OpenWrt – Rev 1

Subversion Repositories:
Rev:
/*
 *  ADM5120 built-in ethernet switch driver
 *
 *  Copyright (C) 2007-2008 Gabor Juhos <juhosg@openwrt.org>
 *
 *  This code was based on a driver for Linux 2.6.xx by Jeroen Vreeken.
 *    Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005
 *  NAPI extension for the Jeroen's driver
 *    Copyright Thomas Langer (Thomas.Langer@infineon.com), 2007
 *    Copyright Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007
 *  Inspiration for the Jeroen's driver came from the ADMtek 2.4 driver.
 *    Copyright ADMtek Inc.
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License version 2  as published
 *  by the Free Software Foundation.
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/irq.h>

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>

#include <asm/mipsregs.h>

#include <asm/mach-adm5120/adm5120_info.h>
#include <asm/mach-adm5120/adm5120_defs.h>
#include <asm/mach-adm5120/adm5120_switch.h>

#include "adm5120sw.h"
#include <linux/dma-mapping.h>

#define DRV_NAME        "adm5120-switch"
#define DRV_DESC        "ADM5120 built-in ethernet switch driver"
#define DRV_VERSION     "0.1.1"

#define CONFIG_ADM5120_SWITCH_NAPI      1
#undef CONFIG_ADM5120_SWITCH_DEBUG

/* ------------------------------------------------------------------------ */

#ifdef CONFIG_ADM5120_SWITCH_DEBUG
#define SW_DBG(f, a...)         printk(KERN_DEBUG "%s: " f, DRV_NAME , ## a)
#else
#define SW_DBG(f, a...)         do {} while (0)
#endif
#define SW_ERR(f, a...)         printk(KERN_ERR "%s: " f, DRV_NAME , ## a)
#define SW_INFO(f, a...)        printk(KERN_INFO "%s: " f, DRV_NAME , ## a)

#define SWITCH_NUM_PORTS        6
#define ETH_CSUM_LEN            4

#define RX_MAX_PKTLEN   1550
#define RX_RING_SIZE    64

#define TX_RING_SIZE    32
#define TX_QUEUE_LEN    28      /* Limit ring entries actually used. */
#define TX_TIMEOUT      (HZ * 400)

#define RX_DESCS_SIZE   (RX_RING_SIZE * sizeof(struct dma_desc *))
#define RX_SKBS_SIZE    (RX_RING_SIZE * sizeof(struct sk_buff *))
#define TX_DESCS_SIZE   (TX_RING_SIZE * sizeof(struct dma_desc *))
#define TX_SKBS_SIZE    (TX_RING_SIZE * sizeof(struct sk_buff *))

#define SKB_ALLOC_LEN           (RX_MAX_PKTLEN + 32)
#define SKB_RESERVE_LEN         (NET_IP_ALIGN + NET_SKB_PAD)

#define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF)
#define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF)
#define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH)
#define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \
                        SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \
                        SWITCH_INT_CPQF | SWITCH_INT_GQF)

#define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \
                        SWITCH_INTS_ERR | SWITCH_INTS_Q | \
                        SWITCH_INT_MD | SWITCH_INT_PSC)

#define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC)
#define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF | SWITCH_INT_SLD)

/* ------------------------------------------------------------------------ */

struct adm5120_if_priv {
        struct net_device *dev;

        unsigned int    vlan_no;
        unsigned int    port_mask;

#ifdef CONFIG_ADM5120_SWITCH_NAPI
        struct napi_struct napi;
#endif
};

struct dma_desc {
        __u32                   buf1;
#define DESC_OWN                (1UL << 31)     /* Owned by the switch */
#define DESC_EOR                (1UL << 28)     /* End of Ring */
#define DESC_ADDR_MASK          0x1FFFFFF
#define DESC_ADDR(x)    ((__u32)(x) & DESC_ADDR_MASK)
        __u32                   buf2;
#define DESC_BUF2_EN            (1UL << 31)     /* Buffer 2 enable */
        __u32                   buflen;
        __u32                   misc;
/* definitions for tx/rx descriptors */
#define DESC_PKTLEN_SHIFT       16
#define DESC_PKTLEN_MASK        0x7FF
/* tx descriptor specific part */
#define DESC_CSUM               (1UL << 31)     /* Append checksum */
#define DESC_DSTPORT_SHIFT      8
#define DESC_DSTPORT_MASK       0x3F
#define DESC_VLAN_MASK          0x3F
/* rx descriptor specific part */
#define DESC_SRCPORT_SHIFT      12
#define DESC_SRCPORT_MASK       0x7
#define DESC_DA_MASK            0x3
#define DESC_DA_SHIFT           4
#define DESC_IPCSUM_FAIL        (1UL << 3)      /* IP checksum fail */
#define DESC_VLAN_TAG           (1UL << 2)      /* VLAN tag present */
#define DESC_TYPE_MASK          0x3             /* mask for Packet type */
#define DESC_TYPE_IP            0x0             /* IP packet */
#define DESC_TYPE_PPPoE         0x1             /* PPPoE packet */
} __attribute__ ((aligned(16)));

/* ------------------------------------------------------------------------ */

static int adm5120_nrdevs;

static struct net_device *adm5120_devs[SWITCH_NUM_PORTS];
/* Lookup table port -> device */
static struct net_device *adm5120_port[SWITCH_NUM_PORTS];

static struct dma_desc *txl_descs;
static struct dma_desc *rxl_descs;

static dma_addr_t txl_descs_dma;
static dma_addr_t rxl_descs_dma;

static struct sk_buff **txl_skbuff;
static struct sk_buff **rxl_skbuff;

static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */
static unsigned int cur_txl, dirty_txl;

static unsigned int sw_used;

static DEFINE_SPINLOCK(tx_lock);

/* ------------------------------------------------------------------------ */

static inline u32 sw_read_reg(u32 reg)
{
        return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
}

static inline void sw_write_reg(u32 reg, u32 val)
{
        __raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
}

static inline void sw_int_mask(u32 mask)
{
        u32     t;

        t = sw_read_reg(SWITCH_REG_INT_MASK);
        t |= mask;
        sw_write_reg(SWITCH_REG_INT_MASK, t);
}

static inline void sw_int_unmask(u32 mask)
{
        u32     t;

        t = sw_read_reg(SWITCH_REG_INT_MASK);
        t &= ~mask;
        sw_write_reg(SWITCH_REG_INT_MASK, t);
}

static inline void sw_int_ack(u32 mask)
{
        sw_write_reg(SWITCH_REG_INT_STATUS, mask);
}

static inline u32 sw_int_status(void)
{
        u32     t;

        t = sw_read_reg(SWITCH_REG_INT_STATUS);
        t &= ~sw_read_reg(SWITCH_REG_INT_MASK);
        return t;
}

static inline u32 desc_get_srcport(struct dma_desc *desc)
{
        return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK;
}

static inline u32 desc_get_pktlen(struct dma_desc *desc)
{
        return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK;
}

static inline int desc_ipcsum_fail(struct dma_desc *desc)
{
        return ((desc->misc & DESC_IPCSUM_FAIL) != 0);
}

/* ------------------------------------------------------------------------ */

#ifdef CONFIG_ADM5120_SWITCH_DEBUG
static void sw_dump_desc(char *label, struct dma_desc *desc, int tx)
{
        u32 t;

        SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc);

        t = desc->buf1;
        SW_DBG("    buf1 %08X addr=%08X; len=%08X %s%s\n", t,
                t & DESC_ADDR_MASK,
                desc->buflen,
                (t & DESC_OWN) ? "SWITCH" : "CPU",
                (t & DESC_EOR) ? " RE" : "");

        t = desc->buf2;
        SW_DBG("    buf2 %08X addr=%08X%s\n", desc->buf2,
                t & DESC_ADDR_MASK,
                (t & DESC_BUF2_EN) ? " EN" : "");

        t = desc->misc;
        if (tx)
                SW_DBG("    misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t,
                        (t & DESC_CSUM) ? " CSUM" : "",
                        (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
                        (t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK,
                        t & DESC_VLAN_MASK);
        else
                SW_DBG("    misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n",
                        t,
                        (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
                        (t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK,
                        (t >> DESC_DA_SHIFT) & DESC_DA_MASK,
                        (t & DESC_IPCSUM_FAIL) ? " IPCF" : "",
                        (t & DESC_VLAN_TAG) ? " VLAN" : "",
                        (t & DESC_TYPE_MASK));
}

static void sw_dump_intr_mask(char *label, u32 mask)
{
        SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
                label, mask,
                (mask & SWITCH_INT_SHD) ? " SHD" : "",
                (mask & SWITCH_INT_SLD) ? " SLD" : "",
                (mask & SWITCH_INT_RHD) ? " RHD" : "",
                (mask & SWITCH_INT_RLD) ? " RLD" : "",
                (mask & SWITCH_INT_HDF) ? " HDF" : "",
                (mask & SWITCH_INT_LDF) ? " LDF" : "",
                (mask & SWITCH_INT_P0QF) ? " P0QF" : "",
                (mask & SWITCH_INT_P1QF) ? " P1QF" : "",
                (mask & SWITCH_INT_P2QF) ? " P2QF" : "",
                (mask & SWITCH_INT_P3QF) ? " P3QF" : "",
                (mask & SWITCH_INT_P4QF) ? " P4QF" : "",
                (mask & SWITCH_INT_CPQF) ? " CPQF" : "",
                (mask & SWITCH_INT_GQF) ? " GQF" : "",
                (mask & SWITCH_INT_MD) ? " MD" : "",
                (mask & SWITCH_INT_BCS) ? " BCS" : "",
                (mask & SWITCH_INT_PSC) ? " PSC" : "",
                (mask & SWITCH_INT_ID) ? " ID" : "",
                (mask & SWITCH_INT_W0TE) ? " W0TE" : "",
                (mask & SWITCH_INT_W1TE) ? " W1TE" : "",
                (mask & SWITCH_INT_RDE) ? " RDE" : "",
                (mask & SWITCH_INT_SDE) ? " SDE" : "",
                (mask & SWITCH_INT_CPUH) ? " CPUH" : "");
}

static void sw_dump_regs(void)
{
        u32 t;

        t = sw_read_reg(SWITCH_REG_PHY_STATUS);
        SW_DBG("phy_status: %08X\n", t);

        t = sw_read_reg(SWITCH_REG_CPUP_CONF);
        SW_DBG("cpup_conf: %08X%s%s%s\n", t,
                (t & CPUP_CONF_DCPUP) ? " DCPUP" : "",
                (t & CPUP_CONF_CRCP) ? " CRCP" : "",
                (t & CPUP_CONF_BTM) ? " BTM" : "");

        t = sw_read_reg(SWITCH_REG_PORT_CONF0);
        SW_DBG("port_conf0: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_PORT_CONF1);
        SW_DBG("port_conf1: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_PORT_CONF2);
        SW_DBG("port_conf2: %08X\n", t);

        t = sw_read_reg(SWITCH_REG_VLAN_G1);
        SW_DBG("vlan g1: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_VLAN_G2);
        SW_DBG("vlan g2: %08X\n", t);

        t = sw_read_reg(SWITCH_REG_BW_CNTL0);
        SW_DBG("bw_cntl0: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_BW_CNTL1);
        SW_DBG("bw_cntl1: %08X\n", t);

        t = sw_read_reg(SWITCH_REG_PHY_CNTL0);
        SW_DBG("phy_cntl0: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_PHY_CNTL1);
        SW_DBG("phy_cntl1: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_PHY_CNTL2);
        SW_DBG("phy_cntl2: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
        SW_DBG("phy_cntl3: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_PHY_CNTL4);
        SW_DBG("phy_cntl4: %08X\n", t);

        t = sw_read_reg(SWITCH_REG_INT_STATUS);
        sw_dump_intr_mask("int_status: ", t);

        t = sw_read_reg(SWITCH_REG_INT_MASK);
        sw_dump_intr_mask("int_mask: ", t);

        t = sw_read_reg(SWITCH_REG_SHDA);
        SW_DBG("shda: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_SLDA);
        SW_DBG("slda: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_RHDA);
        SW_DBG("rhda: %08X\n", t);
        t = sw_read_reg(SWITCH_REG_RLDA);
        SW_DBG("rlda: %08X\n", t);
}
#else
static inline void sw_dump_desc(char *label, struct dma_desc *desc, int tx) {}
static void sw_dump_intr_mask(char *label, u32 mask) {}
static inline void sw_dump_regs(void) {}
#endif /* CONFIG_ADM5120_SWITCH_DEBUG */

/* ------------------------------------------------------------------------ */

static inline void adm5120_rx_dma_update(struct dma_desc *desc,
        struct sk_buff *skb, int end)
{
        desc->misc = 0;
        desc->buf2 = 0;
        desc->buflen = RX_MAX_PKTLEN;
        desc->buf1 = DESC_ADDR(skb->data) |
                DESC_OWN | (end ? DESC_EOR : 0);
}

static void adm5120_switch_rx_refill(void)
{
        unsigned int entry;

        for (; cur_rxl - dirty_rxl > 0; dirty_rxl++) {
                struct dma_desc *desc;
                struct sk_buff *skb;

                entry = dirty_rxl % RX_RING_SIZE;
                desc = &rxl_descs[entry];

                skb = rxl_skbuff[entry];
                if (skb == NULL) {
                        skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
                        if (skb) {
                                skb_reserve(skb, SKB_RESERVE_LEN);
                                rxl_skbuff[entry] = skb;
                        } else {
                                SW_ERR("no memory for skb\n");
                                desc->buflen = 0;
                                desc->buf2 = 0;
                                desc->misc = 0;
                                desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN;
                                break;
                        }
                }

                desc->buf2 = 0;
                desc->buflen = RX_MAX_PKTLEN;
                desc->misc = 0;
                desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN |
                                DESC_ADDR(skb->data);
        }
}

static int adm5120_switch_rx(int limit)
{
        unsigned int done = 0;

        SW_DBG("rx start, limit=%d, cur_rxl=%u, dirty_rxl=%u\n",
                                limit, cur_rxl, dirty_rxl);

        while (done < limit) {
                int entry = cur_rxl % RX_RING_SIZE;
                struct dma_desc *desc = &rxl_descs[entry];
                struct net_device *rdev;
                unsigned int port;

                if (desc->buf1 & DESC_OWN)
                        break;

                if (dirty_rxl + RX_RING_SIZE == cur_rxl)
                        break;

                port = desc_get_srcport(desc);
                rdev = adm5120_port[port];

                SW_DBG("rx descriptor %u, desc=%p, skb=%p\n", entry, desc,
                                rxl_skbuff[entry]);

                if ((rdev) && netif_running(rdev)) {
                        struct sk_buff *skb = rxl_skbuff[entry];
                        int pktlen;

                        pktlen = desc_get_pktlen(desc);
                        pktlen -= ETH_CSUM_LEN;

                        if ((pktlen == 0) || desc_ipcsum_fail(desc)) {
                                rdev->stats.rx_errors++;
                                if (pktlen == 0)
                                        rdev->stats.rx_length_errors++;
                                if (desc_ipcsum_fail(desc))
                                        rdev->stats.rx_crc_errors++;
                                SW_DBG("rx error, recycling skb %u\n", entry);
                        } else {
                                skb_put(skb, pktlen);

                                skb->dev = rdev;
                                skb->protocol = eth_type_trans(skb, rdev);
                                skb->ip_summed = CHECKSUM_UNNECESSARY;

                                dma_cache_wback_inv((unsigned long)skb->data,
                                        skb->len);

#ifdef CONFIG_ADM5120_SWITCH_NAPI
                                netif_receive_skb(skb);
#else
                                netif_rx(skb);
#endif

                                rdev->last_rx = jiffies;
                                rdev->stats.rx_packets++;
                                rdev->stats.rx_bytes += pktlen;

                                rxl_skbuff[entry] = NULL;
                                done++;
                        }
                } else {
                        SW_DBG("no rx device, recycling skb %u\n", entry);
                }

                cur_rxl++;
                if (cur_rxl - dirty_rxl > RX_RING_SIZE / 4)
                        adm5120_switch_rx_refill();
        }

        adm5120_switch_rx_refill();

        SW_DBG("rx finished, cur_rxl=%u, dirty_rxl=%u, processed %d\n",
                                cur_rxl, dirty_rxl, done);

        return done;
}

static void adm5120_switch_tx(void)
{
        unsigned int entry;

        spin_lock(&tx_lock);
        entry = dirty_txl % TX_RING_SIZE;
        while (dirty_txl != cur_txl) {
                struct dma_desc *desc = &txl_descs[entry];
                struct sk_buff *skb = txl_skbuff[entry];

                if (desc->buf1 & DESC_OWN)
                        break;

                if (netif_running(skb->dev)) {
                        skb->dev->stats.tx_bytes += skb->len;
                        skb->dev->stats.tx_packets++;
                }

                dev_kfree_skb_irq(skb);
                txl_skbuff[entry] = NULL;
                entry = (++dirty_txl) % TX_RING_SIZE;
        }

        if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) {
                int i;
                for (i = 0; i < SWITCH_NUM_PORTS; i++) {
                        if (!adm5120_devs[i])
                                continue;
                        netif_wake_queue(adm5120_devs[i]);
                }
        }
        spin_unlock(&tx_lock);
}

#ifdef CONFIG_ADM5120_SWITCH_NAPI
static int adm5120_if_poll(struct napi_struct *napi, int limit)
{
        struct adm5120_if_priv *priv = container_of(napi,
                                struct adm5120_if_priv, napi);
        struct net_device *dev  __maybe_unused = priv->dev;
        int done;
        u32 status;

        sw_int_ack(SWITCH_INTS_POLL);

        SW_DBG("%s: processing TX ring\n", dev->name);
        adm5120_switch_tx();

        SW_DBG("%s: processing RX ring\n", dev->name);
        done = adm5120_switch_rx(limit);

        status = sw_int_status() & SWITCH_INTS_POLL;
        if ((done < limit) && (!status)) {
                SW_DBG("disable polling mode for %s\n", dev->name);
                napi_complete(napi);
                sw_int_unmask(SWITCH_INTS_POLL);
                return 0;
        }

        SW_DBG("%s still in polling mode, done=%d, status=%x\n",
                        dev->name, done, status);
        return 1;
}
#endif /* CONFIG_ADM5120_SWITCH_NAPI */


static irqreturn_t adm5120_switch_irq(int irq, void *dev_id)
{
        u32 status;

        status = sw_int_status();
        status &= SWITCH_INTS_ALL;
        if (!status)
                return IRQ_NONE;

#ifdef CONFIG_ADM5120_SWITCH_NAPI
        sw_int_ack(status & ~SWITCH_INTS_POLL);

        if (status & SWITCH_INTS_POLL) {
                struct net_device *dev = dev_id;
                struct adm5120_if_priv *priv = netdev_priv(dev);

                sw_dump_intr_mask("poll ints", status);
                SW_DBG("enable polling mode for %s\n", dev->name);
                sw_int_mask(SWITCH_INTS_POLL);
                napi_schedule(&priv->napi);
        }
#else
        sw_int_ack(status);

        if (status & (SWITCH_INT_RLD | SWITCH_INT_LDF))
                adm5120_switch_rx(RX_RING_SIZE);

        if (status & SWITCH_INT_SLD)
                adm5120_switch_tx();
#endif

        return IRQ_HANDLED;
}

static void adm5120_set_bw(char *matrix)
{
        unsigned long val;

        /* Port 0 to 3 are set using the bandwidth control 0 register */
        val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
        sw_write_reg(SWITCH_REG_BW_CNTL0, val);

        /* Port 4 and 5 are set using the bandwidth control 1 register */
        val = matrix[4];
        if (matrix[5] == 1)
                sw_write_reg(SWITCH_REG_BW_CNTL1, val | 0x80000000);
        else
                sw_write_reg(SWITCH_REG_BW_CNTL1, val & ~0x8000000);

        SW_DBG("D: ctl0 0x%ux, ctl1 0x%ux\n", sw_read_reg(SWITCH_REG_BW_CNTL0),
                sw_read_reg(SWITCH_REG_BW_CNTL1));
}

static void adm5120_switch_tx_ring_reset(struct dma_desc *desc,
                struct sk_buff **skbl, int num)
{
        memset(desc, 0, num * sizeof(*desc));
        desc[num-1].buf1 |= DESC_EOR;
        memset(skbl, 0, sizeof(struct skb *) * num);

        cur_txl = 0;
        dirty_txl = 0;
}

static void adm5120_switch_rx_ring_reset(struct dma_desc *desc,
                struct sk_buff **skbl, int num)
{
        int i;

        memset(desc, 0, num * sizeof(*desc));
        for (i = 0; i < num; i++) {
                skbl[i] = dev_alloc_skb(SKB_ALLOC_LEN);
                if (!skbl[i]) {
                        i = num;
                        break;
                }
                skb_reserve(skbl[i], SKB_RESERVE_LEN);
                adm5120_rx_dma_update(&desc[i], skbl[i], (num - 1 == i));
        }

        cur_rxl = 0;
        dirty_rxl = 0;
}

static int adm5120_switch_tx_ring_alloc(void)
{
        int err;

        txl_descs = dma_alloc_coherent(NULL, TX_DESCS_SIZE, &txl_descs_dma,
                                        GFP_ATOMIC);
        if (!txl_descs) {
                err = -ENOMEM;
                goto err;
        }

        txl_skbuff = kzalloc(TX_SKBS_SIZE, GFP_KERNEL);
        if (!txl_skbuff) {
                err = -ENOMEM;
                goto err;
        }

        return 0;

err:
        return err;
}

static void adm5120_switch_tx_ring_free(void)
{
        int i;

        if (txl_skbuff) {
                for (i = 0; i < TX_RING_SIZE; i++)
                        if (txl_skbuff[i])
                                kfree_skb(txl_skbuff[i]);
                kfree(txl_skbuff);
        }

        if (txl_descs)
                dma_free_coherent(NULL, TX_DESCS_SIZE, txl_descs,
                        txl_descs_dma);
}

static int adm5120_switch_rx_ring_alloc(void)
{
        int err;
        int i;

        /* init RX ring */
        rxl_descs = dma_alloc_coherent(NULL, RX_DESCS_SIZE, &rxl_descs_dma,
                                        GFP_ATOMIC);
        if (!rxl_descs) {
                err = -ENOMEM;
                goto err;
        }

        rxl_skbuff = kzalloc(RX_SKBS_SIZE, GFP_KERNEL);
        if (!rxl_skbuff) {
                err = -ENOMEM;
                goto err;
        }

        for (i = 0; i < RX_RING_SIZE; i++) {
                struct sk_buff *skb;
                skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
                if (!skb) {
                        err = -ENOMEM;
                        goto err;
                }
                rxl_skbuff[i] = skb;
                skb_reserve(skb, SKB_RESERVE_LEN);
        }

        return 0;

err:
        return err;
}

static void adm5120_switch_rx_ring_free(void)
{
        int i;

        if (rxl_skbuff) {
                for (i = 0; i < RX_RING_SIZE; i++)
                        if (rxl_skbuff[i])
                                kfree_skb(rxl_skbuff[i]);
                kfree(rxl_skbuff);
        }

        if (rxl_descs)
                dma_free_coherent(NULL, RX_DESCS_SIZE, rxl_descs,
                        rxl_descs_dma);
}

static void adm5120_write_mac(struct net_device *dev)
{
        struct adm5120_if_priv *priv = netdev_priv(dev);
        unsigned char *mac = dev->dev_addr;
        u32 t;

        t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) |
                (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT);
        sw_write_reg(SWITCH_REG_MAC_WT1, t);

        t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
                MAC_WT0_MAWC | MAC_WT0_WVE | (priv->vlan_no<<3);

        sw_write_reg(SWITCH_REG_MAC_WT0, t);

        while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD))
                ;
}

static void adm5120_set_vlan(char *matrix)
{
        unsigned long val;
        int vlan_port, port;

        val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
        sw_write_reg(SWITCH_REG_VLAN_G1, val);
        val = matrix[4] + (matrix[5]<<8);
        sw_write_reg(SWITCH_REG_VLAN_G2, val);

        /* Now set/update the port vs. device lookup table */
        for (port = 0; port < SWITCH_NUM_PORTS; port++) {
                for (vlan_port = 0; vlan_port < SWITCH_NUM_PORTS && !(matrix[vlan_port] & (0x00000001 << port)); vlan_port++)
                        ;
                if (vlan_port < SWITCH_NUM_PORTS)
                        adm5120_port[port] = adm5120_devs[vlan_port];
                else
                        adm5120_port[port] = NULL;
        }
}

static void adm5120_switch_set_vlan_mac(unsigned int vlan, unsigned char *mac)
{
        u32 t;

        t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT)
                | (mac[4] << MAC_WT1_MAC4_SHIFT)
                | (mac[5] << MAC_WT1_MAC5_SHIFT);
        sw_write_reg(SWITCH_REG_MAC_WT1, t);

        t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
                MAC_WT0_MAWC | MAC_WT0_WVE | (vlan << MAC_WT0_WVN_SHIFT) |
                (MAC_WT0_WAF_STATIC << MAC_WT0_WAF_SHIFT);
        sw_write_reg(SWITCH_REG_MAC_WT0, t);

        do {
                t = sw_read_reg(SWITCH_REG_MAC_WT0);
        } while ((t & MAC_WT0_MWD) == 0);
}

static void adm5120_switch_set_vlan_ports(unsigned int vlan, u32 ports)
{
        unsigned int reg;
        u32 t;

        if (vlan < 4)
                reg = SWITCH_REG_VLAN_G1;
        else {
                vlan -= 4;
                reg = SWITCH_REG_VLAN_G2;
        }

        t = sw_read_reg(reg);
        t &= ~(0xFF << (vlan*8));
        t |= (ports << (vlan*8));
        sw_write_reg(reg, t);
}

/* ------------------------------------------------------------------------ */

#ifdef CONFIG_ADM5120_SWITCH_NAPI
static inline void adm5120_if_napi_enable(struct net_device *dev)
{
        struct adm5120_if_priv *priv = netdev_priv(dev);
        napi_enable(&priv->napi);
}

static inline void adm5120_if_napi_disable(struct net_device *dev)
{
        struct adm5120_if_priv *priv = netdev_priv(dev);
        napi_disable(&priv->napi);
}
#else
static inline void adm5120_if_napi_enable(struct net_device *dev) {}
static inline void adm5120_if_napi_disable(struct net_device *dev) {}
#endif /* CONFIG_ADM5120_SWITCH_NAPI */

static int adm5120_if_open(struct net_device *dev)
{
        u32 t;
        int err;
        int i;

        adm5120_if_napi_enable(dev);

        err = request_irq(dev->irq, adm5120_switch_irq, IRQF_SHARED,
                          dev->name, dev);
        if (err) {
                SW_ERR("unable to get irq for %s\n", dev->name);
                goto err;
        }

        if (!sw_used++)
                /* enable interrupts on first open */
                sw_int_unmask(SWITCH_INTS_USED);

        /* enable (additional) port */
        t = sw_read_reg(SWITCH_REG_PORT_CONF0);
        for (i = 0; i < SWITCH_NUM_PORTS; i++) {
                if (dev == adm5120_devs[i])
                        t &= ~adm5120_eth_vlans[i];
        }
        sw_write_reg(SWITCH_REG_PORT_CONF0, t);

        netif_start_queue(dev);

        return 0;

err:
        adm5120_if_napi_disable(dev);
        return err;
}

static int adm5120_if_stop(struct net_device *dev)
{
        u32 t;
        int i;

        netif_stop_queue(dev);
        adm5120_if_napi_disable(dev);

        /* disable port if not assigned to other devices */
        t = sw_read_reg(SWITCH_REG_PORT_CONF0);
        t |= SWITCH_PORTS_NOCPU;
        for (i = 0; i < SWITCH_NUM_PORTS; i++) {
                if ((dev != adm5120_devs[i]) && netif_running(adm5120_devs[i]))
                        t &= ~adm5120_eth_vlans[i];
        }
        sw_write_reg(SWITCH_REG_PORT_CONF0, t);

        if (!--sw_used)
                sw_int_mask(SWITCH_INTS_USED);

        free_irq(dev->irq, dev);

        return 0;
}

static int adm5120_if_hard_start_xmit(struct sk_buff *skb,
                struct net_device *dev)
{
        struct dma_desc *desc;
        struct adm5120_if_priv *priv = netdev_priv(dev);
        unsigned int entry;
        unsigned long data;
        int i;

        /* lock switch irq */
        spin_lock_irq(&tx_lock);

        /* calculate the next TX descriptor entry. */
        entry = cur_txl % TX_RING_SIZE;

        desc = &txl_descs[entry];
        if (desc->buf1 & DESC_OWN) {
                /* We want to write a packet but the TX queue is still
                 * occupied by the DMA. We are faster than the DMA... */
                SW_DBG("%s unable to transmit, packet dopped\n", dev->name);
                dev_kfree_skb(skb);
                dev->stats.tx_dropped++;
                return 0;
        }

        txl_skbuff[entry] = skb;
        data = (desc->buf1 & DESC_EOR);
        data |= DESC_ADDR(skb->data);

        desc->misc =
            ((skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len) << DESC_PKTLEN_SHIFT) |
            (0x1 << priv->vlan_no);

        desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;

        desc->buf1 = data | DESC_OWN;
        sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL);

        cur_txl++;
        if (cur_txl == dirty_txl + TX_QUEUE_LEN) {
                for (i = 0; i < SWITCH_NUM_PORTS; i++) {
                        if (!adm5120_devs[i])
                                continue;
                        netif_stop_queue(adm5120_devs[i]);
                }
        }

        dev->trans_start = jiffies;

        spin_unlock_irq(&tx_lock);

        return 0;
}

static void adm5120_if_tx_timeout(struct net_device *dev)
{
        SW_INFO("TX timeout on %s\n", dev->name);
}

static void adm5120_if_set_rx_mode(struct net_device *dev)
{
        struct adm5120_if_priv *priv = netdev_priv(dev);
        u32 ports;
        u32 t;

        ports = adm5120_eth_vlans[priv->vlan_no] & SWITCH_PORTS_NOCPU;

        t = sw_read_reg(SWITCH_REG_CPUP_CONF);
        if (dev->flags & IFF_PROMISC)
                /* enable unknown packets */
                t &= ~(ports << CPUP_CONF_DUNP_SHIFT);
        else
                /* disable unknown packets */
                t |= (ports << CPUP_CONF_DUNP_SHIFT);

        if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI ||
                                        netdev_mc_count(dev))
                /* enable multicast packets */
                t &= ~(ports << CPUP_CONF_DMCP_SHIFT);
        else
                /* disable multicast packets */
                t |= (ports << CPUP_CONF_DMCP_SHIFT);

        /* If there is any port configured to be in promiscuous mode, then the */
        /* Bridge Test Mode has to be activated. This will result in           */
        /* transporting also packets learned in another VLAN to be forwarded   */
        /* to the CPU.                                                         */
        /* The difficult scenario is when we want to build a bridge on the CPU.*/
        /* Assume we have port0 and the CPU port in VLAN0 and port1 and the    */
        /* CPU port in VLAN1. Now we build a bridge on the CPU between         */
        /* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode.   */
        /* Now assume a packet with ethernet source address 99 enters port 0   */
        /* It will be forwarded to the CPU because it is unknown. Then the     */
        /* bridge in the CPU will send it to VLAN1 and it goes out at port 1.  */
        /* When now a packet with ethernet destination address 99 comes in at  */
        /* port 1 in VLAN1, then the switch has learned that this address is   */
        /* located at port 0 in VLAN0. Therefore the switch will drop          */
        /* this packet. In order to avoid this and to send the packet still    */
        /* to the CPU, the Bridge Test Mode has to be activated.               */

        /* Check if there is any vlan in promisc mode. */
        if (~t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT))
                t |= CPUP_CONF_BTM;  /* Enable Bridge Testing Mode */
        else
                t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */

        sw_write_reg(SWITCH_REG_CPUP_CONF, t);

}

static int adm5120_if_set_mac_address(struct net_device *dev, void *p)
{
        int ret;

        ret = eth_mac_addr(dev, p);
        if (ret)
                return ret;

        adm5120_write_mac(dev);
        return 0;
}

static int adm5120_if_do_ioctl(struct net_device *dev, struct ifreq *rq,
                int cmd)
{
        int err;
        struct adm5120_sw_info info;
        struct adm5120_if_priv *priv = netdev_priv(dev);

        switch (cmd) {
        case SIOCGADMINFO:
                info.magic = 0x5120;
                info.ports = adm5120_nrdevs;
                info.vlan = priv->vlan_no;
                err = copy_to_user(rq->ifr_data, &info, sizeof(info));
                if (err)
                        return -EFAULT;
                break;
        case SIOCSMATRIX:
                if (!capable(CAP_NET_ADMIN))
                        return -EPERM;
                err = copy_from_user(adm5120_eth_vlans, rq->ifr_data,
                                        sizeof(adm5120_eth_vlans));
                if (err)
                        return -EFAULT;
                adm5120_set_vlan(adm5120_eth_vlans);
                break;
        case SIOCGMATRIX:
                err = copy_to_user(rq->ifr_data, adm5120_eth_vlans,
                                        sizeof(adm5120_eth_vlans));
                if (err)
                        return -EFAULT;
                break;
        default:
                return -EOPNOTSUPP;
        }
        return 0;
}

static const struct net_device_ops adm5120sw_netdev_ops = {
        .ndo_open               = adm5120_if_open,
        .ndo_stop               = adm5120_if_stop,
        .ndo_start_xmit         = adm5120_if_hard_start_xmit,
        .ndo_set_rx_mode        = adm5120_if_set_rx_mode,
        .ndo_do_ioctl           = adm5120_if_do_ioctl,
        .ndo_tx_timeout         = adm5120_if_tx_timeout,
        .ndo_validate_addr      = eth_validate_addr,
        .ndo_change_mtu         = eth_change_mtu,
        .ndo_set_mac_address    = adm5120_if_set_mac_address,
};

static struct net_device *adm5120_if_alloc(void)
{
        struct net_device *dev;
        struct adm5120_if_priv *priv;

        dev = alloc_etherdev(sizeof(*priv));
        if (!dev)
                return NULL;

        priv = netdev_priv(dev);
        priv->dev = dev;

        dev->irq                = ADM5120_IRQ_SWITCH;
        dev->netdev_ops         = &adm5120sw_netdev_ops;
        dev->watchdog_timeo     = TX_TIMEOUT;

#ifdef CONFIG_ADM5120_SWITCH_NAPI
        netif_napi_add(dev, &priv->napi, adm5120_if_poll, 64);
#endif

        return dev;
}

/* ------------------------------------------------------------------------ */

static void adm5120_switch_cleanup(void)
{
        int i;

        /* disable interrupts */
        sw_int_mask(SWITCH_INTS_ALL);

        for (i = 0; i < SWITCH_NUM_PORTS; i++) {
                struct net_device *dev = adm5120_devs[i];
                if (dev) {
                        unregister_netdev(dev);
                        free_netdev(dev);
                }
        }

        adm5120_switch_tx_ring_free();
        adm5120_switch_rx_ring_free();
}

static int adm5120_switch_probe(struct platform_device *pdev)
{
        u32 t;
        int i, err;

        adm5120_nrdevs = adm5120_eth_num_ports;

        t = CPUP_CONF_DCPUP | CPUP_CONF_CRCP |
                SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT |
                SWITCH_PORTS_NOCPU << CPUP_CONF_DMCP_SHIFT ;
        sw_write_reg(SWITCH_REG_CPUP_CONF, t);

        t = (SWITCH_PORTS_NOCPU << PORT_CONF0_EMCP_SHIFT) |
                (SWITCH_PORTS_NOCPU << PORT_CONF0_BP_SHIFT) |
                (SWITCH_PORTS_NOCPU);
        sw_write_reg(SWITCH_REG_PORT_CONF0, t);

        /* setup ports to Autoneg/100M/Full duplex/Auto MDIX */
        t =  SWITCH_PORTS_PHY |
                (SWITCH_PORTS_PHY << PHY_CNTL2_SC_SHIFT) |
                (SWITCH_PORTS_PHY << PHY_CNTL2_DC_SHIFT) |
                (SWITCH_PORTS_PHY << PHY_CNTL2_PHYR_SHIFT) |
                (SWITCH_PORTS_PHY << PHY_CNTL2_AMDIX_SHIFT) |
                PHY_CNTL2_RMAE;
        sw_write_reg(SWITCH_REG_PHY_CNTL2, t);

        t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
        t |= PHY_CNTL3_RNT;
        sw_write_reg(SWITCH_REG_PHY_CNTL3, t);

        /* Force all the packets from all ports are low priority */
        sw_write_reg(SWITCH_REG_PRI_CNTL, 0);

        sw_int_mask(SWITCH_INTS_ALL);
        sw_int_ack(SWITCH_INTS_ALL);

        err = adm5120_switch_rx_ring_alloc();
        if (err)
                goto err;

        err = adm5120_switch_tx_ring_alloc();
        if (err)
                goto err;

        adm5120_switch_tx_ring_reset(txl_descs, txl_skbuff, TX_RING_SIZE);
        adm5120_switch_rx_ring_reset(rxl_descs, rxl_skbuff, RX_RING_SIZE);

        sw_write_reg(SWITCH_REG_SHDA, 0);
        sw_write_reg(SWITCH_REG_SLDA, KSEG1ADDR(txl_descs));
        sw_write_reg(SWITCH_REG_RHDA, 0);
        sw_write_reg(SWITCH_REG_RLDA, KSEG1ADDR(rxl_descs));

        for (i = 0; i < SWITCH_NUM_PORTS; i++) {
                struct net_device *dev;
                struct adm5120_if_priv *priv;

                dev = adm5120_if_alloc();
                if (!dev) {
                        err = -ENOMEM;
                        goto err;
                }

                adm5120_devs[i] = dev;
                priv = netdev_priv(dev);

                priv->vlan_no = i;
                priv->port_mask = adm5120_eth_vlans[i];

                memcpy(dev->dev_addr, adm5120_eth_macs[i], 6);
                adm5120_write_mac(dev);

                err = register_netdev(dev);
                if (err) {
                        SW_INFO("%s register failed, error=%d\n",
                                        dev->name, err);
                        goto err;
                }
        }

        /* setup vlan/port mapping after devs are filled up */
        adm5120_set_vlan(adm5120_eth_vlans);

        /* enable CPU port */
        t = sw_read_reg(SWITCH_REG_CPUP_CONF);
        t &= ~CPUP_CONF_DCPUP;
        sw_write_reg(SWITCH_REG_CPUP_CONF, t);

        return 0;

err:
        adm5120_switch_cleanup();

        SW_ERR("init failed\n");
        return err;
}

static int adm5120_switch_remove(struct platform_device *pdev)
{
        adm5120_switch_cleanup();
        return 0;
}

static struct platform_driver adm5120_switch_driver = {
        .probe          = adm5120_switch_probe,
        .remove         = adm5120_switch_remove,
        .driver         = {
                .name   = DRV_NAME,
        },
};

/* -------------------------------------------------------------------------- */

static int __init adm5120_switch_mod_init(void)
{
        int err;

        pr_info(DRV_DESC " version " DRV_VERSION "\n");
        err = platform_driver_register(&adm5120_switch_driver);

        return err;
}

static void __exit adm5120_switch_mod_exit(void)
{
        platform_driver_unregister(&adm5120_switch_driver);
}

module_init(adm5120_switch_mod_init);
module_exit(adm5120_switch_mod_exit);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);