internal SATA drive */
        device_select(device);

        /* Start the DMA channel sending data from the passed buffer to the SATA core */
        dma_start_write(sect_buf, words << 2);

        /* Don't know why we need this delay, but without it the wait for DMA not
         busy times soemtimes out, e.g. when saving environment to second disk */
        udelay(1000);

        /* Wait for DMA to finish */
        if (!wait_dma_not_busy(device)) {
                printf("Timed out of wait for DMA channel for SATA device %d to have in-progress clear\n",
                        device);
        }

        /* Sata core should finish after DMA */
        if (wait_not_busy(device, 30)) {
                printf("Timed out of wait for SATA device %d to have BUSY clear\n",
                        device);
        }
        if (!wait_no_error(device)) {
                printf("oxnas_sata_output_data() Wait for ATA no-error timed-out\n");
        }
}


#define SATA_DM_DBG1                    (SATA_HOST_REGS_BASE + 0)
#define SATA_DATACOUNT_PORT0            (SATA_HOST_REGS_BASE + 0x10)
#define SATA_DATACOUNT_PORT1            (SATA_HOST_REGS_BASE + 0x14)
#define SATA_DATA_MUX_RAM0              (SATA_HOST_REGS_BASE + 0x8000)
#define SATA_DATA_MUX_RAM1              (SATA_HOST_REGS_BASE + 0xA000)
/* Sata core debug1 register bits */
#define SATA_CORE_PORT0_DATA_DIR_BIT    20
#define SATA_CORE_PORT1_DATA_DIR_BIT    21
#define SATA_CORE_PORT0_DATA_DIR        (1 << SATA_CORE_PORT0_DATA_DIR_BIT)
#define SATA_CORE_PORT1_DATA_DIR        (1 << SATA_CORE_PORT1_DATA_DIR_BIT)

/**
 * Ref bug-6320
 *
 * This code is a work around for a DMA hardware bug that will repeat the
 * penultimate 8-bytes on some reads. This code will check that the amount
 * of data transferred is a multiple of 512 bytes, if not the in it will
 * fetch the correct data from a buffer in the SATA core and copy it into
 * memory.
 *
 */
static void sata_bug_6320_workaround(int port, ulong *candidate)
{
        int is_read;
        int quads_transferred;
        int remainder;
        int sector_quads_remaining;

        /* Only want to apply fix to reads */
        is_read = !(*((unsigned long*) SATA_DM_DBG1)
                & (port ? SATA_CORE_PORT1_DATA_DIR : SATA_CORE_PORT0_DATA_DIR));

        /* Check for an incomplete transfer, i.e. not a multiple of 512 bytes
         transferred (datacount_port register counts quads transferred) */
        quads_transferred = *((unsigned long*) (
                port ? SATA_DATACOUNT_PORT1 : SATA_DATACOUNT_PORT0));

        remainder = quads_transferred & 0x7f;
        sector_quads_remaining = remainder ? (0x80 - remainder) : 0;

        if (is_read && (sector_quads_remaining == 2)) {
                debug("SATA read fixup, only transfered %d quads, "
                        "sector_quads_remaining %d, port %d\n",
                        quads_transferred, sector_quads_remaining, port);

                int total_len = ATA_SECT_SIZE;
                ulong *sata_data_ptr = (void*) (
                        port ? SATA_DATA_MUX_RAM1 : SATA_DATA_MUX_RAM0)
                        + ((total_len - 8) % 2048);

                *candidate = *sata_data_ptr;
                *(candidate + 1) = *(sata_data_ptr + 1);
        }
}


void ide_input_data(int device, ulong *sect_buf, int words)
{
        /* Only permit accesses to disks found to be present during ide_preinit() */
        if (!disk_present[device]) {
                return;
        }

        /* Select the required internal SATA drive */
        device_select(device);

        /* Start the DMA channel receiving data from the SATA core into the passed buffer */
        dma_start_read(sect_buf, words << 2);

        /* Sata core should finish before DMA */
        if (wait_not_busy(device, 30)) {
                printf("Timed out of wait for SATA device %d to have BUSY clear\n",
                        device);
        }
        if (!wait_no_error(device)) {
                printf("oxnas_sata_output_data() Wait for ATA no-error timed-out\n");
        }

        /* Wait for DMA to finish */
        if (!wait_dma_not_busy(device)) {
                printf("Timed out of wait for DMA channel for SATA device %d to have in-progress clear\n",
                        device);
        }

        if (words == ATA_SECTORWORDS)
                sata_bug_6320_workaround(device, sect_buf + words - 2);
}

static u32 scr_read(int device, unsigned int sc_reg)
{
        /* Setup adr of required register. std regs start eight into async region */
        *(sata_regs_base[device] + SATA_LINK_RD_ADDR) = sc_reg
                * 4+ SATA_STD_ASYNC_REGS_OFF;

        /* Wait for data to be available */
        int loops = MAX_SRC_READ_LOOPS;
        do {
                if (*(sata_regs_base[device] + SATA_LINK_CONTROL) & 1UL) {
                        break;
                }
                udelay(10);
        } while (--loops);

        if (!loops) {
                printf("scr_read() Timed out of wait for read completion\n");
        }

        /* Read the data from the async register */
        return *(sata_regs_base[device] + SATA_LINK_DATA);
}

static void scr_write(int device, unsigned int sc_reg, u32 val)
{
        /* Setup the data for the write */
        *(sata_regs_base[device] + SATA_LINK_DATA) = val;

        /* Setup adr of required register. std regs start eight into async region */
        *(sata_regs_base[device] + SATA_LINK_WR_ADDR) = sc_reg
                * 4+ SATA_STD_ASYNC_REGS_OFF;

        /* Wait for data to be written */
        int loops = MAX_SRC_WRITE_LOOPS;
        do {
                if (*(sata_regs_base[device] + SATA_LINK_CONTROL) & 1UL) {
                        break;
                }
                udelay(10);
        } while (--loops);

        if (!loops) {
                printf("scr_write() Timed out of wait for write completion\n");
        }
}
extern void workaround5458(void);

#define PHY_LOOP_COUNT  25  /* Wait for upto 5 seconds for PHY to be found */
#define LOS_AND_TX_LVL   0x2988
#define TX_ATTEN         0x55629

static int phy_reset(int device)
{
        int phy_status = 0;
        int loops = 0;

        scr_write(device, (0x60 - SATA_STD_ASYNC_REGS_OFF) / 4, LOS_AND_TX_LVL);
        scr_write(device, (0x70 - SATA_STD_ASYNC_REGS_OFF) / 4, TX_ATTEN);

        /* limit it to Gen-1 SATA (1.5G) */
        scr_write(device, SATA_SCR_CONTROL, 0x311); /* Issue phy wake & core reset */
        scr_read(device, SATA_SCR_STATUS); /* Dummy read; flush */
        udelay(1000);
        scr_write(device, SATA_SCR_CONTROL, 0x310); /* Issue phy wake & clear core reset */

        /* Wait for upto 5 seconds for PHY to become ready */
        do {
                udelay(200000);
                if ((scr_read(device, SATA_SCR_STATUS) & 0xf) == 3) {
                        scr_write(device, SATA_SCR_ERROR, ~0);
                        phy_status = 1;
                        break;
                }
                //printf("No SATA PHY found status:0x%x\n", scr_read(device, SATA_SCR_STATUS));
        } while (++loops < PHY_LOOP_COUNT);

        if (phy_status) {
                udelay(500000); /* wait half a second */
        }

        return phy_status;
}

#define FIS_LOOP_COUNT  25  /* Wait for upto 5 seconds for FIS to be received */
static int wait_FIS(int device)
{
        int status = 0;
        int loops = 0;

        do {
                udelay(200000);
                if (ide_inb(device, ATA_PORT_NSECT) > 0) {
                        status = 1;
                        break;
                }
        } while (++loops < FIS_LOOP_COUNT);

        return status;
}


#define SATA_PHY_ASIC_STAT  (0x44900000)
#define SATA_PHY_ASIC_DATA  (0x44900004)

/**
 * initialise functions and macros for ASIC implementation
 */
#define PH_GAIN         2
#define FR_GAIN         3
#define PH_GAIN_OFFSET  6
#define FR_GAIN_OFFSET  8
#define PH_GAIN_MASK  (0x3 << PH_GAIN_OFFSET)
#define FR_GAIN_MASK  (0x3 << FR_GAIN_OFFSET)
#define USE_INT_SETTING  (1<<5)

#define CR_READ_ENABLE  (1<<16)
#define CR_WRITE_ENABLE (1<<17)
#define CR_CAP_DATA     (1<<18)

static void wait_cr_ack(void)
{
        while ((readl(SATA_PHY_ASIC_STAT) >> 16) & 0x1f)
                /* wait for an ack bit to be set */;
}

static unsigned short read_cr(unsigned short address)
{
        writel(address, SATA_PHY_ASIC_STAT);
        wait_cr_ack();
        writel(CR_READ_ENABLE, SATA_PHY_ASIC_DATA);
        wait_cr_ack();
        return readl(SATA_PHY_ASIC_STAT);
}

static void write_cr(unsigned short data, unsigned short address)
{
        writel(address, SATA_PHY_ASIC_STAT);
        wait_cr_ack();
        writel((data | CR_CAP_DATA), SATA_PHY_ASIC_DATA);
        wait_cr_ack();
        writel(CR_WRITE_ENABLE, SATA_PHY_ASIC_DATA);
        wait_cr_ack();
        return;
}

void workaround5458(void)
{
        unsigned i;

        for (i = 0; i < 2; i++) {
                unsigned short rx_control = read_cr(0x201d + (i << 8));
                rx_control &= ~(PH_GAIN_MASK | FR_GAIN_MASK);
                rx_control |= PH_GAIN << PH_GAIN_OFFSET;
                rx_control |= FR_GAIN << FR_GAIN_OFFSET;
                rx_control |= USE_INT_SETTING;
                write_cr(rx_control, 0x201d + (i << 8));
        }
}

int ide_preinit(void)
{
        int num_disks_found = 0;

        /* Initialise records of which disks are present to all present */
        int i;
        for (i = 0; i < CONFIG_SYS_IDE_MAXDEVICE; i++) {
                disk_present[i] = 1;
        }

        /* Block reset SATA and DMA cores */
        reset_block(SYS_CTRL_RST_SATA, 1);
        reset_block(SYS_CTRL_RST_SATA_LINK, 1);
        reset_block(SYS_CTRL_RST_SATA_PHY, 1);
        reset_block(SYS_CTRL_RST_SGDMA, 1);

        /* Enable clocks to SATA and DMA cores */
        enable_clock(SYS_CTRL_CLK_SATA);
        enable_clock(SYS_CTRL_CLK_DMA);

        udelay(5000);
        reset_block(SYS_CTRL_RST_SATA_PHY, 0);
        udelay(50);
        reset_block(SYS_CTRL_RST_SATA, 0);
        reset_block(SYS_CTRL_RST_SATA_LINK, 0);
        udelay(50);
        reset_block(SYS_CTRL_RST_SGDMA, 0);
        udelay(100);
        /* Apply the Synopsis SATA PHY workarounds */
        workaround5458();
        udelay(10000);

        /* disable and clear core interrupts */
        *((unsigned long*) SATA_HOST_REGS_BASE + SATA_INT_ENABLE_CLR_OFF) =
                ~0UL;
        *((unsigned long*) SATA_HOST_REGS_BASE + SATA_INT_CLR_OFF) = ~0UL;

        int device;
        for (device = 0; device < CONFIG_SYS_IDE_MAXDEVICE; device++) {
                int found = 0;
                int retries = 1;

                /* Disable SATA interrupts */
                *(sata_regs_base[device] + SATA_INT_ENABLE_CLR_OFF) = ~0UL;

                /* Clear any pending SATA interrupts */
                *(sata_regs_base[device] + SATA_INT_CLR_OFF) = ~0UL;

                do {
                        /* clear sector count register for FIS detection */
                        ide_outb(device, ATA_PORT_NSECT, 0);

                        /* Get the PHY working */
                        if (!phy_reset(device)) {
                                printf("SATA PHY not ready for device %d\n",
                                        device);
                                break;
                        }

                        if (!wait_FIS(device)) {
                                printf("No FIS received from device %d\n",
                                        device);
                        } else {
                                if ((scr_read(device, SATA_SCR_STATUS) & 0xf)
                                        == 0x3) {
                                        if (wait_not_busy(device, 30)) {
                                                printf("Timed out of wait for SATA device %d to have BUSY clear\n",
                                                        device);
                                        } else {
                                                ++num_disks_found;
                                                found = 1;
                                        }
                                } else {
                                        printf("No SATA device %d found, PHY status = 0x%08x\n",
                                                device,
                                                scr_read(
                                                        device,
                                                        SATA_SCR_STATUS));
                                }
                                break;
                        }
                } while (retries--);

                /* Record whether disk is present, so won't attempt to access it later */
                disk_present[device] = found;
        }

        /* post disk detection clean-up */
        for (device = 0; device < CONFIG_SYS_IDE_MAXDEVICE; device++) {
                if (disk_present[device]) {
                        /* set as ata-5 (28-bit) */
                        *(sata_regs_base[device] + SATA_DRIVE_CONTROL_OFF) =
                                0UL;

                        /* clear phy/link errors */
                        scr_write(device, SATA_SCR_ERROR, ~0);

                        /* clear host errors */
                        *(sata_regs_base[device] + SATA_CONTROL_OFF) |=
                                SATA_SCTL_CLR_ERR;

                        /* clear interrupt register as this clears the error bit in the IDE
                         status register */
                        *(sata_regs_base[device] + SATA_INT_CLR_OFF) = ~0UL;
                }
        }

        return !num_disks_found;
}