nexmon – Rev 1

Subversion Repositories:
Rev:
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * Portions of the attached software ("Contribution") are developed by 
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
 * ECC cipher suite support in OpenSSL originally written by
 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
 *
 */
/* ====================================================================
 * Copyright 2005 Nokia. All rights reserved.
 *
 * The portions of the attached software ("Contribution") is developed by
 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
 * license.
 *
 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
 * support (see RFC 4279) to OpenSSL.
 *
 * No patent licenses or other rights except those expressly stated in
 * the OpenSSL open source license shall be deemed granted or received
 * expressly, by implication, estoppel, or otherwise.
 *
 * No assurances are provided by Nokia that the Contribution does not
 * infringe the patent or other intellectual property rights of any third
 * party or that the license provides you with all the necessary rights
 * to make use of the Contribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
 * OTHERWISE. */

#include <openssl/ssl.h>

#include <assert.h>
#include <string.h>

#include <openssl/bn.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/cipher.h>
#include <openssl/dh.h>
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include <openssl/x509.h>

#include "internal.h"
#include "../crypto/internal.h"
#include "../crypto/dh/internal.h"


int ssl3_accept(SSL *ssl) {
  BUF_MEM *buf = NULL;
  uint32_t alg_a;
  void (*cb)(const SSL *ssl, int type, int value) = NULL;
  int ret = -1;
  int new_state, state, skip = 0;

  assert(ssl->handshake_func == ssl3_accept);
  assert(ssl->server);
  assert(!SSL_IS_DTLS(ssl));

  ERR_clear_system_error();

  if (ssl->info_callback != NULL) {
    cb = ssl->info_callback;
  } else if (ssl->ctx->info_callback != NULL) {
    cb = ssl->ctx->info_callback;
  }

  if (ssl->cert == NULL) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET);
    return -1;
  }

  for (;;) {
    state = ssl->state;

    switch (ssl->state) {
      case SSL_ST_ACCEPT:
        if (cb != NULL) {
          cb(ssl, SSL_CB_HANDSHAKE_START, 1);
        }

        if (ssl->init_buf == NULL) {
          buf = BUF_MEM_new();
          if (!buf || !BUF_MEM_grow(buf, SSL3_RT_MAX_PLAIN_LENGTH)) {
            ret = -1;
            goto end;
          }
          ssl->init_buf = buf;
          buf = NULL;
        }
        ssl->init_num = 0;

        /* Enable a write buffer. This groups handshake messages within a flight
         * into a single write. */
        if (!ssl_init_wbio_buffer(ssl, 1)) {
          ret = -1;
          goto end;
        }

        if (!ssl3_init_handshake_buffer(ssl)) {
          OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
          ret = -1;
          goto end;
        }

        if (!ssl->s3->have_version) {
          ssl->state = SSL3_ST_SR_INITIAL_BYTES;
        } else {
          ssl->state = SSL3_ST_SR_CLNT_HELLO_A;
        }
        break;

      case SSL3_ST_SR_INITIAL_BYTES:
        ret = ssl3_get_initial_bytes(ssl);
        if (ret <= 0) {
          goto end;
        }
        /* ssl3_get_initial_bytes sets ssl->state to one of
         * SSL3_ST_SR_V2_CLIENT_HELLO or SSL3_ST_SR_CLNT_HELLO_A on success. */
        break;

      case SSL3_ST_SR_V2_CLIENT_HELLO:
        ret = ssl3_get_v2_client_hello(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SR_CLNT_HELLO_A;
        break;

      case SSL3_ST_SR_CLNT_HELLO_A:
      case SSL3_ST_SR_CLNT_HELLO_B:
      case SSL3_ST_SR_CLNT_HELLO_C:
      case SSL3_ST_SR_CLNT_HELLO_D:
        ssl->shutdown = 0;
        ret = ssl3_get_client_hello(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SW_SRVR_HELLO_A;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_SRVR_HELLO_A:
      case SSL3_ST_SW_SRVR_HELLO_B:
        ret = ssl3_send_server_hello(ssl);
        if (ret <= 0) {
          goto end;
        }
        if (ssl->hit) {
          if (ssl->tlsext_ticket_expected) {
            ssl->state = SSL3_ST_SW_SESSION_TICKET_A;
          } else {
            ssl->state = SSL3_ST_SW_CHANGE_A;
          }
        } else {
          ssl->state = SSL3_ST_SW_CERT_A;
        }
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_CERT_A:
      case SSL3_ST_SW_CERT_B:
        if (ssl_cipher_has_server_public_key(ssl->s3->tmp.new_cipher)) {
          ret = ssl3_send_server_certificate(ssl);
          if (ret <= 0) {
            goto end;
          }
          if (ssl->s3->tmp.certificate_status_expected) {
            ssl->state = SSL3_ST_SW_CERT_STATUS_A;
          } else {
            ssl->state = SSL3_ST_SW_KEY_EXCH_A;
          }
        } else {
          skip = 1;
          ssl->state = SSL3_ST_SW_KEY_EXCH_A;
        }
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_CERT_STATUS_A:
      case SSL3_ST_SW_CERT_STATUS_B:
        ret = ssl3_send_certificate_status(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SW_KEY_EXCH_A;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_KEY_EXCH_A:
      case SSL3_ST_SW_KEY_EXCH_B:
      case SSL3_ST_SW_KEY_EXCH_C:
        alg_a = ssl->s3->tmp.new_cipher->algorithm_auth;

        /* Send a ServerKeyExchange message if:
         * - The key exchange is ephemeral or anonymous
         *   Diffie-Hellman.
         * - There is a PSK identity hint.
         *
         * TODO(davidben): This logic is currently duplicated in d1_srvr.c. Fix
         * this. In the meantime, keep them in sync. */
        if (ssl_cipher_requires_server_key_exchange(ssl->s3->tmp.new_cipher) ||
            ((alg_a & SSL_aPSK) && ssl->psk_identity_hint)) {
          ret = ssl3_send_server_key_exchange(ssl);
          if (ret <= 0) {
            goto end;
          }
        } else {
          skip = 1;
        }

        ssl->state = SSL3_ST_SW_CERT_REQ_A;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_CERT_REQ_A:
      case SSL3_ST_SW_CERT_REQ_B:
        if (ssl->s3->tmp.cert_request) {
          ret = ssl3_send_certificate_request(ssl);
          if (ret <= 0) {
            goto end;
          }
        } else {
          skip = 1;
        }
        ssl->state = SSL3_ST_SW_SRVR_DONE_A;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_SRVR_DONE_A:
      case SSL3_ST_SW_SRVR_DONE_B:
        ret = ssl3_send_server_done(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->s3->tmp.next_state = SSL3_ST_SR_CERT_A;
        ssl->state = SSL3_ST_SW_FLUSH;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_FLUSH:
        /* This code originally checked to see if any data was pending using
         * BIO_CTRL_INFO and then flushed. This caused problems as documented
         * in PR#1939. The proposed fix doesn't completely resolve this issue
         * as buggy implementations of BIO_CTRL_PENDING still exist. So instead
         * we just flush unconditionally. */
        if (BIO_flush(ssl->wbio) <= 0) {
          ssl->rwstate = SSL_WRITING;
          ret = -1;
          goto end;
        }

        ssl->state = ssl->s3->tmp.next_state;
        break;

      case SSL3_ST_SR_CERT_A:
      case SSL3_ST_SR_CERT_B:
        if (ssl->s3->tmp.cert_request) {
          ret = ssl3_get_client_certificate(ssl);
          if (ret <= 0) {
            goto end;
          }
        }
        ssl->init_num = 0;
        ssl->state = SSL3_ST_SR_KEY_EXCH_A;
        break;

      case SSL3_ST_SR_KEY_EXCH_A:
      case SSL3_ST_SR_KEY_EXCH_B:
      case SSL3_ST_SR_KEY_EXCH_C:
        ret = ssl3_get_client_key_exchange(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SR_CERT_VRFY_A;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SR_CERT_VRFY_A:
      case SSL3_ST_SR_CERT_VRFY_B:
        ret = ssl3_get_cert_verify(ssl);
        if (ret <= 0) {
          goto end;
        }

        ssl->state = SSL3_ST_SR_CHANGE;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SR_CHANGE:
        ret = ssl->method->ssl_read_change_cipher_spec(ssl);
        if (ret <= 0) {
          goto end;
        }

        if (!tls1_change_cipher_state(ssl, SSL3_CHANGE_CIPHER_SERVER_READ)) {
          ret = -1;
          goto end;
        }

        if (ssl->s3->next_proto_neg_seen) {
          ssl->state = SSL3_ST_SR_NEXT_PROTO_A;
        } else if (ssl->s3->tlsext_channel_id_valid) {
          ssl->state = SSL3_ST_SR_CHANNEL_ID_A;
        } else {
          ssl->state = SSL3_ST_SR_FINISHED_A;
        }
        break;

      case SSL3_ST_SR_NEXT_PROTO_A:
      case SSL3_ST_SR_NEXT_PROTO_B:
        ret = ssl3_get_next_proto(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->init_num = 0;
        if (ssl->s3->tlsext_channel_id_valid) {
          ssl->state = SSL3_ST_SR_CHANNEL_ID_A;
        } else {
          ssl->state = SSL3_ST_SR_FINISHED_A;
        }
        break;

      case SSL3_ST_SR_CHANNEL_ID_A:
      case SSL3_ST_SR_CHANNEL_ID_B:
        ret = ssl3_get_channel_id(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->init_num = 0;
        ssl->state = SSL3_ST_SR_FINISHED_A;
        break;

      case SSL3_ST_SR_FINISHED_A:
      case SSL3_ST_SR_FINISHED_B:
        ret = ssl3_get_finished(ssl, SSL3_ST_SR_FINISHED_A,
                                SSL3_ST_SR_FINISHED_B);
        if (ret <= 0) {
          goto end;
        }

        if (ssl->hit) {
          ssl->state = SSL_ST_OK;
        } else if (ssl->tlsext_ticket_expected) {
          ssl->state = SSL3_ST_SW_SESSION_TICKET_A;
        } else {
          ssl->state = SSL3_ST_SW_CHANGE_A;
        }
        /* If this is a full handshake with ChannelID then record the hashshake
         * hashes in |ssl->session| in case we need them to verify a ChannelID
         * signature on a resumption of this session in the future. */
        if (!ssl->hit && ssl->s3->tlsext_channel_id_valid) {
          ret = tls1_record_handshake_hashes_for_channel_id(ssl);
          if (ret <= 0) {
            goto end;
          }
        }
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_SESSION_TICKET_A:
      case SSL3_ST_SW_SESSION_TICKET_B:
        ret = ssl3_send_new_session_ticket(ssl);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SW_CHANGE_A;
        ssl->init_num = 0;
        break;

      case SSL3_ST_SW_CHANGE_A:
      case SSL3_ST_SW_CHANGE_B:
        ret = ssl3_send_change_cipher_spec(ssl, SSL3_ST_SW_CHANGE_A,
                                           SSL3_ST_SW_CHANGE_B);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SW_FINISHED_A;
        ssl->init_num = 0;

        if (!tls1_change_cipher_state(ssl, SSL3_CHANGE_CIPHER_SERVER_WRITE)) {
          ret = -1;
          goto end;
        }
        break;

      case SSL3_ST_SW_FINISHED_A:
      case SSL3_ST_SW_FINISHED_B:
        ret = ssl3_send_finished(ssl, SSL3_ST_SW_FINISHED_A,
                                 SSL3_ST_SW_FINISHED_B);
        if (ret <= 0) {
          goto end;
        }
        ssl->state = SSL3_ST_SW_FLUSH;
        if (ssl->hit) {
          ssl->s3->tmp.next_state = SSL3_ST_SR_CHANGE;
        } else {
          ssl->s3->tmp.next_state = SSL_ST_OK;
        }
        ssl->init_num = 0;
        break;

      case SSL_ST_OK:
        /* clean a few things up */
        ssl3_cleanup_key_block(ssl);

        BUF_MEM_free(ssl->init_buf);
        ssl->init_buf = NULL;

        /* remove buffering on output */
        ssl_free_wbio_buffer(ssl);

        ssl->init_num = 0;

        /* If we aren't retaining peer certificates then we can discard it
         * now. */
        if (ssl->ctx->retain_only_sha256_of_client_certs) {
          X509_free(ssl->session->peer);
          ssl->session->peer = NULL;
          sk_X509_pop_free(ssl->session->cert_chain, X509_free);
          ssl->session->cert_chain = NULL;
        }

        ssl->s3->initial_handshake_complete = 1;

        ssl_update_cache(ssl, SSL_SESS_CACHE_SERVER);

        if (cb != NULL) {
          cb(ssl, SSL_CB_HANDSHAKE_DONE, 1);
        }

        ret = 1;
        goto end;

      default:
        OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE);
        ret = -1;
        goto end;
    }

    if (!ssl->s3->tmp.reuse_message && !skip && cb != NULL &&
        ssl->state != state) {
      new_state = ssl->state;
      ssl->state = state;
      cb(ssl, SSL_CB_ACCEPT_LOOP, 1);
      ssl->state = new_state;
    }
    skip = 0;
  }

end:
  BUF_MEM_free(buf);
  if (cb != NULL) {
    cb(ssl, SSL_CB_ACCEPT_EXIT, ret);
  }
  return ret;
}

int ssl3_get_initial_bytes(SSL *ssl) {
  /* Read the first 5 bytes, the size of the TLS record header. This is
   * sufficient to detect a V2ClientHello and ensures that we never read beyond
   * the first record. */
  int ret = ssl_read_buffer_extend_to(ssl, SSL3_RT_HEADER_LENGTH);
  if (ret <= 0) {
    return ret;
  }
  assert(ssl_read_buffer_len(ssl) == SSL3_RT_HEADER_LENGTH);
  const uint8_t *p = ssl_read_buffer(ssl);

  /* Some dedicated error codes for protocol mixups should the application wish
   * to interpret them differently. (These do not overlap with ClientHello or
   * V2ClientHello.) */
  if (strncmp("GET ", (const char *)p, 4) == 0 ||
      strncmp("POST ", (const char *)p, 5) == 0 ||
      strncmp("HEAD ", (const char *)p, 5) == 0 ||
      strncmp("PUT ", (const char *)p, 4) == 0) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_HTTP_REQUEST);
    return -1;
  }
  if (strncmp("CONNE", (const char *)p, 5) == 0) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_HTTPS_PROXY_REQUEST);
    return -1;
  }

  /* Determine if this is a V2ClientHello. */
  if ((p[0] & 0x80) && p[2] == SSL2_MT_CLIENT_HELLO &&
      p[3] >= SSL3_VERSION_MAJOR) {
    /* This is a V2ClientHello. */
    ssl->state = SSL3_ST_SR_V2_CLIENT_HELLO;
    return 1;
  }

  /* Fall through to the standard logic. */
  ssl->state = SSL3_ST_SR_CLNT_HELLO_A;
  return 1;
}

int ssl3_get_v2_client_hello(SSL *ssl) {
  const uint8_t *p;
  int ret;
  CBS v2_client_hello, cipher_specs, session_id, challenge;
  size_t msg_length, rand_len, len;
  uint8_t msg_type;
  uint16_t version, cipher_spec_length, session_id_length, challenge_length;
  CBB client_hello, hello_body, cipher_suites;
  uint8_t random[SSL3_RANDOM_SIZE];

  /* Determine the length of the V2ClientHello. */
  assert(ssl_read_buffer_len(ssl) >= SSL3_RT_HEADER_LENGTH);
  p = ssl_read_buffer(ssl);
  msg_length = ((p[0] & 0x7f) << 8) | p[1];
  if (msg_length > (1024 * 4)) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
    return -1;
  }
  if (msg_length < SSL3_RT_HEADER_LENGTH - 2) {
    /* Reject lengths that are too short early. We have already read
     * |SSL3_RT_HEADER_LENGTH| bytes, so we should not attempt to process an
     * (invalid) V2ClientHello which would be shorter than that. */
    OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_LENGTH_MISMATCH);
    return -1;
  }

  /* Read the remainder of the V2ClientHello. */
  ret = ssl_read_buffer_extend_to(ssl, 2 + msg_length);
  if (ret <= 0) {
    return ret;
  }
  assert(ssl_read_buffer_len(ssl) == msg_length + 2);
  CBS_init(&v2_client_hello, ssl_read_buffer(ssl) + 2, msg_length);

  /* The V2ClientHello without the length is incorporated into the handshake
   * hash. */
  if (!ssl3_update_handshake_hash(ssl, CBS_data(&v2_client_hello),
                                  CBS_len(&v2_client_hello))) {
    return -1;
  }
  if (ssl->msg_callback) {
    ssl->msg_callback(0, SSL2_VERSION, 0, CBS_data(&v2_client_hello),
                    CBS_len(&v2_client_hello), ssl, ssl->msg_callback_arg);
  }

  if (!CBS_get_u8(&v2_client_hello, &msg_type) ||
      !CBS_get_u16(&v2_client_hello, &version) ||
      !CBS_get_u16(&v2_client_hello, &cipher_spec_length) ||
      !CBS_get_u16(&v2_client_hello, &session_id_length) ||
      !CBS_get_u16(&v2_client_hello, &challenge_length) ||
      !CBS_get_bytes(&v2_client_hello, &cipher_specs, cipher_spec_length) ||
      !CBS_get_bytes(&v2_client_hello, &session_id, session_id_length) ||
      !CBS_get_bytes(&v2_client_hello, &challenge, challenge_length) ||
      CBS_len(&v2_client_hello) != 0) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
    return -1;
  }

  /* msg_type has already been checked. */
  assert(msg_type == SSL2_MT_CLIENT_HELLO);

  /* The client_random is the V2ClientHello challenge. Truncate or
   * left-pad with zeros as needed. */
  memset(random, 0, SSL3_RANDOM_SIZE);
  rand_len = CBS_len(&challenge);
  if (rand_len > SSL3_RANDOM_SIZE) {
    rand_len = SSL3_RANDOM_SIZE;
  }
  memcpy(random + (SSL3_RANDOM_SIZE - rand_len), CBS_data(&challenge),
         rand_len);

  /* Write out an equivalent SSLv3 ClientHello. */
  CBB_zero(&client_hello);
  if (!CBB_init_fixed(&client_hello, (uint8_t *)ssl->init_buf->data,
                      ssl->init_buf->max) ||
      !CBB_add_u8(&client_hello, SSL3_MT_CLIENT_HELLO) ||
      !CBB_add_u24_length_prefixed(&client_hello, &hello_body) ||
      !CBB_add_u16(&hello_body, version) ||
      !CBB_add_bytes(&hello_body, random, SSL3_RANDOM_SIZE) ||
      /* No session id. */
      !CBB_add_u8(&hello_body, 0) ||
      !CBB_add_u16_length_prefixed(&hello_body, &cipher_suites)) {
    CBB_cleanup(&client_hello);
    OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    return -1;
  }

  /* Copy the cipher suites. */
  while (CBS_len(&cipher_specs) > 0) {
    uint32_t cipher_spec;
    if (!CBS_get_u24(&cipher_specs, &cipher_spec)) {
      CBB_cleanup(&client_hello);
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
      return -1;
    }

    /* Skip SSLv2 ciphers. */
    if ((cipher_spec & 0xff0000) != 0) {
      continue;
    }
    if (!CBB_add_u16(&cipher_suites, cipher_spec)) {
      CBB_cleanup(&client_hello);
      OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
      return -1;
    }
  }

  /* Add the null compression scheme and finish. */
  if (!CBB_add_u8(&hello_body, 1) || !CBB_add_u8(&hello_body, 0) ||
      !CBB_finish(&client_hello, NULL, &len)) {
    CBB_cleanup(&client_hello);
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    return -1;
  }

  /* Mark the message for "re"-use by the version-specific method. */
  ssl->s3->tmp.reuse_message = 1;
  ssl->s3->tmp.message_type = SSL3_MT_CLIENT_HELLO;
  /* The handshake message header is 4 bytes. */
  ssl->s3->tmp.message_size = len - 4;

  /* Consume and discard the V2ClientHello. */
  ssl_read_buffer_consume(ssl, 2 + msg_length);
  ssl_read_buffer_discard(ssl);

  return 1;
}

int ssl3_get_client_hello(SSL *ssl) {
  int ok, al = SSL_AD_INTERNAL_ERROR, ret = -1;
  long n;
  const SSL_CIPHER *c;
  STACK_OF(SSL_CIPHER) *ciphers = NULL;
  struct ssl_early_callback_ctx early_ctx;
  CBS client_hello;
  uint16_t client_version;
  CBS client_random, session_id, cipher_suites, compression_methods;
  SSL_SESSION *session = NULL;

  /* We do this so that we will respond with our native type. If we are TLSv1
   * and we get SSLv3, we will respond with TLSv1, This down switching should
   * be handled by a different method. If we are SSLv3, we will respond with
   * SSLv3, even if prompted with TLSv1. */
  switch (ssl->state) {
    case SSL3_ST_SR_CLNT_HELLO_A:
    case SSL3_ST_SR_CLNT_HELLO_B:
      n = ssl->method->ssl_get_message(
          ssl, SSL3_ST_SR_CLNT_HELLO_A, SSL3_ST_SR_CLNT_HELLO_B,
          SSL3_MT_CLIENT_HELLO, SSL3_RT_MAX_PLAIN_LENGTH,
          ssl_hash_message, &ok);

      if (!ok) {
        return n;
      }

      ssl->state = SSL3_ST_SR_CLNT_HELLO_C;
      /* fallthrough */
    case SSL3_ST_SR_CLNT_HELLO_C:
    case SSL3_ST_SR_CLNT_HELLO_D:
      /* We have previously parsed the ClientHello message, and can't call
       * ssl_get_message again without hashing the message into the Finished
       * digest again. */
      n = ssl->init_num;

      memset(&early_ctx, 0, sizeof(early_ctx));
      early_ctx.ssl = ssl;
      early_ctx.client_hello = ssl->init_msg;
      early_ctx.client_hello_len = n;
      if (!ssl_early_callback_init(&early_ctx)) {
        al = SSL_AD_DECODE_ERROR;
        OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_PARSE_FAILED);
        goto f_err;
      }

      if (ssl->state == SSL3_ST_SR_CLNT_HELLO_C &&
          ssl->ctx->select_certificate_cb != NULL) {
        ssl->state = SSL3_ST_SR_CLNT_HELLO_D;
        switch (ssl->ctx->select_certificate_cb(&early_ctx)) {
          case 0:
            ssl->rwstate = SSL_CERTIFICATE_SELECTION_PENDING;
            goto err;

          case -1:
            /* Connection rejected. */
            al = SSL_AD_ACCESS_DENIED;
            OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
            goto f_err;

          default:
            /* fallthrough */;
        }
      }
      ssl->state = SSL3_ST_SR_CLNT_HELLO_D;
      break;

    default:
      OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE);
      return -1;
  }

  CBS_init(&client_hello, ssl->init_msg, n);
  if (!CBS_get_u16(&client_hello, &client_version) ||
      !CBS_get_bytes(&client_hello, &client_random, SSL3_RANDOM_SIZE) ||
      !CBS_get_u8_length_prefixed(&client_hello, &session_id) ||
      CBS_len(&session_id) > SSL_MAX_SSL_SESSION_ID_LENGTH) {
    al = SSL_AD_DECODE_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
    goto f_err;
  }

  /* use version from inside client hello, not from record header (may differ:
   * see RFC 2246, Appendix E, second paragraph) */
  ssl->client_version = client_version;

  /* Load the client random. */
  memcpy(ssl->s3->client_random, CBS_data(&client_random), SSL3_RANDOM_SIZE);

  if (SSL_IS_DTLS(ssl)) {
    CBS cookie;

    if (!CBS_get_u8_length_prefixed(&client_hello, &cookie) ||
        CBS_len(&cookie) > DTLS1_COOKIE_LENGTH) {
      al = SSL_AD_DECODE_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
      goto f_err;
    }
  }

  /* Note: This codepath may run twice if |ssl_get_prev_session| completes
   * asynchronously.
   *
   * TODO(davidben): Clean up the order of events around ClientHello
   * processing. */
  if (!ssl->s3->have_version) {
    /* Select version to use */
    uint16_t version = ssl3_get_mutual_version(ssl, client_version);
    if (version == 0) {
      OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
      ssl->version = ssl->client_version;
      al = SSL_AD_PROTOCOL_VERSION;
      goto f_err;
    }
    ssl->version = version;
    ssl->s3->enc_method = ssl3_get_enc_method(version);
    assert(ssl->s3->enc_method != NULL);
    /* At this point, the connection's version is known and |ssl->version| is
     * fixed. Begin enforcing the record-layer version. */
    ssl->s3->have_version = 1;
  } else if (SSL_IS_DTLS(ssl) ? (ssl->client_version > ssl->version)
                            : (ssl->client_version < ssl->version)) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
    al = SSL_AD_PROTOCOL_VERSION;
    goto f_err;
  }

  ssl->hit = 0;
  int send_new_ticket = 0;
  switch (ssl_get_prev_session(ssl, &session, &send_new_ticket, &early_ctx)) {
    case ssl_session_success:
      break;
    case ssl_session_error:
      goto err;
    case ssl_session_retry:
      ssl->rwstate = SSL_PENDING_SESSION;
      goto err;
  }
  ssl->tlsext_ticket_expected = send_new_ticket;

  /* The EMS state is needed when making the resumption decision, but
   * extensions are not normally parsed until later. This detects the EMS
   * extension for the resumption decision and it's checked against the result
   * of the normal parse later in this function. */
  const uint8_t *ems_data;
  size_t ems_len;
  int have_extended_master_secret =
      ssl->version != SSL3_VERSION &&
      SSL_early_callback_ctx_extension_get(&early_ctx,
                                           TLSEXT_TYPE_extended_master_secret,
                                           &ems_data, &ems_len) &&
      ems_len == 0;

  if (session != NULL) {
    if (session->extended_master_secret &&
        !have_extended_master_secret) {
      /* A ClientHello without EMS that attempts to resume a session with EMS
       * is fatal to the connection. */
      al = SSL_AD_HANDSHAKE_FAILURE;
      OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
      goto f_err;
    }

    ssl->hit =
        /* Only resume if the session's version matches the negotiated version:
         * most clients do not accept a mismatch. */
        ssl->version == session->ssl_version &&
        /* If the client offers the EMS extension, but the previous session
         * didn't use it, then negotiate a new session. */
        have_extended_master_secret == session->extended_master_secret;
  }

  if (ssl->hit) {
    /* Use the new session. */
    SSL_SESSION_free(ssl->session);
    ssl->session = session;
    session = NULL;

    ssl->verify_result = ssl->session->verify_result;
  } else {
    if (!ssl_get_new_session(ssl, 1 /* server */)) {
      goto err;
    }

    /* Clear the session ID if we want the session to be single-use. */
    if (!(ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) {
      ssl->session->session_id_length = 0;
    }
  }

  if (ssl->ctx->dos_protection_cb != NULL &&
      ssl->ctx->dos_protection_cb(&early_ctx) == 0) {
    /* Connection rejected for DOS reasons. */
    al = SSL_AD_ACCESS_DENIED;
    OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
    goto f_err;
  }

  if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) ||
      CBS_len(&cipher_suites) == 0 ||
      CBS_len(&cipher_suites) % 2 != 0 ||
      !CBS_get_u8_length_prefixed(&client_hello, &compression_methods) ||
      CBS_len(&compression_methods) == 0) {
    al = SSL_AD_DECODE_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
    goto f_err;
  }

  ciphers = ssl_bytes_to_cipher_list(ssl, &cipher_suites);
  if (ciphers == NULL) {
    goto err;
  }

  /* If it is a hit, check that the cipher is in the list. */
  if (ssl->hit) {
    size_t j;
    int found_cipher = 0;
    uint32_t id = ssl->session->cipher->id;

    for (j = 0; j < sk_SSL_CIPHER_num(ciphers); j++) {
      c = sk_SSL_CIPHER_value(ciphers, j);
      if (c->id == id) {
        found_cipher = 1;
        break;
      }
    }

    if (!found_cipher) {
      /* we need to have the cipher in the cipher list if we are asked to reuse
       * it */
      al = SSL_AD_ILLEGAL_PARAMETER;
      OPENSSL_PUT_ERROR(SSL, SSL_R_REQUIRED_CIPHER_MISSING);
      goto f_err;
    }
  }

  /* Only null compression is supported. */
  if (memchr(CBS_data(&compression_methods), 0,
             CBS_len(&compression_methods)) == NULL) {
    al = SSL_AD_ILLEGAL_PARAMETER;
    OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMPRESSION_SPECIFIED);
    goto f_err;
  }

  /* TLS extensions. */
  if (ssl->version >= SSL3_VERSION &&
      !ssl_parse_clienthello_tlsext(ssl, &client_hello)) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
    goto err;
  }

  /* There should be nothing left over in the record. */
  if (CBS_len(&client_hello) != 0) {
    /* wrong packet length */
    al = SSL_AD_DECODE_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
    goto f_err;
  }

  if (have_extended_master_secret != ssl->s3->tmp.extended_master_secret) {
    al = SSL_AD_INTERNAL_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_EMS_STATE_INCONSISTENT);
    goto f_err;
  }

  /* Given ciphers and SSL_get_ciphers, we must pick a cipher */
  if (!ssl->hit) {
    if (ciphers == NULL) {
      al = SSL_AD_ILLEGAL_PARAMETER;
      OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_PASSED);
      goto f_err;
    }

    /* Let cert callback update server certificates if required */
    if (ssl->cert->cert_cb) {
      int rv = ssl->cert->cert_cb(ssl, ssl->cert->cert_cb_arg);
      if (rv == 0) {
        al = SSL_AD_INTERNAL_ERROR;
        OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
        goto f_err;
      }
      if (rv < 0) {
        ssl->rwstate = SSL_X509_LOOKUP;
        goto err;
      }
    }
    c = ssl3_choose_cipher(ssl, ciphers, ssl_get_cipher_preferences(ssl));

    if (c == NULL) {
      al = SSL_AD_HANDSHAKE_FAILURE;
      OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER);
      goto f_err;
    }
    ssl->session->cipher = c;
    ssl->s3->tmp.new_cipher = c;

    /* Determine whether to request a client certificate. */
    ssl->s3->tmp.cert_request = !!(ssl->verify_mode & SSL_VERIFY_PEER);
    /* Only request a certificate if Channel ID isn't negotiated. */
    if ((ssl->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) &&
        ssl->s3->tlsext_channel_id_valid) {
      ssl->s3->tmp.cert_request = 0;
    }
    /* Plain PSK forbids Certificate and CertificateRequest. */
    if (ssl->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK) {
      ssl->s3->tmp.cert_request = 0;
    }
  } else {
    /* Session-id reuse */
    ssl->s3->tmp.new_cipher = ssl->session->cipher;
    ssl->s3->tmp.cert_request = 0;
  }

  /* Now that the cipher is known, initialize the handshake hash. */
  if (!ssl3_init_handshake_hash(ssl)) {
    goto f_err;
  }

  /* In TLS 1.2, client authentication requires hashing the handshake transcript
   * under a different hash. Otherwise, release the handshake buffer. */
  if (!ssl->s3->tmp.cert_request ||
      ssl3_protocol_version(ssl) < TLS1_2_VERSION) {
    ssl3_free_handshake_buffer(ssl);
  }

  /* we now have the following setup;
   * client_random
   * cipher_list        - our prefered list of ciphers
   * ciphers            - the clients prefered list of ciphers
   * compression        - basically ignored right now
   * ssl version is set - sslv3
   * ssl->session         - The ssl session has been setup.
   * ssl->hit             - session reuse flag
   * ssl->tmp.new_cipher  - the new cipher to use. */

  ret = 1;

  if (0) {
  f_err:
    ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
  }

err:
  sk_SSL_CIPHER_free(ciphers);
  SSL_SESSION_free(session);
  return ret;
}

int ssl3_send_server_hello(SSL *ssl) {
  if (ssl->state == SSL3_ST_SW_SRVR_HELLO_B) {
    return ssl_do_write(ssl);
  }

  assert(ssl->state == SSL3_ST_SW_SRVR_HELLO_A);

  /* We only accept ChannelIDs on connections with ECDHE in order to avoid a
   * known attack while we fix ChannelID itself. */
  if (ssl->s3->tlsext_channel_id_valid &&
      (ssl->s3->tmp.new_cipher->algorithm_mkey & SSL_kECDHE) == 0) {
    ssl->s3->tlsext_channel_id_valid = 0;
  }

  /* If this is a resumption and the original handshake didn't support
   * ChannelID then we didn't record the original handshake hashes in the
   * session and so cannot resume with ChannelIDs. */
  if (ssl->hit && ssl->session->original_handshake_hash_len == 0) {
    ssl->s3->tlsext_channel_id_valid = 0;
  }

  if (!ssl_fill_hello_random(ssl->s3->server_random, SSL3_RANDOM_SIZE,
                             1 /* server */)) {
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    return -1;
  }

  CBB cbb, session_id;
  size_t length;
  CBB_zero(&cbb);
  if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl),
                      ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl)) ||
      !CBB_add_u16(&cbb, ssl->version) ||
      !CBB_add_bytes(&cbb, ssl->s3->server_random, SSL3_RANDOM_SIZE) ||
      !CBB_add_u8_length_prefixed(&cbb, &session_id) ||
      !CBB_add_bytes(&session_id, ssl->session->session_id,
                     ssl->session->session_id_length) ||
      !CBB_add_u16(&cbb, ssl_cipher_get_value(ssl->s3->tmp.new_cipher)) ||
      !CBB_add_u8(&cbb, 0 /* no compression */) ||
      !ssl_add_serverhello_tlsext(ssl, &cbb) ||
      !CBB_finish(&cbb, NULL, &length) ||
      !ssl_set_handshake_header(ssl, SSL3_MT_SERVER_HELLO, length)) {
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    CBB_cleanup(&cbb);
    return -1;
  }

  ssl->state = SSL3_ST_SW_SRVR_HELLO_B;
  return ssl_do_write(ssl);
}

int ssl3_send_certificate_status(SSL *ssl) {
  if (ssl->state == SSL3_ST_SW_CERT_STATUS_A) {
    CBB out, ocsp_response;
    size_t length;

    CBB_zero(&out);
    if (!CBB_init_fixed(&out, ssl_handshake_start(ssl),
                        ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl)) ||
        !CBB_add_u8(&out, TLSEXT_STATUSTYPE_ocsp) ||
        !CBB_add_u24_length_prefixed(&out, &ocsp_response) ||
        !CBB_add_bytes(&ocsp_response, ssl->ctx->ocsp_response,
                       ssl->ctx->ocsp_response_length) ||
        !CBB_finish(&out, NULL, &length) ||
        !ssl_set_handshake_header(ssl, SSL3_MT_CERTIFICATE_STATUS, length)) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
      CBB_cleanup(&out);
      return -1;
    }

    ssl->state = SSL3_ST_SW_CERT_STATUS_B;
  }

  /* SSL3_ST_SW_CERT_STATUS_B */
  return ssl_do_write(ssl);
}

int ssl3_send_server_done(SSL *ssl) {
  if (ssl->state == SSL3_ST_SW_SRVR_DONE_A) {
    if (!ssl_set_handshake_header(ssl, SSL3_MT_SERVER_DONE, 0)) {
      return -1;
    }
    ssl->state = SSL3_ST_SW_SRVR_DONE_B;
  }

  /* SSL3_ST_SW_SRVR_DONE_B */
  return ssl_do_write(ssl);
}

int ssl3_send_server_key_exchange(SSL *ssl) {
  if (ssl->state == SSL3_ST_SW_KEY_EXCH_C) {
    return ssl_do_write(ssl);
  }

  CBB cbb, child;
  if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl),
                      ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl))) {
    goto err;
  }

  if (ssl->state == SSL3_ST_SW_KEY_EXCH_A) {
    /* This is the first iteration, so write parameters. */
    uint32_t alg_k = ssl->s3->tmp.new_cipher->algorithm_mkey;
    uint32_t alg_a = ssl->s3->tmp.new_cipher->algorithm_auth;

    /* PSK ciphers begin with an identity hint. */
    if (alg_a & SSL_aPSK) {
      size_t len =
          (ssl->psk_identity_hint == NULL) ? 0 : strlen(ssl->psk_identity_hint);
      if (!CBB_add_u16_length_prefixed(&cbb, &child) ||
          !CBB_add_bytes(&child, (const uint8_t *)ssl->psk_identity_hint,
                         len)) {
        goto err;
      }
    }

    if (alg_k & SSL_kDHE) {
      /* Determine the group to use. */
      DH *params = ssl->cert->dh_tmp;
      if (params == NULL && ssl->cert->dh_tmp_cb != NULL) {
        params = ssl->cert->dh_tmp_cb(ssl, 0, 1024);
      }
      if (params == NULL) {
        OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_TMP_DH_KEY);
        ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
        goto err;
      }
      ssl->session->key_exchange_info = DH_num_bits(params);

      /* Set up DH, generate a key, and emit the public half. */
      DH *dh = DHparams_dup(params);
      if (dh == NULL) {
        goto err;
      }

      SSL_ECDH_CTX_init_for_dhe(&ssl->s3->tmp.ecdh_ctx, dh);
      if (!CBB_add_u16_length_prefixed(&cbb, &child) ||
          !BN_bn2cbb_padded(&child, BN_num_bytes(params->p), params->p) ||
          !CBB_add_u16_length_prefixed(&cbb, &child) ||
          !BN_bn2cbb_padded(&child, BN_num_bytes(params->g), params->g) ||
          !CBB_add_u16_length_prefixed(&cbb, &child) ||
          !SSL_ECDH_CTX_generate_keypair(&ssl->s3->tmp.ecdh_ctx, &child)) {
        goto err;
      }
    } else if (alg_k & SSL_kECDHE) {
      /* Determine the curve to use. */
      uint16_t curve_id;
      if (!tls1_get_shared_curve(ssl, &curve_id)) {
        OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_TMP_ECDH_KEY);
        ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
        goto err;
      }
      ssl->session->key_exchange_info = curve_id;

      /* Set up ECDH, generate a key, and emit the public half. */
      if (!SSL_ECDH_CTX_init(&ssl->s3->tmp.ecdh_ctx, curve_id) ||
          !CBB_add_u8(&cbb, NAMED_CURVE_TYPE) ||
          !CBB_add_u16(&cbb, curve_id) ||
          !CBB_add_u8_length_prefixed(&cbb, &child) ||
          !SSL_ECDH_CTX_generate_keypair(&ssl->s3->tmp.ecdh_ctx, &child)) {
        goto err;
      }
    } else {
      assert(alg_k & SSL_kPSK);
    }

    /* Otherwise, restore |cbb| from the previous iteration.
     * TODO(davidben): When |ssl->init_buf| is gone, come up with a simpler
     * pattern. Probably keep the |CBB| around in the handshake state. */
  } else if (!CBB_did_write(&cbb, ssl->init_num - SSL_HM_HEADER_LENGTH(ssl))) {
    goto err;
  }

  /* Add a signature. */
  if (ssl_cipher_has_server_public_key(ssl->s3->tmp.new_cipher)) {
    if (!ssl_has_private_key(ssl)) {
      ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
      goto err;
    }

    const size_t max_sig_len = ssl_private_key_max_signature_len(ssl);
    size_t sig_len;
    enum ssl_private_key_result_t sign_result;
    if (ssl->state == SSL3_ST_SW_KEY_EXCH_A) {
      /* This is the first iteration, so set up the signature. Sample the
       * parameter length before adding a signature algorithm. */
      if (!CBB_flush(&cbb)) {
        goto err;
      }
      size_t params_len = CBB_len(&cbb);

      /* Determine signature algorithm. */
      const EVP_MD *md;
      if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
        md = tls1_choose_signing_digest(ssl);
        if (!tls12_add_sigandhash(ssl, &cbb, md)) {
          OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
          ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
          goto err;
        }
      } else if (ssl_private_key_type(ssl) == EVP_PKEY_RSA) {
        md = EVP_md5_sha1();
      } else {
        md = EVP_sha1();
      }

      /* Compute the digest and sign it. */
      uint8_t digest[EVP_MAX_MD_SIZE];
      unsigned digest_len = 0;
      EVP_MD_CTX md_ctx;
      EVP_MD_CTX_init(&md_ctx);
      int digest_ret =
          EVP_DigestInit_ex(&md_ctx, md, NULL) &&
          EVP_DigestUpdate(&md_ctx, ssl->s3->client_random, SSL3_RANDOM_SIZE) &&
          EVP_DigestUpdate(&md_ctx, ssl->s3->server_random, SSL3_RANDOM_SIZE) &&
          EVP_DigestUpdate(&md_ctx, CBB_data(&cbb), params_len) &&
          EVP_DigestFinal_ex(&md_ctx, digest, &digest_len);
      EVP_MD_CTX_cleanup(&md_ctx);
      uint8_t *ptr;
      if (!digest_ret ||
          !CBB_add_u16_length_prefixed(&cbb, &child) ||
          !CBB_reserve(&child, &ptr, max_sig_len)) {
        goto err;
      }
      sign_result = ssl_private_key_sign(ssl, ptr, &sig_len, max_sig_len, md,
                                         digest, digest_len);
    } else {
      assert(ssl->state == SSL3_ST_SW_KEY_EXCH_B);

      /* Retry the signature. */
      uint8_t *ptr;
      if (!CBB_add_u16_length_prefixed(&cbb, &child) ||
          !CBB_reserve(&child, &ptr, max_sig_len)) {
        goto err;
      }
      sign_result =
          ssl_private_key_sign_complete(ssl, ptr, &sig_len, max_sig_len);
    }

    switch (sign_result) {
      case ssl_private_key_success:
        if (!CBB_did_write(&child, sig_len)) {
          goto err;
        }
        break;
      case ssl_private_key_failure:
        goto err;
      case ssl_private_key_retry:
        /* Discard the unfinished signature and save the state of |cbb| for the
         * next iteration. */
        CBB_discard_child(&cbb);
        ssl->init_num = SSL_HM_HEADER_LENGTH(ssl) + CBB_len(&cbb);
        ssl->rwstate = SSL_PRIVATE_KEY_OPERATION;
        ssl->state = SSL3_ST_SW_KEY_EXCH_B;
        goto err;
    }
  }

  size_t length;
  if (!CBB_finish(&cbb, NULL, &length) ||
      !ssl_set_handshake_header(ssl, SSL3_MT_SERVER_KEY_EXCHANGE, length)) {
    goto err;
  }
  ssl->state = SSL3_ST_SW_KEY_EXCH_C;
  return ssl_do_write(ssl);

err:
  CBB_cleanup(&cbb);
  return -1;
}

int ssl3_send_certificate_request(SSL *ssl) {
  uint8_t *p, *d;
  size_t i;
  int j, nl, off, n;
  STACK_OF(X509_NAME) *sk = NULL;
  X509_NAME *name;
  BUF_MEM *buf;

  if (ssl->state == SSL3_ST_SW_CERT_REQ_A) {
    buf = ssl->init_buf;

    d = p = ssl_handshake_start(ssl);

    /* get the list of acceptable cert types */
    p++;
    n = ssl3_get_req_cert_type(ssl, p);
    d[0] = n;
    p += n;
    n++;

    if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
      const uint8_t *psigs;
      nl = tls12_get_psigalgs(ssl, &psigs);
      s2n(nl, p);
      memcpy(p, psigs, nl);
      p += nl;
      n += nl + 2;
    }

    off = n;
    p += 2;
    n += 2;

    sk = SSL_get_client_CA_list(ssl);
    nl = 0;
    if (sk != NULL) {
      for (i = 0; i < sk_X509_NAME_num(sk); i++) {
        name = sk_X509_NAME_value(sk, i);
        j = i2d_X509_NAME(name, NULL);
        if (!BUF_MEM_grow_clean(buf, SSL_HM_HEADER_LENGTH(ssl) + n + j + 2)) {
          OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
          goto err;
        }
        p = ssl_handshake_start(ssl) + n;
        s2n(j, p);
        i2d_X509_NAME(name, &p);
        n += 2 + j;
        nl += 2 + j;
      }
    }

    /* else no CA names */
    p = ssl_handshake_start(ssl) + off;
    s2n(nl, p);

    if (!ssl_set_handshake_header(ssl, SSL3_MT_CERTIFICATE_REQUEST, n)) {
      goto err;
    }
    ssl->state = SSL3_ST_SW_CERT_REQ_B;
  }

  /* SSL3_ST_SW_CERT_REQ_B */
  return ssl_do_write(ssl);

err:
  return -1;
}

int ssl3_get_client_key_exchange(SSL *ssl) {
  int al;
  CBS client_key_exchange;
  uint32_t alg_k;
  uint32_t alg_a;
  uint8_t *premaster_secret = NULL;
  size_t premaster_secret_len = 0;
  uint8_t *decrypt_buf = NULL;

  unsigned psk_len = 0;
  uint8_t psk[PSK_MAX_PSK_LEN];

  if (ssl->state == SSL3_ST_SR_KEY_EXCH_A ||
      ssl->state == SSL3_ST_SR_KEY_EXCH_B) {
    int ok;
    const long n = ssl->method->ssl_get_message(
        ssl, SSL3_ST_SR_KEY_EXCH_A, SSL3_ST_SR_KEY_EXCH_B,
        SSL3_MT_CLIENT_KEY_EXCHANGE, 2048 /* ??? */, ssl_hash_message, &ok);
    if (!ok) {
      return n;
    }
  }

  CBS_init(&client_key_exchange, ssl->init_msg, ssl->init_num);
  alg_k = ssl->s3->tmp.new_cipher->algorithm_mkey;
  alg_a = ssl->s3->tmp.new_cipher->algorithm_auth;

  /* If using a PSK key exchange, prepare the pre-shared key. */
  if (alg_a & SSL_aPSK) {
    CBS psk_identity;

    /* If using PSK, the ClientKeyExchange contains a psk_identity. If PSK,
     * then this is the only field in the message. */
    if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) ||
        ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) {
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
      al = SSL_AD_DECODE_ERROR;
      goto f_err;
    }

    if (ssl->psk_server_callback == NULL) {
      OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_SERVER_CB);
      al = SSL_AD_INTERNAL_ERROR;
      goto f_err;
    }

    if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN ||
        CBS_contains_zero_byte(&psk_identity)) {
      OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
      al = SSL_AD_ILLEGAL_PARAMETER;
      goto f_err;
    }

    if (!CBS_strdup(&psk_identity, &ssl->session->psk_identity)) {
      al = SSL_AD_INTERNAL_ERROR;
      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
      goto f_err;
    }

    /* Look up the key for the identity. */
    psk_len = ssl->psk_server_callback(ssl, ssl->session->psk_identity, psk,
                                       sizeof(psk));
    if (psk_len > PSK_MAX_PSK_LEN) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
      al = SSL_AD_INTERNAL_ERROR;
      goto f_err;
    } else if (psk_len == 0) {
      /* PSK related to the given identity not found */
      OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
      al = SSL_AD_UNKNOWN_PSK_IDENTITY;
      goto f_err;
    }
  }

  /* Depending on the key exchange method, compute |premaster_secret| and
   * |premaster_secret_len|. */
  if (alg_k & SSL_kRSA) {
    /* Allocate a buffer large enough for an RSA decryption. */
    const size_t rsa_size = ssl_private_key_max_signature_len(ssl);
    decrypt_buf = OPENSSL_malloc(rsa_size);
    if (decrypt_buf == NULL) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
      goto err;
    }

    enum ssl_private_key_result_t decrypt_result;
    size_t decrypt_len;
    if (ssl->state == SSL3_ST_SR_KEY_EXCH_B) {
      if (!ssl_has_private_key(ssl) ||
          ssl_private_key_type(ssl) != EVP_PKEY_RSA) {
        al = SSL_AD_HANDSHAKE_FAILURE;
        OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_RSA_CERTIFICATE);
        goto f_err;
      }
      CBS encrypted_premaster_secret;
      if (ssl->version > SSL3_VERSION) {
        if (!CBS_get_u16_length_prefixed(&client_key_exchange,
                                         &encrypted_premaster_secret) ||
            CBS_len(&client_key_exchange) != 0) {
          al = SSL_AD_DECODE_ERROR;
          OPENSSL_PUT_ERROR(SSL,
                            SSL_R_TLS_RSA_ENCRYPTED_VALUE_LENGTH_IS_WRONG);
          goto f_err;
        }
      } else {
        encrypted_premaster_secret = client_key_exchange;
      }

      /* Decrypt with no padding. PKCS#1 padding will be removed as part of the
       * timing-sensitive code below. */
      decrypt_result = ssl_private_key_decrypt(
          ssl, decrypt_buf, &decrypt_len, rsa_size,
          CBS_data(&encrypted_premaster_secret),
          CBS_len(&encrypted_premaster_secret));
    } else {
      assert(ssl->state == SSL3_ST_SR_KEY_EXCH_C);
      /* Complete async decrypt. */
      decrypt_result = ssl_private_key_decrypt_complete(
          ssl, decrypt_buf, &decrypt_len, rsa_size);
    }

    switch (decrypt_result) {
      case ssl_private_key_success:
        break;
      case ssl_private_key_failure:
        goto err;
      case ssl_private_key_retry:
        ssl->rwstate = SSL_PRIVATE_KEY_OPERATION;
        ssl->state = SSL3_ST_SR_KEY_EXCH_C;
        goto err;
    }

    if (decrypt_len != rsa_size) {
      al = SSL_AD_DECRYPT_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
      goto f_err;
    }

    /* Prepare a random premaster, to be used on invalid padding. See RFC 5246,
     * section 7.4.7.1. */
    premaster_secret_len = SSL_MAX_MASTER_KEY_LENGTH;
    premaster_secret = OPENSSL_malloc(premaster_secret_len);
    if (premaster_secret == NULL) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
      goto err;
    }
    if (!RAND_bytes(premaster_secret, premaster_secret_len)) {
      goto err;
    }

    /* The smallest padded premaster is 11 bytes of overhead. Small keys are
     * publicly invalid. */
    if (decrypt_len < 11 + premaster_secret_len) {
      al = SSL_AD_DECRYPT_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
      goto f_err;
    }

    /* Check the padding. See RFC 3447, section 7.2.2. */
    size_t padding_len = decrypt_len - premaster_secret_len;
    uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) &
                   constant_time_eq_int_8(decrypt_buf[1], 2);
    size_t i;
    for (i = 2; i < padding_len - 1; i++) {
      good &= ~constant_time_is_zero_8(decrypt_buf[i]);
    }
    good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]);

    /* The premaster secret must begin with |client_version|. This too must be
     * checked in constant time (http://eprint.iacr.org/2003/052/). */
    good &= constant_time_eq_8(decrypt_buf[padding_len],
                               (unsigned)(ssl->client_version >> 8));
    good &= constant_time_eq_8(decrypt_buf[padding_len + 1],
                               (unsigned)(ssl->client_version & 0xff));

    /* Select, in constant time, either the decrypted premaster or the random
     * premaster based on |good|. */
    for (i = 0; i < premaster_secret_len; i++) {
      premaster_secret[i] = constant_time_select_8(
          good, decrypt_buf[padding_len + i], premaster_secret[i]);
    }

    OPENSSL_free(decrypt_buf);
    decrypt_buf = NULL;
  } else if (alg_k & (SSL_kECDHE|SSL_kDHE)) {
    /* Parse the ClientKeyExchange. ECDHE uses a u8 length prefix while DHE uses
     * u16. */
    CBS peer_key;
    int peer_key_ok;
    if (alg_k & SSL_kECDHE) {
      peer_key_ok = CBS_get_u8_length_prefixed(&client_key_exchange, &peer_key);
    } else {
      peer_key_ok =
          CBS_get_u16_length_prefixed(&client_key_exchange, &peer_key);
    }

    if (!peer_key_ok || CBS_len(&client_key_exchange) != 0) {
      al = SSL_AD_DECODE_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
      goto f_err;
    }

    /* Compute the premaster. */
    uint8_t alert;
    if (!SSL_ECDH_CTX_compute_secret(&ssl->s3->tmp.ecdh_ctx, &premaster_secret,
                                     &premaster_secret_len, &alert,
                                     CBS_data(&peer_key), CBS_len(&peer_key))) {
      al = alert;
      goto f_err;
    }

    /* The key exchange state may now be discarded. */
    SSL_ECDH_CTX_cleanup(&ssl->s3->tmp.ecdh_ctx);
  } else if (alg_k & SSL_kPSK) {
    /* For plain PSK, other_secret is a block of 0s with the same length as the
     * pre-shared key. */
    premaster_secret_len = psk_len;
    premaster_secret = OPENSSL_malloc(premaster_secret_len);
    if (premaster_secret == NULL) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
      goto err;
    }
    memset(premaster_secret, 0, premaster_secret_len);
  } else {
    al = SSL_AD_HANDSHAKE_FAILURE;
    OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_TYPE);
    goto f_err;
  }

  /* For a PSK cipher suite, the actual pre-master secret is combined with the
   * pre-shared key. */
  if (alg_a & SSL_aPSK) {
    CBB new_premaster, child;
    uint8_t *new_data;
    size_t new_len;

    CBB_zero(&new_premaster);
    if (!CBB_init(&new_premaster, 2 + psk_len + 2 + premaster_secret_len) ||
        !CBB_add_u16_length_prefixed(&new_premaster, &child) ||
        !CBB_add_bytes(&child, premaster_secret, premaster_secret_len) ||
        !CBB_add_u16_length_prefixed(&new_premaster, &child) ||
        !CBB_add_bytes(&child, psk, psk_len) ||
        !CBB_finish(&new_premaster, &new_data, &new_len)) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
      CBB_cleanup(&new_premaster);
      goto err;
    }

    OPENSSL_cleanse(premaster_secret, premaster_secret_len);
    OPENSSL_free(premaster_secret);
    premaster_secret = new_data;
    premaster_secret_len = new_len;
  }

  /* Compute the master secret */
  ssl->session->master_key_length = tls1_generate_master_secret(
      ssl, ssl->session->master_key, premaster_secret, premaster_secret_len);
  if (ssl->session->master_key_length == 0) {
    goto err;
  }
  ssl->session->extended_master_secret = ssl->s3->tmp.extended_master_secret;

  OPENSSL_cleanse(premaster_secret, premaster_secret_len);
  OPENSSL_free(premaster_secret);
  return 1;

f_err:
  ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
err:
  if (premaster_secret != NULL) {
    OPENSSL_cleanse(premaster_secret, premaster_secret_len);
    OPENSSL_free(premaster_secret);
  }
  OPENSSL_free(decrypt_buf);

  return -1;
}

int ssl3_get_cert_verify(SSL *ssl) {
  int al, ok, ret = 0;
  long n;
  CBS certificate_verify, signature;
  X509 *peer = ssl->session->peer;
  EVP_PKEY *pkey = NULL;
  const EVP_MD *md = NULL;
  uint8_t digest[EVP_MAX_MD_SIZE];
  size_t digest_length;
  EVP_PKEY_CTX *pctx = NULL;

  /* Only RSA and ECDSA client certificates are supported, so a
   * CertificateVerify is required if and only if there's a client certificate.
   * */
  if (peer == NULL) {
    ssl3_free_handshake_buffer(ssl);
    return 1;
  }

  n = ssl->method->ssl_get_message(
      ssl, SSL3_ST_SR_CERT_VRFY_A, SSL3_ST_SR_CERT_VRFY_B,
      SSL3_MT_CERTIFICATE_VERIFY, SSL3_RT_MAX_PLAIN_LENGTH,
      ssl_dont_hash_message, &ok);

  if (!ok) {
    return n;
  }

  /* Filter out unsupported certificate types. */
  pkey = X509_get_pubkey(peer);
  if (pkey == NULL) {
    goto err;
  }
  if (!(X509_certificate_type(peer, pkey) & EVP_PKT_SIGN) ||
      (pkey->type != EVP_PKEY_RSA && pkey->type != EVP_PKEY_EC)) {
    al = SSL_AD_UNSUPPORTED_CERTIFICATE;
    OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
    goto f_err;
  }

  CBS_init(&certificate_verify, ssl->init_msg, n);

  /* Determine the digest type if needbe. */
  if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
    uint8_t hash, signature_type;
    if (!CBS_get_u8(&certificate_verify, &hash) ||
        !CBS_get_u8(&certificate_verify, &signature_type)) {
      al = SSL_AD_DECODE_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
      goto f_err;
    }
    if (!tls12_check_peer_sigalg(ssl, &md, &al, hash, signature_type, pkey)) {
      goto f_err;
    }
  }

  /* Compute the digest. */
  if (!ssl3_cert_verify_hash(ssl, digest, &digest_length, &md, pkey->type)) {
    goto err;
  }

  /* The handshake buffer is no longer necessary, and we may hash the current
   * message.*/
  ssl3_free_handshake_buffer(ssl);
  if (!ssl3_hash_current_message(ssl)) {
    goto err;
  }

  /* Parse and verify the signature. */
  if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) ||
      CBS_len(&certificate_verify) != 0) {
    al = SSL_AD_DECODE_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
    goto f_err;
  }

  pctx = EVP_PKEY_CTX_new(pkey, NULL);
  if (pctx == NULL) {
    goto err;
  }
  int sig_ok = EVP_PKEY_verify_init(pctx) &&
               EVP_PKEY_CTX_set_signature_md(pctx, md) &&
               EVP_PKEY_verify(pctx, CBS_data(&signature), CBS_len(&signature),
                               digest, digest_length);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
  sig_ok = 1;
  ERR_clear_error();
#endif
  if (!sig_ok) {
    al = SSL_AD_DECRYPT_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
    goto f_err;
  }

  ret = 1;

  if (0) {
  f_err:
    ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
  }

err:
  EVP_PKEY_CTX_free(pctx);
  EVP_PKEY_free(pkey);

  return ret;
}

int ssl3_get_client_certificate(SSL *ssl) {
  int ok, al, ret = -1;
  X509 *x = NULL;
  unsigned long n;
  STACK_OF(X509) *sk = NULL;
  SHA256_CTX sha256;
  CBS certificate_msg, certificate_list;
  int is_first_certificate = 1;

  assert(ssl->s3->tmp.cert_request);
  n = ssl->method->ssl_get_message(ssl, SSL3_ST_SR_CERT_A, SSL3_ST_SR_CERT_B,
                                   -1, (long)ssl->max_cert_list,
                                   ssl_hash_message, &ok);

  if (!ok) {
    return n;
  }

  if (ssl->s3->tmp.message_type != SSL3_MT_CERTIFICATE) {
    if (ssl->version == SSL3_VERSION &&
        ssl->s3->tmp.message_type == SSL3_MT_CLIENT_KEY_EXCHANGE) {
      /* In SSL 3.0, the Certificate message is omitted to signal no certificate. */
      if ((ssl->verify_mode & SSL_VERIFY_PEER) &&
          (ssl->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) {
        OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
        al = SSL_AD_HANDSHAKE_FAILURE;
        goto f_err;
      }

      ssl->s3->tmp.reuse_message = 1;
      return 1;
    }

    al = SSL_AD_UNEXPECTED_MESSAGE;
    OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
    goto f_err;
  }

  CBS_init(&certificate_msg, ssl->init_msg, n);

  sk = sk_X509_new_null();
  if (sk == NULL) {
    OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    goto err;
  }

  if (!CBS_get_u24_length_prefixed(&certificate_msg, &certificate_list) ||
      CBS_len(&certificate_msg) != 0) {
    al = SSL_AD_DECODE_ERROR;
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
    goto f_err;
  }

  while (CBS_len(&certificate_list) > 0) {
    CBS certificate;
    const uint8_t *data;

    if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate)) {
      al = SSL_AD_DECODE_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
      goto f_err;
    }

    if (is_first_certificate && ssl->ctx->retain_only_sha256_of_client_certs) {
      /* If this is the first certificate, and we don't want to keep peer
       * certificates in memory, then we hash it right away. */
      SHA256_Init(&sha256);
      SHA256_Update(&sha256, CBS_data(&certificate), CBS_len(&certificate));
      SHA256_Final(ssl->session->peer_sha256, &sha256);
      ssl->session->peer_sha256_valid = 1;
    }
    is_first_certificate = 0;

    /* A u24 length cannot overflow a long. */
    data = CBS_data(&certificate);
    x = d2i_X509(NULL, &data, (long)CBS_len(&certificate));
    if (x == NULL) {
      al = SSL_AD_BAD_CERTIFICATE;
      OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
      goto f_err;
    }
    if (data != CBS_data(&certificate) + CBS_len(&certificate)) {
      al = SSL_AD_DECODE_ERROR;
      OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
      goto f_err;
    }
    if (!sk_X509_push(sk, x)) {
      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
      goto err;
    }
    x = NULL;
  }

  if (sk_X509_num(sk) <= 0) {
    /* No client certificate so the handshake buffer may be discarded. */
    ssl3_free_handshake_buffer(ssl);

    /* TLS does not mind 0 certs returned */
    if (ssl->version == SSL3_VERSION) {
      al = SSL_AD_HANDSHAKE_FAILURE;
      OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATES_RETURNED);
      goto f_err;
    } else if ((ssl->verify_mode & SSL_VERIFY_PEER) &&
               (ssl->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) {
      /* Fail for TLS only if we required a certificate */
      OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
      al = SSL_AD_HANDSHAKE_FAILURE;
      goto f_err;
    }
  } else {
    if (ssl_verify_cert_chain(ssl, sk) <= 0) {
      al = ssl_verify_alarm_type(ssl->verify_result);
      OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
      goto f_err;
    }
  }

  X509_free(ssl->session->peer);
  ssl->session->peer = sk_X509_shift(sk);
  ssl->session->verify_result = ssl->verify_result;

  sk_X509_pop_free(ssl->session->cert_chain, X509_free);
  ssl->session->cert_chain = sk;
  /* Inconsistency alert: cert_chain does *not* include the peer's own
   * certificate, while we do include it in s3_clnt.c */

  sk = NULL;

  ret = 1;

  if (0) {
  f_err:
    ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
  }

err:
  X509_free(x);
  sk_X509_pop_free(sk, X509_free);
  return ret;
}

int ssl3_send_server_certificate(SSL *ssl) {
  if (ssl->state == SSL3_ST_SW_CERT_A) {
    if (!ssl3_output_cert_chain(ssl)) {
      return 0;
    }
    ssl->state = SSL3_ST_SW_CERT_B;
  }

  /* SSL3_ST_SW_CERT_B */
  return ssl_do_write(ssl);
}

/* send a new session ticket (not necessarily for a new session) */
int ssl3_send_new_session_ticket(SSL *ssl) {
  int ret = -1;
  uint8_t *session = NULL;
  size_t session_len;
  EVP_CIPHER_CTX ctx;
  HMAC_CTX hctx;

  EVP_CIPHER_CTX_init(&ctx);
  HMAC_CTX_init(&hctx);

  if (ssl->state == SSL3_ST_SW_SESSION_TICKET_A) {
    uint8_t *p, *macstart;
    int len;
    unsigned int hlen;
    SSL_CTX *tctx = ssl->initial_ctx;
    uint8_t iv[EVP_MAX_IV_LENGTH];
    uint8_t key_name[16];
    /* The maximum overhead of encrypting the session is 16 (key name) + IV +
     * one block of encryption overhead + HMAC.  */
    const size_t max_ticket_overhead =
        16 + EVP_MAX_IV_LENGTH + EVP_MAX_BLOCK_LENGTH + EVP_MAX_MD_SIZE;

    /* Serialize the SSL_SESSION to be encoded into the ticket. */
    if (!SSL_SESSION_to_bytes_for_ticket(ssl->session, &session,
                                         &session_len)) {
      goto err;
    }

    /* If the session is too long, emit a dummy value rather than abort the
     * connection. */
    if (session_len > 0xFFFF - max_ticket_overhead) {
      static const char kTicketPlaceholder[] = "TICKET TOO LARGE";
      const size_t placeholder_len = strlen(kTicketPlaceholder);

      OPENSSL_free(session);
      session = NULL;

      p = ssl_handshake_start(ssl);
      /* Emit ticket_lifetime_hint. */
      l2n(0, p);
      /* Emit ticket. */
      s2n(placeholder_len, p);
      memcpy(p, kTicketPlaceholder, placeholder_len);
      p += placeholder_len;

      len = p - ssl_handshake_start(ssl);
      if (!ssl_set_handshake_header(ssl, SSL3_MT_NEWSESSION_TICKET, len)) {
        goto err;
      }
      ssl->state = SSL3_ST_SW_SESSION_TICKET_B;
      return ssl_do_write(ssl);
    }

    /* Grow buffer if need be: the length calculation is as follows:
     * handshake_header_length + 4 (ticket lifetime hint) + 2 (ticket length) +
     * max_ticket_overhead + * session_length */
    if (!BUF_MEM_grow(ssl->init_buf, SSL_HM_HEADER_LENGTH(ssl) + 6 +
                                       max_ticket_overhead + session_len)) {
      goto err;
    }
    p = ssl_handshake_start(ssl);
    /* Initialize HMAC and cipher contexts. If callback present it does all the
     * work otherwise use generated values from parent ctx. */
    if (tctx->tlsext_ticket_key_cb) {
      if (tctx->tlsext_ticket_key_cb(ssl, key_name, iv, &ctx, &hctx,
                                     1 /* encrypt */) < 0) {
        goto err;
      }
    } else {
      if (!RAND_bytes(iv, 16) ||
          !EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
                              tctx->tlsext_tick_aes_key, iv) ||
          !HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(),
                        NULL)) {
        goto err;
      }
      memcpy(key_name, tctx->tlsext_tick_key_name, 16);
    }

    /* Ticket lifetime hint (advisory only): We leave this unspecified for
     * resumed session (for simplicity), and guess that tickets for new
     * sessions will live as long as their sessions. */
    l2n(ssl->hit ? 0 : ssl->session->timeout, p);

    /* Skip ticket length for now */
    p += 2;
    /* Output key name */
    macstart = p;
    memcpy(p, key_name, 16);
    p += 16;
    /* output IV */
    memcpy(p, iv, EVP_CIPHER_CTX_iv_length(&ctx));
    p += EVP_CIPHER_CTX_iv_length(&ctx);
    /* Encrypt session data */
    if (!EVP_EncryptUpdate(&ctx, p, &len, session, session_len)) {
      goto err;
    }
    p += len;
    if (!EVP_EncryptFinal_ex(&ctx, p, &len)) {
      goto err;
    }
    p += len;

    if (!HMAC_Update(&hctx, macstart, p - macstart) ||
        !HMAC_Final(&hctx, p, &hlen)) {
      goto err;
    }

    p += hlen;
    /* Now write out lengths: p points to end of data written */
    /* Total length */
    len = p - ssl_handshake_start(ssl);
    /* Skip ticket lifetime hint */
    p = ssl_handshake_start(ssl) + 4;
    s2n(len - 6, p);
    if (!ssl_set_handshake_header(ssl, SSL3_MT_NEWSESSION_TICKET, len)) {
      goto err;
    }
    ssl->state = SSL3_ST_SW_SESSION_TICKET_B;
  }

  /* SSL3_ST_SW_SESSION_TICKET_B */
  ret = ssl_do_write(ssl);

err:
  OPENSSL_free(session);
  EVP_CIPHER_CTX_cleanup(&ctx);
  HMAC_CTX_cleanup(&hctx);
  return ret;
}

/* ssl3_get_next_proto reads a Next Protocol Negotiation handshake message. It
 * sets the next_proto member in s if found */
int ssl3_get_next_proto(SSL *ssl) {
  int ok;
  long n;
  CBS next_protocol, selected_protocol, padding;

  /* Clients cannot send a NextProtocol message if we didn't see the extension
   * in their ClientHello */
  if (!ssl->s3->next_proto_neg_seen) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_GOT_NEXT_PROTO_WITHOUT_EXTENSION);
    return -1;
  }

  n = ssl->method->ssl_get_message(ssl, SSL3_ST_SR_NEXT_PROTO_A,
                                 SSL3_ST_SR_NEXT_PROTO_B, SSL3_MT_NEXT_PROTO,
                                 514, /* See the payload format below */
                                 ssl_hash_message, &ok);

  if (!ok) {
    return n;
  }

  CBS_init(&next_protocol, ssl->init_msg, n);

  /* The payload looks like:
   *   uint8 proto_len;
   *   uint8 proto[proto_len];
   *   uint8 padding_len;
   *   uint8 padding[padding_len]; */
  if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) ||
      !CBS_get_u8_length_prefixed(&next_protocol, &padding) ||
      CBS_len(&next_protocol) != 0 ||
      !CBS_stow(&selected_protocol, &ssl->s3->next_proto_negotiated,
                &ssl->s3->next_proto_negotiated_len)) {
    return 0;
  }

  return 1;
}

/* ssl3_get_channel_id reads and verifies a ClientID handshake message. */
int ssl3_get_channel_id(SSL *ssl) {
  int ret = -1, ok;
  long n;
  uint8_t channel_id_hash[EVP_MAX_MD_SIZE];
  size_t channel_id_hash_len;
  const uint8_t *p;
  uint16_t extension_type;
  EC_GROUP *p256 = NULL;
  EC_KEY *key = NULL;
  EC_POINT *point = NULL;
  ECDSA_SIG sig;
  BIGNUM x, y;
  CBS encrypted_extensions, extension;

  n = ssl->method->ssl_get_message(
      ssl, SSL3_ST_SR_CHANNEL_ID_A, SSL3_ST_SR_CHANNEL_ID_B,
      SSL3_MT_ENCRYPTED_EXTENSIONS, 2 + 2 + TLSEXT_CHANNEL_ID_SIZE,
      ssl_dont_hash_message, &ok);

  if (!ok) {
    return n;
  }

  /* Before incorporating the EncryptedExtensions message to the handshake
   * hash, compute the hash that should have been signed. */
  if (!tls1_channel_id_hash(ssl, channel_id_hash, &channel_id_hash_len)) {
    return -1;
  }
  assert(channel_id_hash_len == SHA256_DIGEST_LENGTH);

  if (!ssl3_hash_current_message(ssl)) {
    return -1;
  }

  CBS_init(&encrypted_extensions, ssl->init_msg, n);

  /* EncryptedExtensions could include multiple extensions, but the only
   * extension that could be negotiated is ChannelID, so there can only be one
   * entry.
   *
   * The payload looks like:
   *   uint16 extension_type
   *   uint16 extension_len;
   *   uint8 x[32];
   *   uint8 y[32];
   *   uint8 r[32];
   *   uint8 s[32]; */

  if (!CBS_get_u16(&encrypted_extensions, &extension_type) ||
      !CBS_get_u16_length_prefixed(&encrypted_extensions, &extension) ||
      CBS_len(&encrypted_extensions) != 0 ||
      extension_type != TLSEXT_TYPE_channel_id ||
      CBS_len(&extension) != TLSEXT_CHANNEL_ID_SIZE) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_MESSAGE);
    return -1;
  }

  p256 = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
  if (!p256) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_NO_P256_SUPPORT);
    return -1;
  }

  BN_init(&x);
  BN_init(&y);
  sig.r = BN_new();
  sig.s = BN_new();
  if (sig.r == NULL || sig.s == NULL) {
    goto err;
  }

  p = CBS_data(&extension);
  if (BN_bin2bn(p + 0, 32, &x) == NULL ||
      BN_bin2bn(p + 32, 32, &y) == NULL ||
      BN_bin2bn(p + 64, 32, sig.r) == NULL ||
      BN_bin2bn(p + 96, 32, sig.s) == NULL) {
    goto err;
  }

  point = EC_POINT_new(p256);
  if (!point ||
      !EC_POINT_set_affine_coordinates_GFp(p256, point, &x, &y, NULL)) {
    goto err;
  }

  key = EC_KEY_new();
  if (!key || !EC_KEY_set_group(key, p256) ||
      !EC_KEY_set_public_key(key, point)) {
    goto err;
  }

  /* We stored the handshake hash in |tlsext_channel_id| the first time that we
   * were called. */
  if (!ECDSA_do_verify(channel_id_hash, channel_id_hash_len, &sig, key)) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_SIGNATURE_INVALID);
    ssl->s3->tlsext_channel_id_valid = 0;
    goto err;
  }

  memcpy(ssl->s3->tlsext_channel_id, p, 64);
  ret = 1;

err:
  BN_free(&x);
  BN_free(&y);
  BN_free(sig.r);
  BN_free(sig.s);
  EC_KEY_free(key);
  EC_POINT_free(point);
  EC_GROUP_free(p256);
  return ret;
}