nexmon – Rev 1

Subversion Repositories:
Rev:
/*
 * Copyright (c) 2014 Broadcom Corporation
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/bcma/bcma.h>
#include <linux/bcma/bcma_regs.h>

#include <defs.h>
#include <soc.h>
#include <brcm_hw_ids.h>
#include <brcmu_utils.h>
#include <chipcommon.h>
#include "debug.h"
#include "chip.h"

/* SOC Interconnect types (aka chip types) */
#define SOCI_SB         0
#define SOCI_AI         1

/* PL-368 DMP definitions */
#define DMP_DESC_TYPE_MSK       0x0000000F
#define  DMP_DESC_EMPTY         0x00000000
#define  DMP_DESC_VALID         0x00000001
#define  DMP_DESC_COMPONENT     0x00000001
#define  DMP_DESC_MASTER_PORT   0x00000003
#define  DMP_DESC_ADDRESS       0x00000005
#define  DMP_DESC_ADDRSIZE_GT32 0x00000008
#define  DMP_DESC_EOT           0x0000000F

#define DMP_COMP_DESIGNER       0xFFF00000
#define DMP_COMP_DESIGNER_S     20
#define DMP_COMP_PARTNUM        0x000FFF00
#define DMP_COMP_PARTNUM_S      8
#define DMP_COMP_CLASS          0x000000F0
#define DMP_COMP_CLASS_S        4
#define DMP_COMP_REVISION       0xFF000000
#define DMP_COMP_REVISION_S     24
#define DMP_COMP_NUM_SWRAP      0x00F80000
#define DMP_COMP_NUM_SWRAP_S    19
#define DMP_COMP_NUM_MWRAP      0x0007C000
#define DMP_COMP_NUM_MWRAP_S    14
#define DMP_COMP_NUM_SPORT      0x00003E00
#define DMP_COMP_NUM_SPORT_S    9
#define DMP_COMP_NUM_MPORT      0x000001F0
#define DMP_COMP_NUM_MPORT_S    4

#define DMP_MASTER_PORT_UID     0x0000FF00
#define DMP_MASTER_PORT_UID_S   8
#define DMP_MASTER_PORT_NUM     0x000000F0
#define DMP_MASTER_PORT_NUM_S   4

#define DMP_SLAVE_ADDR_BASE     0xFFFFF000
#define DMP_SLAVE_ADDR_BASE_S   12
#define DMP_SLAVE_PORT_NUM      0x00000F00
#define DMP_SLAVE_PORT_NUM_S    8
#define DMP_SLAVE_TYPE          0x000000C0
#define DMP_SLAVE_TYPE_S        6
#define  DMP_SLAVE_TYPE_SLAVE   0
#define  DMP_SLAVE_TYPE_BRIDGE  1
#define  DMP_SLAVE_TYPE_SWRAP   2
#define  DMP_SLAVE_TYPE_MWRAP   3
#define DMP_SLAVE_SIZE_TYPE     0x00000030
#define DMP_SLAVE_SIZE_TYPE_S   4
#define  DMP_SLAVE_SIZE_4K      0
#define  DMP_SLAVE_SIZE_8K      1
#define  DMP_SLAVE_SIZE_16K     2
#define  DMP_SLAVE_SIZE_DESC    3

/* EROM CompIdentB */
#define CIB_REV_MASK            0xff000000
#define CIB_REV_SHIFT           24

/* ARM CR4 core specific control flag bits */
#define ARMCR4_BCMA_IOCTL_CPUHALT       0x0020

/* D11 core specific control flag bits */
#define D11_BCMA_IOCTL_PHYCLOCKEN       0x0004
#define D11_BCMA_IOCTL_PHYRESET         0x0008

/* chip core base & ramsize */
/* bcm4329 */
/* SDIO device core, ID 0x829 */
#define BCM4329_CORE_BUS_BASE           0x18011000
/* internal memory core, ID 0x80e */
#define BCM4329_CORE_SOCRAM_BASE        0x18003000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM4329_CORE_ARM_BASE           0x18002000

/* Max possibly supported memory size (limited by IO mapped memory) */
#define BRCMF_CHIP_MAX_MEMSIZE          (4 * 1024 * 1024)

#define CORE_SB(base, field) \
                (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
#define SBCOREREV(sbidh) \
        ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
          ((sbidh) & SSB_IDHIGH_RCLO))

struct sbconfig {
        u32 PAD[2];
        u32 sbipsflag;  /* initiator port ocp slave flag */
        u32 PAD[3];
        u32 sbtpsflag;  /* target port ocp slave flag */
        u32 PAD[11];
        u32 sbtmerrloga;        /* (sonics >= 2.3) */
        u32 PAD;
        u32 sbtmerrlog; /* (sonics >= 2.3) */
        u32 PAD[3];
        u32 sbadmatch3; /* address match3 */
        u32 PAD;
        u32 sbadmatch2; /* address match2 */
        u32 PAD;
        u32 sbadmatch1; /* address match1 */
        u32 PAD[7];
        u32 sbimstate;  /* initiator agent state */
        u32 sbintvec;   /* interrupt mask */
        u32 sbtmstatelow;       /* target state */
        u32 sbtmstatehigh;      /* target state */
        u32 sbbwa0;             /* bandwidth allocation table0 */
        u32 PAD;
        u32 sbimconfiglow;      /* initiator configuration */
        u32 sbimconfighigh;     /* initiator configuration */
        u32 sbadmatch0; /* address match0 */
        u32 PAD;
        u32 sbtmconfiglow;      /* target configuration */
        u32 sbtmconfighigh;     /* target configuration */
        u32 sbbconfig;  /* broadcast configuration */
        u32 PAD;
        u32 sbbstate;   /* broadcast state */
        u32 PAD[3];
        u32 sbactcnfg;  /* activate configuration */
        u32 PAD[3];
        u32 sbflagst;   /* current sbflags */
        u32 PAD[3];
        u32 sbidlow;            /* identification */
        u32 sbidhigh;   /* identification */
};

/* bankidx and bankinfo reg defines corerev >= 8 */
#define SOCRAM_BANKINFO_RETNTRAM_MASK   0x00010000
#define SOCRAM_BANKINFO_SZMASK          0x0000007f
#define SOCRAM_BANKIDX_ROM_MASK         0x00000100

#define SOCRAM_BANKIDX_MEMTYPE_SHIFT    8
/* socram bankinfo memtype */
#define SOCRAM_MEMTYPE_RAM              0
#define SOCRAM_MEMTYPE_R0M              1
#define SOCRAM_MEMTYPE_DEVRAM           2

#define SOCRAM_BANKINFO_SZBASE          8192
#define SRCI_LSS_MASK           0x00f00000
#define SRCI_LSS_SHIFT          20
#define SRCI_SRNB_MASK          0xf0
#define SRCI_SRNB_SHIFT         4
#define SRCI_SRBSZ_MASK         0xf
#define SRCI_SRBSZ_SHIFT        0
#define SR_BSZ_BASE             14

struct sbsocramregs {
        u32 coreinfo;
        u32 bwalloc;
        u32 extracoreinfo;
        u32 biststat;
        u32 bankidx;
        u32 standbyctrl;

        u32 errlogstatus;       /* rev 6 */
        u32 errlogaddr; /* rev 6 */
        /* used for patching rev 3 & 5 */
        u32 cambankidx;
        u32 cambankstandbyctrl;
        u32 cambankpatchctrl;
        u32 cambankpatchtblbaseaddr;
        u32 cambankcmdreg;
        u32 cambankdatareg;
        u32 cambankmaskreg;
        u32 PAD[1];
        u32 bankinfo;   /* corev 8 */
        u32 bankpda;
        u32 PAD[14];
        u32 extmemconfig;
        u32 extmemparitycsr;
        u32 extmemparityerrdata;
        u32 extmemparityerrcnt;
        u32 extmemwrctrlandsize;
        u32 PAD[84];
        u32 workaround;
        u32 pwrctl;             /* corerev >= 2 */
        u32 PAD[133];
        u32 sr_control;     /* corerev >= 15 */
        u32 sr_status;      /* corerev >= 15 */
        u32 sr_address;     /* corerev >= 15 */
        u32 sr_data;        /* corerev >= 15 */
};

#define SOCRAMREGOFFS(_f)       offsetof(struct sbsocramregs, _f)
#define SYSMEMREGOFFS(_f)       offsetof(struct sbsocramregs, _f)

#define ARMCR4_CAP              (0x04)
#define ARMCR4_BANKIDX          (0x40)
#define ARMCR4_BANKINFO         (0x44)
#define ARMCR4_BANKPDA          (0x4C)

#define ARMCR4_TCBBNB_MASK      0xf0
#define ARMCR4_TCBBNB_SHIFT     4
#define ARMCR4_TCBANB_MASK      0xf
#define ARMCR4_TCBANB_SHIFT     0

#define ARMCR4_BSZ_MASK         0x3f
#define ARMCR4_BSZ_MULT         8192

struct brcmf_core_priv {
        struct brcmf_core pub;
        u32 wrapbase;
        struct list_head list;
        struct brcmf_chip_priv *chip;
};

struct brcmf_chip_priv {
        struct brcmf_chip pub;
        const struct brcmf_buscore_ops *ops;
        void *ctx;
        /* assured first core is chipcommon, second core is buscore */
        struct list_head cores;
        u16 num_cores;

        bool (*iscoreup)(struct brcmf_core_priv *core);
        void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
                            u32 reset);
        void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
                          u32 postreset);
};

static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
                                  struct brcmf_core *core)
{
        u32 regdata;

        regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
        core->rev = SBCOREREV(regdata);
}

static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
{
        struct brcmf_chip_priv *ci;
        u32 regdata;
        u32 address;

        ci = core->chip;
        address = CORE_SB(core->pub.base, sbtmstatelow);
        regdata = ci->ops->read32(ci->ctx, address);
        regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
                    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
        return SSB_TMSLOW_CLOCK == regdata;
}

static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
{
        struct brcmf_chip_priv *ci;
        u32 regdata;
        bool ret;

        ci = core->chip;
        regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
        ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;

        regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
        ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);

        return ret;
}

static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
                                      u32 prereset, u32 reset)
{
        struct brcmf_chip_priv *ci;
        u32 val, base;

        ci = core->chip;
        base = core->pub.base;
        val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
        if (val & SSB_TMSLOW_RESET)
                return;

        val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
        if ((val & SSB_TMSLOW_CLOCK) != 0) {
                /*
                 * set target reject and spin until busy is clear
                 * (preserve core-specific bits)
                 */
                val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
                ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
                                         val | SSB_TMSLOW_REJECT);

                val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
                udelay(1);
                SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
                          & SSB_TMSHIGH_BUSY), 100000);

                val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
                if (val & SSB_TMSHIGH_BUSY)
                        brcmf_err("core state still busy\n");

                val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
                if (val & SSB_IDLOW_INITIATOR) {
                        val = ci->ops->read32(ci->ctx,
                                              CORE_SB(base, sbimstate));
                        val |= SSB_IMSTATE_REJECT;
                        ci->ops->write32(ci->ctx,
                                         CORE_SB(base, sbimstate), val);
                        val = ci->ops->read32(ci->ctx,
                                              CORE_SB(base, sbimstate));
                        udelay(1);
                        SPINWAIT((ci->ops->read32(ci->ctx,
                                                  CORE_SB(base, sbimstate)) &
                                  SSB_IMSTATE_BUSY), 100000);
                }

                /* set reset and reject while enabling the clocks */
                val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
                      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
                ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
                val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
                udelay(10);

                /* clear the initiator reject bit */
                val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
                if (val & SSB_IDLOW_INITIATOR) {
                        val = ci->ops->read32(ci->ctx,
                                              CORE_SB(base, sbimstate));
                        val &= ~SSB_IMSTATE_REJECT;
                        ci->ops->write32(ci->ctx,
                                         CORE_SB(base, sbimstate), val);
                }
        }

        /* leave reset and reject asserted */
        ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
                         (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
        udelay(1);
}

static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
                                      u32 prereset, u32 reset)
{
        struct brcmf_chip_priv *ci;
        u32 regdata;

        ci = core->chip;

        /* if core is already in reset, skip reset */
        regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
        if ((regdata & BCMA_RESET_CTL_RESET) != 0)
                goto in_reset_configure;

        /* configure reset */
        ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
                         prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
        ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);

        /* put in reset */
        ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
                         BCMA_RESET_CTL_RESET);
        usleep_range(10, 20);

        /* wait till reset is 1 */
        SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
                 BCMA_RESET_CTL_RESET, 300);

in_reset_configure:
        /* in-reset configure */
        ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
                         reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
        ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
}

static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
                                    u32 reset, u32 postreset)
{
        struct brcmf_chip_priv *ci;
        u32 regdata;
        u32 base;

        ci = core->chip;
        base = core->pub.base;
        /*
         * Must do the disable sequence first to work for
         * arbitrary current core state.
         */
        brcmf_chip_sb_coredisable(core, 0, 0);

        /*
         * Now do the initialization sequence.
         * set reset while enabling the clock and
         * forcing them on throughout the core
         */
        ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
                         SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
                         SSB_TMSLOW_RESET);
        regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
        udelay(1);

        /* clear any serror */
        regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
        if (regdata & SSB_TMSHIGH_SERR)
                ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);

        regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
        if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
                regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
                ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
        }

        /* clear reset and allow it to propagate throughout the core */
        ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
                         SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
        regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
        udelay(1);

        /* leave clock enabled */
        ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
                         SSB_TMSLOW_CLOCK);
        regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
        udelay(1);
}

static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
                                    u32 reset, u32 postreset)
{
        struct brcmf_chip_priv *ci;
        int count;

        ci = core->chip;

        /* must disable first to work for arbitrary current core state */
        brcmf_chip_ai_coredisable(core, prereset, reset);

        count = 0;
        while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
               BCMA_RESET_CTL_RESET) {
                ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
                count++;
                if (count > 50)
                        break;
                usleep_range(40, 60);
        }

        ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
                         postreset | BCMA_IOCTL_CLK);
        ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
}

static char *brcmf_chip_name(uint chipid, char *buf, uint len)
{
        const char *fmt;

        fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
        snprintf(buf, len, fmt, chipid);
        return buf;
}

static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
                                              u16 coreid, u32 base,
                                              u32 wrapbase)
{
        struct brcmf_core_priv *core;

        core = kzalloc(sizeof(*core), GFP_KERNEL);
        if (!core)
                return ERR_PTR(-ENOMEM);

        core->pub.id = coreid;
        core->pub.base = base;
        core->chip = ci;
        core->wrapbase = wrapbase;

        list_add_tail(&core->list, &ci->cores);
        return &core->pub;
}

/* safety check for chipinfo */
static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
{
        struct brcmf_core_priv *core;
        bool need_socram = false;
        bool has_socram = false;
        bool cpu_found = false;
        int idx = 1;

        list_for_each_entry(core, &ci->cores, list) {
                brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
                          idx++, core->pub.id, core->pub.rev, core->pub.base,
                          core->wrapbase);

                switch (core->pub.id) {
                case BCMA_CORE_ARM_CM3:
                        cpu_found = true;
                        need_socram = true;
                        break;
                case BCMA_CORE_INTERNAL_MEM:
                        has_socram = true;
                        break;
                case BCMA_CORE_ARM_CR4:
                        cpu_found = true;
                        break;
                case BCMA_CORE_ARM_CA7:
                        cpu_found = true;
                        break;
                default:
                        break;
                }
        }

        if (!cpu_found) {
                brcmf_err("CPU core not detected\n");
                return -ENXIO;
        }
        /* check RAM core presence for ARM CM3 core */
        if (need_socram && !has_socram) {
                brcmf_err("RAM core not provided with ARM CM3 core\n");
                return -ENODEV;
        }
        return 0;
}

static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
{
        return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
}

static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
                                    u16 reg, u32 val)
{
        core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
}

static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
                                       u32 *banksize)
{
        u32 bankinfo;
        u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);

        bankidx |= idx;
        brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
        bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
        *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
        *banksize *= SOCRAM_BANKINFO_SZBASE;
        return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
}

static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
                                      u32 *srsize)
{
        u32 coreinfo;
        uint nb, banksize, lss;
        bool retent;
        int i;

        *ramsize = 0;
        *srsize = 0;

        if (WARN_ON(sr->pub.rev < 4))
                return;

        if (!brcmf_chip_iscoreup(&sr->pub))
                brcmf_chip_resetcore(&sr->pub, 0, 0, 0);

        /* Get info for determining size */
        coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
        nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;

        if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
                banksize = (coreinfo & SRCI_SRBSZ_MASK);
                lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
                if (lss != 0)
                        nb--;
                *ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
                if (lss != 0)
                        *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
        } else {
                nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
                for (i = 0; i < nb; i++) {
                        retent = brcmf_chip_socram_banksize(sr, i, &banksize);
                        *ramsize += banksize;
                        if (retent)
                                *srsize += banksize;
                }
        }

        /* hardcoded save&restore memory sizes */
        switch (sr->chip->pub.chip) {
        case BRCM_CC_4334_CHIP_ID:
                if (sr->chip->pub.chiprev < 2)
                        *srsize = (32 * 1024);
                break;
        case BRCM_CC_43430_CHIP_ID:
                /* assume sr for now as we can not check
                 * firmware sr capability at this point.
                 */
                *srsize = (64 * 1024);
                break;
        default:
                break;
        }
}

/** Return the SYS MEM size */
static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
{
        u32 memsize = 0;
        u32 coreinfo;
        u32 idx;
        u32 nb;
        u32 banksize;

        if (!brcmf_chip_iscoreup(&sysmem->pub))
                brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);

        coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
        nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;

        for (idx = 0; idx < nb; idx++) {
                brcmf_chip_socram_banksize(sysmem, idx, &banksize);
                memsize += banksize;
        }

        return memsize;
}

/** Return the TCM-RAM size of the ARMCR4 core. */
static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
{
        u32 corecap;
        u32 memsize = 0;
        u32 nab;
        u32 nbb;
        u32 totb;
        u32 bxinfo;
        u32 idx;

        corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);

        nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
        nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
        totb = nab + nbb;

        for (idx = 0; idx < totb; idx++) {
                brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
                bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
                memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
        }

        return memsize;
}

static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
{
        switch (ci->pub.chip) {
        case BRCM_CC_4345_CHIP_ID:
                return 0x198000;
        case BRCM_CC_4335_CHIP_ID:
        case BRCM_CC_4339_CHIP_ID:
        case BRCM_CC_4350_CHIP_ID:
        case BRCM_CC_4354_CHIP_ID:
        case BRCM_CC_4356_CHIP_ID:
        case BRCM_CC_43567_CHIP_ID:
        case BRCM_CC_43569_CHIP_ID:
        case BRCM_CC_43570_CHIP_ID:
        case BRCM_CC_4358_CHIP_ID:
        case BRCM_CC_4359_CHIP_ID:
        case BRCM_CC_43602_CHIP_ID:
        case BRCM_CC_4371_CHIP_ID:
                return 0x180000;
        case BRCM_CC_43465_CHIP_ID:
        case BRCM_CC_43525_CHIP_ID:
        case BRCM_CC_4365_CHIP_ID:
        case BRCM_CC_4366_CHIP_ID:
                return 0x200000;
        default:
                brcmf_err("unknown chip: %s\n", ci->pub.name);
                break;
        }
        return 0;
}

static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
{
        struct brcmf_core_priv *mem_core;
        struct brcmf_core *mem;

        mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
        if (mem) {
                mem_core = container_of(mem, struct brcmf_core_priv, pub);
                ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
                ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
                if (!ci->pub.rambase) {
                        brcmf_err("RAM base not provided with ARM CR4 core\n");
                        return -EINVAL;
                }
        } else {
                mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
                if (mem) {
                        mem_core = container_of(mem, struct brcmf_core_priv,
                                                pub);
                        ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
                        ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
                        if (!ci->pub.rambase) {
                                brcmf_err("RAM base not provided with ARM CA7 core\n");
                                return -EINVAL;
                        }
                } else {
                        mem = brcmf_chip_get_core(&ci->pub,
                                                  BCMA_CORE_INTERNAL_MEM);
                        if (!mem) {
                                brcmf_err("No memory cores found\n");
                                return -ENOMEM;
                        }
                        mem_core = container_of(mem, struct brcmf_core_priv,
                                                pub);
                        brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
                                                  &ci->pub.srsize);
                }
        }
        brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
                  ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
                  ci->pub.srsize, ci->pub.srsize);

        if (!ci->pub.ramsize) {
                brcmf_err("RAM size is undetermined\n");
                return -ENOMEM;
        }

        if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
                brcmf_err("RAM size is incorrect\n");
                return -ENOMEM;
        }

        return 0;
}

static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
                                   u8 *type)
{
        u32 val;

        /* read next descriptor */
        val = ci->ops->read32(ci->ctx, *eromaddr);
        *eromaddr += 4;

        if (!type)
                return val;

        /* determine descriptor type */
        *type = (val & DMP_DESC_TYPE_MSK);
        if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
                *type = DMP_DESC_ADDRESS;

        return val;
}

static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
                                      u32 *regbase, u32 *wrapbase)
{
        u8 desc;
        u32 val;
        u8 mpnum = 0;
        u8 stype, sztype, wraptype;

        *regbase = 0;
        *wrapbase = 0;

        val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
        if (desc == DMP_DESC_MASTER_PORT) {
                mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
                wraptype = DMP_SLAVE_TYPE_MWRAP;
        } else if (desc == DMP_DESC_ADDRESS) {
                /* revert erom address */
                *eromaddr -= 4;
                wraptype = DMP_SLAVE_TYPE_SWRAP;
        } else {
                *eromaddr -= 4;
                return -EILSEQ;
        }

        do {
                /* locate address descriptor */
                do {
                        val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
                        /* unexpected table end */
                        if (desc == DMP_DESC_EOT) {
                                *eromaddr -= 4;
                                return -EFAULT;
                        }
                } while (desc != DMP_DESC_ADDRESS &&
                         desc != DMP_DESC_COMPONENT);

                /* stop if we crossed current component border */
                if (desc == DMP_DESC_COMPONENT) {
                        *eromaddr -= 4;
                        return 0;
                }

                /* skip upper 32-bit address descriptor */
                if (val & DMP_DESC_ADDRSIZE_GT32)
                        brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);

                sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;

                /* next size descriptor can be skipped */
                if (sztype == DMP_SLAVE_SIZE_DESC) {
                        val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
                        /* skip upper size descriptor if present */
                        if (val & DMP_DESC_ADDRSIZE_GT32)
                                brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
                }

                /* only look for 4K register regions */
                if (sztype != DMP_SLAVE_SIZE_4K)
                        continue;

                stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;

                /* only regular slave and wrapper */
                if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
                        *regbase = val & DMP_SLAVE_ADDR_BASE;
                if (*wrapbase == 0 && stype == wraptype)
                        *wrapbase = val & DMP_SLAVE_ADDR_BASE;
        } while (*regbase == 0 || *wrapbase == 0);

        return 0;
}

static
int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
{
        struct brcmf_core *core;
        u32 eromaddr;
        u8 desc_type = 0;
        u32 val;
        u16 id;
        u8 nmp, nsp, nmw, nsw, rev;
        u32 base, wrap;
        int err;

        eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));

        while (desc_type != DMP_DESC_EOT) {
                val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
                if (!(val & DMP_DESC_VALID))
                        continue;

                if (desc_type == DMP_DESC_EMPTY)
                        continue;

                /* need a component descriptor */
                if (desc_type != DMP_DESC_COMPONENT)
                        continue;

                id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;

                /* next descriptor must be component as well */
                val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
                if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
                        return -EFAULT;

                /* only look at cores with master port(s) */
                nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
                nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
                nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
                nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
                rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;

                /* need core with ports */
                if (nmw + nsw == 0 &&
                    id != BCMA_CORE_PMU)
                        continue;

                /* try to obtain register address info */
                err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
                if (err)
                        continue;

                /* finally a core to be added */
                core = brcmf_chip_add_core(ci, id, base, wrap);
                if (IS_ERR(core))
                        return PTR_ERR(core);

                core->rev = rev;
        }

        return 0;
}

static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
{
        struct brcmf_core *core;
        u32 regdata;
        u32 socitype;
        int ret;

        /* Get CC core rev
         * Chipid is assume to be at offset 0 from SI_ENUM_BASE
         * For different chiptypes or old sdio hosts w/o chipcommon,
         * other ways of recognition should be added here.
         */
        regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
        ci->pub.chip = regdata & CID_ID_MASK;
        ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
        socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;

        brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
        brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
                  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
                  ci->pub.chiprev);

        if (socitype == SOCI_SB) {
                if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
                        brcmf_err("SB chip is not supported\n");
                        return -ENODEV;
                }
                ci->iscoreup = brcmf_chip_sb_iscoreup;
                ci->coredisable = brcmf_chip_sb_coredisable;
                ci->resetcore = brcmf_chip_sb_resetcore;

                core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
                                           SI_ENUM_BASE, 0);
                brcmf_chip_sb_corerev(ci, core);
                core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
                                           BCM4329_CORE_BUS_BASE, 0);
                brcmf_chip_sb_corerev(ci, core);
                core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
                                           BCM4329_CORE_SOCRAM_BASE, 0);
                brcmf_chip_sb_corerev(ci, core);
                core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
                                           BCM4329_CORE_ARM_BASE, 0);
                brcmf_chip_sb_corerev(ci, core);

                core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
                brcmf_chip_sb_corerev(ci, core);
        } else if (socitype == SOCI_AI) {
                ci->iscoreup = brcmf_chip_ai_iscoreup;
                ci->coredisable = brcmf_chip_ai_coredisable;
                ci->resetcore = brcmf_chip_ai_resetcore;

                brcmf_chip_dmp_erom_scan(ci);
        } else {
                brcmf_err("chip backplane type %u is not supported\n",
                          socitype);
                return -ENODEV;
        }

        ret = brcmf_chip_cores_check(ci);
        if (ret)
                return ret;

        /* assure chip is passive for core access */
        brcmf_chip_set_passive(&ci->pub);

        /* Call bus specific reset function now. Cores have been determined
         * but further access may require a chip specific reset at this point.
         */
        if (ci->ops->reset) {
                ci->ops->reset(ci->ctx, &ci->pub);
                brcmf_chip_set_passive(&ci->pub);
        }

        return brcmf_chip_get_raminfo(ci);
}

static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
{
        struct brcmf_core *core;
        struct brcmf_core_priv *cpu;
        u32 val;


        core = brcmf_chip_get_core(&chip->pub, id);
        if (!core)
                return;

        switch (id) {
        case BCMA_CORE_ARM_CM3:
                brcmf_chip_coredisable(core, 0, 0);
                break;
        case BCMA_CORE_ARM_CR4:
        case BCMA_CORE_ARM_CA7:
                cpu = container_of(core, struct brcmf_core_priv, pub);

                /* clear all IOCTL bits except HALT bit */
                val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
                val &= ARMCR4_BCMA_IOCTL_CPUHALT;
                brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
                                     ARMCR4_BCMA_IOCTL_CPUHALT);
                break;
        default:
                brcmf_err("unknown id: %u\n", id);
                break;
        }
}

static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
{
        struct brcmf_chip *pub;
        struct brcmf_core_priv *cc;
        struct brcmf_core *pmu;
        u32 base;
        u32 val;
        int ret = 0;

        pub = &chip->pub;
        cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
        base = cc->pub.base;

        /* get chipcommon capabilites */
        pub->cc_caps = chip->ops->read32(chip->ctx,
                                         CORE_CC_REG(base, capabilities));
        pub->cc_caps_ext = chip->ops->read32(chip->ctx,
                                             CORE_CC_REG(base,
                                                         capabilities_ext));

        /* get pmu caps & rev */
        pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
        if (pub->cc_caps & CC_CAP_PMU) {
                val = chip->ops->read32(chip->ctx,
                                        CORE_CC_REG(pmu->base, pmucapabilities));
                pub->pmurev = val & PCAP_REV_MASK;
                pub->pmucaps = val;
        }

        brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
                  cc->pub.rev, pub->pmurev, pub->pmucaps);

        /* execute bus core specific setup */
        if (chip->ops->setup)
                ret = chip->ops->setup(chip->ctx, pub);

        return ret;
}

struct brcmf_chip *brcmf_chip_attach(void *ctx,
                                     const struct brcmf_buscore_ops *ops)
{
        struct brcmf_chip_priv *chip;
        int err = 0;

        if (WARN_ON(!ops->read32))
                err = -EINVAL;
        if (WARN_ON(!ops->write32))
                err = -EINVAL;
        if (WARN_ON(!ops->prepare))
                err = -EINVAL;
        if (WARN_ON(!ops->activate))
                err = -EINVAL;
        if (err < 0)
                return ERR_PTR(-EINVAL);

        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
        if (!chip)
                return ERR_PTR(-ENOMEM);

        INIT_LIST_HEAD(&chip->cores);
        chip->num_cores = 0;
        chip->ops = ops;
        chip->ctx = ctx;

        err = ops->prepare(ctx);
        if (err < 0)
                goto fail;

        err = brcmf_chip_recognition(chip);
        if (err < 0)
                goto fail;

        err = brcmf_chip_setup(chip);
        if (err < 0)
                goto fail;

        return &chip->pub;

fail:
        brcmf_chip_detach(&chip->pub);
        return ERR_PTR(err);
}

void brcmf_chip_detach(struct brcmf_chip *pub)
{
        struct brcmf_chip_priv *chip;
        struct brcmf_core_priv *core;
        struct brcmf_core_priv *tmp;

        chip = container_of(pub, struct brcmf_chip_priv, pub);
        list_for_each_entry_safe(core, tmp, &chip->cores, list) {
                list_del(&core->list);
                kfree(core);
        }
        kfree(chip);
}

struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
{
        struct brcmf_chip_priv *chip;
        struct brcmf_core_priv *core;

        chip = container_of(pub, struct brcmf_chip_priv, pub);
        list_for_each_entry(core, &chip->cores, list)
                if (core->pub.id == coreid)
                        return &core->pub;

        return NULL;
}

struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
{
        struct brcmf_chip_priv *chip;
        struct brcmf_core_priv *cc;

        chip = container_of(pub, struct brcmf_chip_priv, pub);
        cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
        if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
                return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
        return &cc->pub;
}

struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
{
        struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
        struct brcmf_core *pmu;

        /* See if there is separated PMU core available */
        if (cc->rev >= 35 &&
            pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
                pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
                if (pmu)
                        return pmu;
        }

        /* Fallback to ChipCommon core for older hardware */
        return cc;
}

bool brcmf_chip_iscoreup(struct brcmf_core *pub)
{
        struct brcmf_core_priv *core;

        core = container_of(pub, struct brcmf_core_priv, pub);
        return core->chip->iscoreup(core);
}

void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
{
        struct brcmf_core_priv *core;

        core = container_of(pub, struct brcmf_core_priv, pub);
        core->chip->coredisable(core, prereset, reset);
}

void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
                          u32 postreset)
{
        struct brcmf_core_priv *core;

        core = container_of(pub, struct brcmf_core_priv, pub);
        core->chip->resetcore(core, prereset, reset, postreset);
}

static void
brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
{
        struct brcmf_core *core;
        struct brcmf_core_priv *sr;

        brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
        brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
                                   D11_BCMA_IOCTL_PHYCLOCKEN,
                             D11_BCMA_IOCTL_PHYCLOCKEN,
                             D11_BCMA_IOCTL_PHYCLOCKEN);
        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
        brcmf_chip_resetcore(core, 0, 0, 0);

        /* disable bank #3 remap for this device */
        if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
                sr = container_of(core, struct brcmf_core_priv, pub);
                brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
                brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
        }
}

static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
{
        struct brcmf_core *core;

        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
        if (!brcmf_chip_iscoreup(core)) {
                brcmf_err("SOCRAM core is down after reset?\n");
                return false;
        }

        chip->ops->activate(chip->ctx, &chip->pub, 0);

        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
        brcmf_chip_resetcore(core, 0, 0, 0);

        return true;
}

static inline void
brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
{
        struct brcmf_core *core;

        brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);

        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
        brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
                                   D11_BCMA_IOCTL_PHYCLOCKEN,
                             D11_BCMA_IOCTL_PHYCLOCKEN,
                             D11_BCMA_IOCTL_PHYCLOCKEN);
}

static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
{
        struct brcmf_core *core;

        chip->ops->activate(chip->ctx, &chip->pub, rstvec);

        /* restore ARM */
        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
        brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);

        return true;
}

static inline void
brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
{
        struct brcmf_core *core;

        brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);

        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
        brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
                                   D11_BCMA_IOCTL_PHYCLOCKEN,
                             D11_BCMA_IOCTL_PHYCLOCKEN,
                             D11_BCMA_IOCTL_PHYCLOCKEN);
}

static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
{
        struct brcmf_core *core;

        chip->ops->activate(chip->ctx, &chip->pub, rstvec);

        /* restore ARM */
        core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
        brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);

        return true;
}

void brcmf_chip_set_passive(struct brcmf_chip *pub)
{
        struct brcmf_chip_priv *chip;
        struct brcmf_core *arm;

        brcmf_dbg(TRACE, "Enter\n");

        chip = container_of(pub, struct brcmf_chip_priv, pub);
        arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
        if (arm) {
                brcmf_chip_cr4_set_passive(chip);
                return;
        }
        arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
        if (arm) {
                brcmf_chip_ca7_set_passive(chip);
                return;
        }
        arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
        if (arm) {
                brcmf_chip_cm3_set_passive(chip);
                return;
        }
}

bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
{
        struct brcmf_chip_priv *chip;
        struct brcmf_core *arm;

        brcmf_dbg(TRACE, "Enter\n");

        chip = container_of(pub, struct brcmf_chip_priv, pub);
        arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
        if (arm)
                return brcmf_chip_cr4_set_active(chip, rstvec);
        arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
        if (arm)
                return brcmf_chip_ca7_set_active(chip, rstvec);
        arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
        if (arm)
                return brcmf_chip_cm3_set_active(chip);

        return false;
}

bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
{
        u32 base, addr, reg, pmu_cc3_mask = ~0;
        struct brcmf_chip_priv *chip;
        struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);

        brcmf_dbg(TRACE, "Enter\n");

        /* old chips with PMU version less than 17 don't support save restore */
        if (pub->pmurev < 17)
                return false;

        base = brcmf_chip_get_chipcommon(pub)->base;
        chip = container_of(pub, struct brcmf_chip_priv, pub);

        switch (pub->chip) {
        case BRCM_CC_4354_CHIP_ID:
        case BRCM_CC_4356_CHIP_ID:
                /* explicitly check SR engine enable bit */
                pmu_cc3_mask = BIT(2);
                /* fall-through */
        case BRCM_CC_43241_CHIP_ID:
        case BRCM_CC_4335_CHIP_ID:
        case BRCM_CC_4339_CHIP_ID:
                /* read PMU chipcontrol register 3 */
                addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
                chip->ops->write32(chip->ctx, addr, 3);
                addr = CORE_CC_REG(pmu->base, chipcontrol_data);
                reg = chip->ops->read32(chip->ctx, addr);
                return (reg & pmu_cc3_mask) != 0;
        case BRCM_CC_43430_CHIP_ID:
                addr = CORE_CC_REG(base, sr_control1);
                reg = chip->ops->read32(chip->ctx, addr);
                return reg != 0;
        default:
                addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
                reg = chip->ops->read32(chip->ctx, addr);
                if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
                        return false;

                addr = CORE_CC_REG(pmu->base, retention_ctl);
                reg = chip->ops->read32(chip->ctx, addr);
                return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
                               PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
        }
}