OpenWrt – Rev 4

Subversion Repositories:
Rev:
/*   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; version 2 of the License
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
 *   Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
 *   Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/netfilter.h>
#include <net/netfilter/nf_flow_table.h>

#include <asm/mach-ralink/ralink_regs.h>

#include "mtk_eth_soc.h"
#include "mdio.h"
#include "ethtool.h"

#define MAX_RX_LENGTH           1536
#define FE_RX_ETH_HLEN          (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
#define FE_RX_HLEN              (NET_SKB_PAD + FE_RX_ETH_HLEN + NET_IP_ALIGN)
#define DMA_DUMMY_DESC          0xffffffff
#define FE_DEFAULT_MSG_ENABLE \
                (NETIF_MSG_DRV | \
                NETIF_MSG_PROBE | \
                NETIF_MSG_LINK | \
                NETIF_MSG_TIMER | \
                NETIF_MSG_IFDOWN | \
                NETIF_MSG_IFUP | \
                NETIF_MSG_RX_ERR | \
                NETIF_MSG_TX_ERR)

#define TX_DMA_DESP2_DEF        (TX_DMA_LS0 | TX_DMA_DONE)
#define TX_DMA_DESP4_DEF        (TX_DMA_QN(3) | TX_DMA_PN(1))
#define NEXT_TX_DESP_IDX(X)     (((X) + 1) & (ring->tx_ring_size - 1))
#define NEXT_RX_DESP_IDX(X)     (((X) + 1) & (ring->rx_ring_size - 1))

#define SYSC_REG_RSTCTRL        0x34

static int fe_msg_level = -1;
module_param_named(msg_level, fe_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");

static const u16 fe_reg_table_default[FE_REG_COUNT] = {
        [FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
        [FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
        [FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
        [FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
        [FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
        [FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
        [FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
        [FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
        [FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
        [FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
        [FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
        [FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
        [FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
        [FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
        [FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
        [FE_REG_FE_RST_GL] = FE_FE_RST_GL,
};

static const u16 *fe_reg_table = fe_reg_table_default;

struct fe_work_t {
        int bitnr;
        void (*action)(struct fe_priv *);
};

static void __iomem *fe_base;

void fe_w32(u32 val, unsigned reg)
{
        __raw_writel(val, fe_base + reg);
}

u32 fe_r32(unsigned reg)
{
        return __raw_readl(fe_base + reg);
}

void fe_reg_w32(u32 val, enum fe_reg reg)
{
        fe_w32(val, fe_reg_table[reg]);
}

u32 fe_reg_r32(enum fe_reg reg)
{
        return fe_r32(fe_reg_table[reg]);
}

void fe_m32(struct fe_priv *eth, u32 clear, u32 set, unsigned reg)
{
        u32 val;

        spin_lock(&eth->page_lock);
        val = __raw_readl(fe_base + reg);
        val &= ~clear;
        val |= set;
        __raw_writel(val, fe_base + reg);
        spin_unlock(&eth->page_lock);
}

void fe_reset(u32 reset_bits)
{
        u32 t;

        t = rt_sysc_r32(SYSC_REG_RSTCTRL);
        t |= reset_bits;
        rt_sysc_w32(t, SYSC_REG_RSTCTRL);
        usleep_range(10, 20);

        t &= ~reset_bits;
        rt_sysc_w32(t, SYSC_REG_RSTCTRL);
        usleep_range(10, 20);
}

static inline void fe_int_disable(u32 mask)
{
        fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
                   FE_REG_FE_INT_ENABLE);
        /* flush write */
        fe_reg_r32(FE_REG_FE_INT_ENABLE);
}

static inline void fe_int_enable(u32 mask)
{
        fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
                   FE_REG_FE_INT_ENABLE);
        /* flush write */
        fe_reg_r32(FE_REG_FE_INT_ENABLE);
}

static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
{
        unsigned long flags;

        spin_lock_irqsave(&priv->page_lock, flags);
        fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
        fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
               FE_GDMA1_MAC_ADRL);
        spin_unlock_irqrestore(&priv->page_lock, flags);
}

static int fe_set_mac_address(struct net_device *dev, void *p)
{
        int ret = eth_mac_addr(dev, p);

        if (!ret) {
                struct fe_priv *priv = netdev_priv(dev);

                if (priv->soc->set_mac)
                        priv->soc->set_mac(priv, dev->dev_addr);
                else
                        fe_hw_set_macaddr(priv, p);
        }

        return ret;
}

static inline int fe_max_frag_size(int mtu)
{
        /* make sure buf_size will be at least MAX_RX_LENGTH */
        if (mtu + FE_RX_ETH_HLEN < MAX_RX_LENGTH)
                mtu = MAX_RX_LENGTH - FE_RX_ETH_HLEN;

        return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}

static inline int fe_max_buf_size(int frag_size)
{
        int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
                       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

        BUG_ON(buf_size < MAX_RX_LENGTH);
        return buf_size;
}

static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
{
        rxd->rxd1 = dma_rxd->rxd1;
        rxd->rxd2 = dma_rxd->rxd2;
        rxd->rxd3 = dma_rxd->rxd3;
        rxd->rxd4 = dma_rxd->rxd4;
}

static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
{
        dma_txd->txd1 = txd->txd1;
        dma_txd->txd3 = txd->txd3;
        dma_txd->txd4 = txd->txd4;
        /* clean dma done flag last */
        dma_txd->txd2 = txd->txd2;
}

static void fe_clean_rx(struct fe_priv *priv)
{
        struct fe_rx_ring *ring = &priv->rx_ring;
        struct page *page;
        int i;

        if (ring->rx_data) {
                for (i = 0; i < ring->rx_ring_size; i++)
                        if (ring->rx_data[i]) {
                                if (ring->rx_dma && ring->rx_dma[i].rxd1)
                                        dma_unmap_single(&priv->netdev->dev,
                                                         ring->rx_dma[i].rxd1,
                                                         ring->rx_buf_size,
                                                         DMA_FROM_DEVICE);
                                skb_free_frag(ring->rx_data[i]);
                        }

                kfree(ring->rx_data);
                ring->rx_data = NULL;
        }

        if (ring->rx_dma) {
                dma_free_coherent(&priv->netdev->dev,
                                  ring->rx_ring_size * sizeof(*ring->rx_dma),
                                  ring->rx_dma,
                                  ring->rx_phys);
                ring->rx_dma = NULL;
        }

        if (!ring->frag_cache.va)
            return;

        page = virt_to_page(ring->frag_cache.va);
        __page_frag_cache_drain(page, ring->frag_cache.pagecnt_bias);
        memset(&ring->frag_cache, 0, sizeof(ring->frag_cache));
}

static int fe_alloc_rx(struct fe_priv *priv)
{
        struct net_device *netdev = priv->netdev;
        struct fe_rx_ring *ring = &priv->rx_ring;
        int i, pad;

        ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
                        GFP_KERNEL);
        if (!ring->rx_data)
                goto no_rx_mem;

        for (i = 0; i < ring->rx_ring_size; i++) {
                ring->rx_data[i] = page_frag_alloc(&ring->frag_cache,
                                                   ring->frag_size,
                                                   GFP_KERNEL);
                if (!ring->rx_data[i])
                        goto no_rx_mem;
        }

        ring->rx_dma = dma_alloc_coherent(&netdev->dev,
                        ring->rx_ring_size * sizeof(*ring->rx_dma),
                        &ring->rx_phys,
                        GFP_ATOMIC | __GFP_ZERO);
        if (!ring->rx_dma)
                goto no_rx_mem;

        if (priv->flags & FE_FLAG_RX_2B_OFFSET)
                pad = 0;
        else
                pad = NET_IP_ALIGN;
        for (i = 0; i < ring->rx_ring_size; i++) {
                dma_addr_t dma_addr = dma_map_single(&netdev->dev,
                                ring->rx_data[i] + NET_SKB_PAD + pad,
                                ring->rx_buf_size,
                                DMA_FROM_DEVICE);
                if (unlikely(dma_mapping_error(&netdev->dev, dma_addr)))
                        goto no_rx_mem;
                ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;

                if (priv->flags & FE_FLAG_RX_SG_DMA)
                        ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
                else
                        ring->rx_dma[i].rxd2 = RX_DMA_LSO;
        }
        ring->rx_calc_idx = ring->rx_ring_size - 1;
        /* make sure that all changes to the dma ring are flushed before we
         * continue
         */
        wmb();

        fe_reg_w32(ring->rx_phys, FE_REG_RX_BASE_PTR0);
        fe_reg_w32(ring->rx_ring_size, FE_REG_RX_MAX_CNT0);
        fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
        fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);

        return 0;

no_rx_mem:
        return -ENOMEM;
}

static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
{
        if (tx_buf->flags & FE_TX_FLAGS_SINGLE0) {
                dma_unmap_single(dev,
                                 dma_unmap_addr(tx_buf, dma_addr0),
                                 dma_unmap_len(tx_buf, dma_len0),
                                 DMA_TO_DEVICE);
        } else if (tx_buf->flags & FE_TX_FLAGS_PAGE0) {
                dma_unmap_page(dev,
                               dma_unmap_addr(tx_buf, dma_addr0),
                               dma_unmap_len(tx_buf, dma_len0),
                               DMA_TO_DEVICE);
        }
        if (tx_buf->flags & FE_TX_FLAGS_PAGE1)
                dma_unmap_page(dev,
                               dma_unmap_addr(tx_buf, dma_addr1),
                               dma_unmap_len(tx_buf, dma_len1),
                               DMA_TO_DEVICE);

        tx_buf->flags = 0;
        if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
                dev_kfree_skb_any(tx_buf->skb);
        tx_buf->skb = NULL;
}

static void fe_clean_tx(struct fe_priv *priv)
{
        int i;
        struct device *dev = &priv->netdev->dev;
        struct fe_tx_ring *ring = &priv->tx_ring;

        if (ring->tx_buf) {
                for (i = 0; i < ring->tx_ring_size; i++)
                        fe_txd_unmap(dev, &ring->tx_buf[i]);
                kfree(ring->tx_buf);
                ring->tx_buf = NULL;
        }

        if (ring->tx_dma) {
                dma_free_coherent(dev,
                                  ring->tx_ring_size * sizeof(*ring->tx_dma),
                                  ring->tx_dma,
                                  ring->tx_phys);
                ring->tx_dma = NULL;
        }

        netdev_reset_queue(priv->netdev);
}

static int fe_alloc_tx(struct fe_priv *priv)
{
        int i;
        struct fe_tx_ring *ring = &priv->tx_ring;

        ring->tx_free_idx = 0;
        ring->tx_next_idx = 0;
        ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
                              MAX_SKB_FRAGS);

        ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
                        GFP_KERNEL);
        if (!ring->tx_buf)
                goto no_tx_mem;

        ring->tx_dma = dma_alloc_coherent(&priv->netdev->dev,
                        ring->tx_ring_size * sizeof(*ring->tx_dma),
                        &ring->tx_phys,
                        GFP_ATOMIC | __GFP_ZERO);
        if (!ring->tx_dma)
                goto no_tx_mem;

        for (i = 0; i < ring->tx_ring_size; i++) {
                if (priv->soc->tx_dma)
                        priv->soc->tx_dma(&ring->tx_dma[i]);
                ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
        }
        /* make sure that all changes to the dma ring are flushed before we
         * continue
         */
        wmb();

        fe_reg_w32(ring->tx_phys, FE_REG_TX_BASE_PTR0);
        fe_reg_w32(ring->tx_ring_size, FE_REG_TX_MAX_CNT0);
        fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
        fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);

        return 0;

no_tx_mem:
        return -ENOMEM;
}

static int fe_init_dma(struct fe_priv *priv)
{
        int err;

        err = fe_alloc_tx(priv);
        if (err)
                return err;

        err = fe_alloc_rx(priv);
        if (err)
                return err;

        return 0;
}

static void fe_free_dma(struct fe_priv *priv)
{
        fe_clean_tx(priv);
        fe_clean_rx(priv);
}

void fe_stats_update(struct fe_priv *priv)
{
        struct fe_hw_stats *hwstats = priv->hw_stats;
        unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
        u64 stats;

        u64_stats_update_begin(&hwstats->syncp);

        if (IS_ENABLED(CONFIG_SOC_MT7621)) {
                hwstats->rx_bytes                       += fe_r32(base);
                stats                                   =  fe_r32(base + 0x04);
                if (stats)
                        hwstats->rx_bytes               += (stats << 32);
                hwstats->rx_packets                     += fe_r32(base + 0x08);
                hwstats->rx_overflow                    += fe_r32(base + 0x10);
                hwstats->rx_fcs_errors                  += fe_r32(base + 0x14);
                hwstats->rx_short_errors                += fe_r32(base + 0x18);
                hwstats->rx_long_errors                 += fe_r32(base + 0x1c);
                hwstats->rx_checksum_errors             += fe_r32(base + 0x20);
                hwstats->rx_flow_control_packets        += fe_r32(base + 0x24);
                hwstats->tx_skip                        += fe_r32(base + 0x28);
                hwstats->tx_collisions                  += fe_r32(base + 0x2c);
                hwstats->tx_bytes                       += fe_r32(base + 0x30);
                stats                                   =  fe_r32(base + 0x34);
                if (stats)
                        hwstats->tx_bytes               += (stats << 32);
                hwstats->tx_packets                     += fe_r32(base + 0x38);
        } else {
                hwstats->tx_bytes                       += fe_r32(base);
                hwstats->tx_packets                     += fe_r32(base + 0x04);
                hwstats->tx_skip                        += fe_r32(base + 0x08);
                hwstats->tx_collisions                  += fe_r32(base + 0x0c);
                hwstats->rx_bytes                       += fe_r32(base + 0x20);
                hwstats->rx_packets                     += fe_r32(base + 0x24);
                hwstats->rx_overflow                    += fe_r32(base + 0x28);
                hwstats->rx_fcs_errors                  += fe_r32(base + 0x2c);
                hwstats->rx_short_errors                += fe_r32(base + 0x30);
                hwstats->rx_long_errors                 += fe_r32(base + 0x34);
                hwstats->rx_checksum_errors             += fe_r32(base + 0x38);
                hwstats->rx_flow_control_packets        += fe_r32(base + 0x3c);
        }

        u64_stats_update_end(&hwstats->syncp);
}

static void fe_get_stats64(struct net_device *dev,
                                struct rtnl_link_stats64 *storage)
{
        struct fe_priv *priv = netdev_priv(dev);
        struct fe_hw_stats *hwstats = priv->hw_stats;
        unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
        unsigned int start;

        if (!base) {
                netdev_stats_to_stats64(storage, &dev->stats);
                return;
        }

        if (netif_running(dev) && netif_device_present(dev)) {
                if (spin_trylock_bh(&hwstats->stats_lock)) {
                        fe_stats_update(priv);
                        spin_unlock_bh(&hwstats->stats_lock);
                }
        }

        do {
                start = u64_stats_fetch_begin_irq(&hwstats->syncp);
                storage->rx_packets = hwstats->rx_packets;
                storage->tx_packets = hwstats->tx_packets;
                storage->rx_bytes = hwstats->rx_bytes;
                storage->tx_bytes = hwstats->tx_bytes;
                storage->collisions = hwstats->tx_collisions;
                storage->rx_length_errors = hwstats->rx_short_errors +
                        hwstats->rx_long_errors;
                storage->rx_over_errors = hwstats->rx_overflow;
                storage->rx_crc_errors = hwstats->rx_fcs_errors;
                storage->rx_errors = hwstats->rx_checksum_errors;
                storage->tx_aborted_errors = hwstats->tx_skip;
        } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));

        storage->tx_errors = priv->netdev->stats.tx_errors;
        storage->rx_dropped = priv->netdev->stats.rx_dropped;
        storage->tx_dropped = priv->netdev->stats.tx_dropped;
}

static int fe_vlan_rx_add_vid(struct net_device *dev,
                              __be16 proto, u16 vid)
{
        struct fe_priv *priv = netdev_priv(dev);
        u32 idx = (vid & 0xf);
        u32 vlan_cfg;

        if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
              (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
                return 0;

        if (test_bit(idx, &priv->vlan_map)) {
                netdev_warn(dev, "disable tx vlan offload\n");
                dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
                netdev_update_features(dev);
        } else {
                vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
                                ((idx >> 1) << 2));
                if (idx & 0x1) {
                        vlan_cfg &= 0xffff;
                        vlan_cfg |= (vid << 16);
                } else {
                        vlan_cfg &= 0xffff0000;
                        vlan_cfg |= vid;
                }
                fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
                                ((idx >> 1) << 2));
                set_bit(idx, &priv->vlan_map);
        }

        return 0;
}

static int fe_vlan_rx_kill_vid(struct net_device *dev,
                               __be16 proto, u16 vid)
{
        struct fe_priv *priv = netdev_priv(dev);
        u32 idx = (vid & 0xf);

        if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
              (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
                return 0;

        clear_bit(idx, &priv->vlan_map);

        return 0;
}

static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
{
        barrier();
        return (u32)(ring->tx_ring_size -
                        ((ring->tx_next_idx - ring->tx_free_idx) &
                         (ring->tx_ring_size - 1)));
}

static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
                         int tx_num, struct fe_tx_ring *ring)
{
        struct fe_priv *priv = netdev_priv(dev);
        struct skb_frag_struct *frag;
        struct fe_tx_dma txd, *ptxd;
        struct fe_tx_buf *tx_buf;
        dma_addr_t mapped_addr;
        unsigned int nr_frags;
        u32 def_txd4;
        int i, j, k, frag_size, frag_map_size, offset;

        tx_buf = &ring->tx_buf[ring->tx_next_idx];
        memset(tx_buf, 0, sizeof(*tx_buf));
        memset(&txd, 0, sizeof(txd));
        nr_frags = skb_shinfo(skb)->nr_frags;

        /* init tx descriptor */
        if (priv->soc->tx_dma)
                priv->soc->tx_dma(&txd);
        else
                txd.txd4 = TX_DMA_DESP4_DEF;
        def_txd4 = txd.txd4;

        /* TX Checksum offload */
        if (skb->ip_summed == CHECKSUM_PARTIAL)
                txd.txd4 |= TX_DMA_CHKSUM;

        /* VLAN header offload */
        if (skb_vlan_tag_present(skb)) {
                u16 tag = skb_vlan_tag_get(skb);

                if (IS_ENABLED(CONFIG_SOC_MT7621))
                        txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | tag;
                else
                        txd.txd4 |= TX_DMA_INS_VLAN |
                                ((tag >> VLAN_PRIO_SHIFT) << 4) |
                                (tag & 0xF);
        }

        /* TSO: fill MSS info in tcp checksum field */
        if (skb_is_gso(skb)) {
                if (skb_cow_head(skb, 0)) {
                        netif_warn(priv, tx_err, dev,
                                   "GSO expand head fail.\n");
                        goto err_out;
                }
                if (skb_shinfo(skb)->gso_type &
                                (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
                        txd.txd4 |= TX_DMA_TSO;
                        tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
                }
        }

        mapped_addr = dma_map_single(&dev->dev, skb->data,
                                     skb_headlen(skb), DMA_TO_DEVICE);
        if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
                goto err_out;
        txd.txd1 = mapped_addr;
        txd.txd2 = TX_DMA_PLEN0(skb_headlen(skb));

        tx_buf->flags |= FE_TX_FLAGS_SINGLE0;
        dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
        dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));

        /* TX SG offload */
        j = ring->tx_next_idx;
        k = 0;
        for (i = 0; i < nr_frags; i++) {
                offset = 0;
                frag = &skb_shinfo(skb)->frags[i];
                frag_size = skb_frag_size(frag);

                while (frag_size > 0) {
                        frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
                        mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
                                                       frag_map_size,
                                                       DMA_TO_DEVICE);
                        if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
                                goto err_dma;

                        if (k & 0x1) {
                                j = NEXT_TX_DESP_IDX(j);
                                txd.txd1 = mapped_addr;
                                txd.txd2 = TX_DMA_PLEN0(frag_map_size);
                                txd.txd4 = def_txd4;

                                tx_buf = &ring->tx_buf[j];
                                memset(tx_buf, 0, sizeof(*tx_buf));

                                tx_buf->flags |= FE_TX_FLAGS_PAGE0;
                                dma_unmap_addr_set(tx_buf, dma_addr0,
                                                   mapped_addr);
                                dma_unmap_len_set(tx_buf, dma_len0,
                                                  frag_map_size);
                        } else {
                                txd.txd3 = mapped_addr;
                                txd.txd2 |= TX_DMA_PLEN1(frag_map_size);

                                tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
                                tx_buf->flags |= FE_TX_FLAGS_PAGE1;
                                dma_unmap_addr_set(tx_buf, dma_addr1,
                                                   mapped_addr);
                                dma_unmap_len_set(tx_buf, dma_len1,
                                                  frag_map_size);

                                if (!((i == (nr_frags - 1)) &&
                                      (frag_map_size == frag_size))) {
                                        fe_set_txd(&txd, &ring->tx_dma[j]);
                                        memset(&txd, 0, sizeof(txd));
                                }
                        }
                        frag_size -= frag_map_size;
                        offset += frag_map_size;
                        k++;
                }
        }

        /* set last segment */
        if (k & 0x1)
                txd.txd2 |= TX_DMA_LS1;
        else
                txd.txd2 |= TX_DMA_LS0;
        fe_set_txd(&txd, &ring->tx_dma[j]);

        /* store skb to cleanup */
        tx_buf->skb = skb;

        netdev_sent_queue(dev, skb->len);
        skb_tx_timestamp(skb);

        ring->tx_next_idx = NEXT_TX_DESP_IDX(j);
        /* make sure that all changes to the dma ring are flushed before we
         * continue
         */
        wmb();
        if (unlikely(fe_empty_txd(ring) <= ring->tx_thresh)) {
                netif_stop_queue(dev);
                smp_mb();
                if (unlikely(fe_empty_txd(ring) > ring->tx_thresh))
                        netif_wake_queue(dev);
        }

        if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
                fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);

        return 0;

err_dma:
        j = ring->tx_next_idx;
        for (i = 0; i < tx_num; i++) {
                ptxd = &ring->tx_dma[j];
                tx_buf = &ring->tx_buf[j];

                /* unmap dma */
                fe_txd_unmap(&dev->dev, tx_buf);

                ptxd->txd2 = TX_DMA_DESP2_DEF;
                j = NEXT_TX_DESP_IDX(j);
        }
        /* make sure that all changes to the dma ring are flushed before we
         * continue
         */
        wmb();

err_out:
        return -1;
}

static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
{
        unsigned int len;
        int ret;

        ret = 0;
        if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
                if ((priv->flags & FE_FLAG_PADDING_64B) &&
                    !(priv->flags & FE_FLAG_PADDING_BUG))
                        return ret;

                if (skb_vlan_tag_present(skb))
                        len = ETH_ZLEN;
                else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
                        len = VLAN_ETH_ZLEN;
                else if (!(priv->flags & FE_FLAG_PADDING_64B))
                        len = ETH_ZLEN;
                else
                        return ret;

                if (skb->len < len) {
                        ret = skb_pad(skb, len - skb->len);
                        if (ret < 0)
                                return ret;
                        skb->len = len;
                        skb_set_tail_pointer(skb, len);
                }
        }

        return ret;
}

static inline int fe_cal_txd_req(struct sk_buff *skb)
{
        int i, nfrags;
        struct skb_frag_struct *frag;

        nfrags = 1;
        if (skb_is_gso(skb)) {
                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
                        frag = &skb_shinfo(skb)->frags[i];
                        nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
                }
        } else {
                nfrags += skb_shinfo(skb)->nr_frags;
        }

        return DIV_ROUND_UP(nfrags, 2);
}

static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        struct fe_tx_ring *ring = &priv->tx_ring;
        struct net_device_stats *stats = &dev->stats;
        int tx_num;
        int len = skb->len;

        if (fe_skb_padto(skb, priv)) {
                netif_warn(priv, tx_err, dev, "tx padding failed!\n");
                return NETDEV_TX_OK;
        }

        tx_num = fe_cal_txd_req(skb);
        if (unlikely(fe_empty_txd(ring) <= tx_num)) {
                netif_stop_queue(dev);
                netif_err(priv, tx_queued, dev,
                          "Tx Ring full when queue awake!\n");
                return NETDEV_TX_BUSY;
        }

        if (fe_tx_map_dma(skb, dev, tx_num, ring) < 0) {
                stats->tx_dropped++;
        } else {
                stats->tx_packets++;
                stats->tx_bytes += len;
        }

        return NETDEV_TX_OK;
}

static int fe_poll_rx(struct napi_struct *napi, int budget,
                      struct fe_priv *priv, u32 rx_intr)
{
        struct net_device *netdev = priv->netdev;
        struct net_device_stats *stats = &netdev->stats;
        struct fe_soc_data *soc = priv->soc;
        struct fe_rx_ring *ring = &priv->rx_ring;
        int idx = ring->rx_calc_idx;
        u32 checksum_bit;
        struct sk_buff *skb;
        u8 *data, *new_data;
        struct fe_rx_dma *rxd, trxd;
        int done = 0, pad;

        if (netdev->features & NETIF_F_RXCSUM)
                checksum_bit = soc->checksum_bit;
        else
                checksum_bit = 0;

        if (priv->flags & FE_FLAG_RX_2B_OFFSET)
                pad = 0;
        else
                pad = NET_IP_ALIGN;

        while (done < budget) {
                unsigned int pktlen;
                dma_addr_t dma_addr;

                idx = NEXT_RX_DESP_IDX(idx);
                rxd = &ring->rx_dma[idx];
                data = ring->rx_data[idx];

                fe_get_rxd(&trxd, rxd);
                if (!(trxd.rxd2 & RX_DMA_DONE))
                        break;

                /* alloc new buffer */
                new_data = page_frag_alloc(&ring->frag_cache, ring->frag_size,
                                           GFP_ATOMIC);
                if (unlikely(!new_data)) {
                        stats->rx_dropped++;
                        goto release_desc;
                }
                dma_addr = dma_map_single(&netdev->dev,
                                          new_data + NET_SKB_PAD + pad,
                                          ring->rx_buf_size,
                                          DMA_FROM_DEVICE);
                if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
                        skb_free_frag(new_data);
                        goto release_desc;
                }

                /* receive data */
                skb = build_skb(data, ring->frag_size);
                if (unlikely(!skb)) {
                        skb_free_frag(new_data);
                        goto release_desc;
                }
                skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);

                dma_unmap_single(&netdev->dev, trxd.rxd1,
                                 ring->rx_buf_size, DMA_FROM_DEVICE);
                pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
                skb->dev = netdev;
                skb_put(skb, pktlen);
                if (trxd.rxd4 & checksum_bit)
                        skb->ip_summed = CHECKSUM_UNNECESSARY;
                else
                        skb_checksum_none_assert(skb);
                skb->protocol = eth_type_trans(skb, netdev);

#ifdef CONFIG_NET_MEDIATEK_OFFLOAD
                if (mtk_offload_check_rx(priv, skb, trxd.rxd4) == 0) {
#endif
                        stats->rx_packets++;
                        stats->rx_bytes += pktlen;

                        napi_gro_receive(napi, skb);
#ifdef CONFIG_NET_MEDIATEK_OFFLOAD
                } else {
                        dev_kfree_skb(skb);
                }
#endif
                ring->rx_data[idx] = new_data;
                rxd->rxd1 = (unsigned int)dma_addr;

release_desc:
                if (priv->flags & FE_FLAG_RX_SG_DMA)
                        rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
                else
                        rxd->rxd2 = RX_DMA_LSO;

                ring->rx_calc_idx = idx;
                /* make sure that all changes to the dma ring are flushed before
                 * we continue
                 */
                wmb();
                fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
                done++;
        }

        if (done < budget)
                fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);

        return done;
}

static int fe_poll_tx(struct fe_priv *priv, int budget, u32 tx_intr,
                      int *tx_again)
{
        struct net_device *netdev = priv->netdev;
        struct device *dev = &netdev->dev;
        unsigned int bytes_compl = 0;
        struct sk_buff *skb;
        struct fe_tx_buf *tx_buf;
        int done = 0;
        u32 idx, hwidx;
        struct fe_tx_ring *ring = &priv->tx_ring;

        idx = ring->tx_free_idx;
        hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);

        while ((idx != hwidx) && budget) {
                tx_buf = &ring->tx_buf[idx];
                skb = tx_buf->skb;

                if (!skb)
                        break;

                if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
                        bytes_compl += skb->len;
                        done++;
                        budget--;
                }
                fe_txd_unmap(dev, tx_buf);
                idx = NEXT_TX_DESP_IDX(idx);
        }
        ring->tx_free_idx = idx;

        if (idx == hwidx) {
                /* read hw index again make sure no new tx packet */
                hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
                if (idx == hwidx)
                        fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
                else
                        *tx_again = 1;
        } else {
                *tx_again = 1;
        }

        if (done) {
                netdev_completed_queue(netdev, done, bytes_compl);
                smp_mb();
                if (unlikely(netif_queue_stopped(netdev) &&
                             (fe_empty_txd(ring) > ring->tx_thresh)))
                        netif_wake_queue(netdev);
        }

        return done;
}

static int fe_poll(struct napi_struct *napi, int budget)
{
        struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
        struct fe_hw_stats *hwstat = priv->hw_stats;
        int tx_done, rx_done, tx_again;
        u32 status, fe_status, status_reg, mask;
        u32 tx_intr, rx_intr, status_intr;

        status = fe_reg_r32(FE_REG_FE_INT_STATUS);
        fe_status = status;
        tx_intr = priv->soc->tx_int;
        rx_intr = priv->soc->rx_int;
        status_intr = priv->soc->status_int;
        tx_done = 0;
        rx_done = 0;
        tx_again = 0;

        if (fe_reg_table[FE_REG_FE_INT_STATUS2]) {
                fe_status = fe_reg_r32(FE_REG_FE_INT_STATUS2);
                status_reg = FE_REG_FE_INT_STATUS2;
        } else {
                status_reg = FE_REG_FE_INT_STATUS;
        }

        if (status & tx_intr)
                tx_done = fe_poll_tx(priv, budget, tx_intr, &tx_again);

        if (status & rx_intr)
                rx_done = fe_poll_rx(napi, budget, priv, rx_intr);

        if (unlikely(fe_status & status_intr)) {
                if (hwstat && spin_trylock(&hwstat->stats_lock)) {
                        fe_stats_update(priv);
                        spin_unlock(&hwstat->stats_lock);
                }
                fe_reg_w32(status_intr, status_reg);
        }

        if (unlikely(netif_msg_intr(priv))) {
                mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
                netdev_info(priv->netdev,
                            "done tx %d, rx %d, intr 0x%08x/0x%x\n",
                            tx_done, rx_done, status, mask);
        }

        if (!tx_again && (rx_done < budget)) {
                status = fe_reg_r32(FE_REG_FE_INT_STATUS);
                if (status & (tx_intr | rx_intr)) {
                        /* let napi poll again */
                        rx_done = budget;
                        goto poll_again;
                }

                napi_complete_done(napi, rx_done);
                fe_int_enable(tx_intr | rx_intr);
        } else {
                rx_done = budget;
        }

poll_again:
        return rx_done;
}

static void fe_tx_timeout(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        struct fe_tx_ring *ring = &priv->tx_ring;

        priv->netdev->stats.tx_errors++;
        netif_err(priv, tx_err, dev,
                  "transmit timed out\n");
        netif_info(priv, drv, dev, "dma_cfg:%08x\n",
                   fe_reg_r32(FE_REG_PDMA_GLO_CFG));
        netif_info(priv, drv, dev, "tx_ring=%d, "
                   "base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
                   0, fe_reg_r32(FE_REG_TX_BASE_PTR0),
                   fe_reg_r32(FE_REG_TX_MAX_CNT0),
                   fe_reg_r32(FE_REG_TX_CTX_IDX0),
                   fe_reg_r32(FE_REG_TX_DTX_IDX0),
                   ring->tx_free_idx,
                   ring->tx_next_idx);
        netif_info(priv, drv, dev,
                   "rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
                   0, fe_reg_r32(FE_REG_RX_BASE_PTR0),
                   fe_reg_r32(FE_REG_RX_MAX_CNT0),
                   fe_reg_r32(FE_REG_RX_CALC_IDX0),
                   fe_reg_r32(FE_REG_RX_DRX_IDX0));

        if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
                schedule_work(&priv->pending_work);
}

static irqreturn_t fe_handle_irq(int irq, void *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        u32 status, int_mask;

        status = fe_reg_r32(FE_REG_FE_INT_STATUS);

        if (unlikely(!status))
                return IRQ_NONE;

        int_mask = (priv->soc->rx_int | priv->soc->tx_int);
        if (likely(status & int_mask)) {
                if (likely(napi_schedule_prep(&priv->rx_napi))) {
                        fe_int_disable(int_mask);
                        __napi_schedule(&priv->rx_napi);
                }
        } else {
                fe_reg_w32(status, FE_REG_FE_INT_STATUS);
        }

        return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void fe_poll_controller(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;

        fe_int_disable(int_mask);
        fe_handle_irq(dev->irq, dev);
        fe_int_enable(int_mask);
}
#endif

int fe_set_clock_cycle(struct fe_priv *priv)
{
        unsigned long sysclk = priv->sysclk;

        sysclk /= FE_US_CYC_CNT_DIVISOR;
        sysclk <<= FE_US_CYC_CNT_SHIFT;

        fe_w32((fe_r32(FE_FE_GLO_CFG) &
                        ~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
                        sysclk,
                        FE_FE_GLO_CFG);
        return 0;
}

void fe_fwd_config(struct fe_priv *priv)
{
        u32 fwd_cfg;

        fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);

        /* disable jumbo frame */
        if (priv->flags & FE_FLAG_JUMBO_FRAME)
                fwd_cfg &= ~FE_GDM1_JMB_EN;

        /* set unicast/multicast/broadcast frame to cpu */
        fwd_cfg &= ~0xffff;

        fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
}

static void fe_rxcsum_config(bool enable)
{
        if (enable)
                fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
                                        FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
                                FE_GDMA1_FWD_CFG);
        else
                fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
                                        FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
                                FE_GDMA1_FWD_CFG);
}

static void fe_txcsum_config(bool enable)
{
        if (enable)
                fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
                                        FE_TCS_GEN_EN | FE_UCS_GEN_EN),
                                FE_CDMA_CSG_CFG);
        else
                fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
                                        FE_TCS_GEN_EN | FE_UCS_GEN_EN),
                                FE_CDMA_CSG_CFG);
}

void fe_csum_config(struct fe_priv *priv)
{
        struct net_device *dev = priv_netdev(priv);

        fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
        fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
}

static int fe_hw_init(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        int i, err;

        err = devm_request_irq(priv->dev, dev->irq, fe_handle_irq, 0,
                               dev_name(priv->dev), dev);
        if (err)
                return err;

        if (priv->soc->set_mac)
                priv->soc->set_mac(priv, dev->dev_addr);
        else
                fe_hw_set_macaddr(priv, dev->dev_addr);

        /* disable delay interrupt */
        fe_reg_w32(0, FE_REG_DLY_INT_CFG);

        fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);

        /* frame engine will push VLAN tag regarding to VIDX feild in Tx desc */
        if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
                for (i = 0; i < 16; i += 2)
                        fe_w32(((i + 1) << 16) + i,
                               fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
                               (i * 2));

        if (priv->soc->fwd_config(priv))
                netdev_err(dev, "unable to get clock\n");

        if (fe_reg_table[FE_REG_FE_RST_GL]) {
                fe_reg_w32(1, FE_REG_FE_RST_GL);
                fe_reg_w32(0, FE_REG_FE_RST_GL);
        }

        return 0;
}

static int fe_open(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        unsigned long flags;
        u32 val;
        int err;

        err = fe_init_dma(priv);
        if (err) {
                fe_free_dma(priv);
                return err;
        }

        spin_lock_irqsave(&priv->page_lock, flags);

        val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
        if (priv->flags & FE_FLAG_RX_2B_OFFSET)
                val |= FE_RX_2B_OFFSET;
        val |= priv->soc->pdma_glo_cfg;
        fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);

        spin_unlock_irqrestore(&priv->page_lock, flags);

        if (priv->phy)
                priv->phy->start(priv);

        if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
                netif_carrier_on(dev);

        napi_enable(&priv->rx_napi);
        fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
        netif_start_queue(dev);
#ifdef CONFIG_NET_MEDIATEK_OFFLOAD
        mtk_ppe_probe(priv);
#endif

        return 0;
}

static int fe_stop(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        unsigned long flags;
        int i;

        netif_tx_disable(dev);
        fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
        napi_disable(&priv->rx_napi);

        if (priv->phy)
                priv->phy->stop(priv);

        spin_lock_irqsave(&priv->page_lock, flags);

        fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
                     ~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
                     FE_REG_PDMA_GLO_CFG);
        spin_unlock_irqrestore(&priv->page_lock, flags);

        /* wait dma stop */
        for (i = 0; i < 10; i++) {
                if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
                                (FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
                        msleep(20);
                        continue;
                }
                break;
        }

        fe_free_dma(priv);

#ifdef CONFIG_NET_MEDIATEK_OFFLOAD
        mtk_ppe_remove(priv);
#endif

        return 0;
}

static int __init fe_init(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);
        struct device_node *port;
        const char *mac_addr;
        int err;

        priv->soc->reset_fe();

        if (priv->soc->switch_init)
                if (priv->soc->switch_init(priv)) {
                        netdev_err(dev, "failed to initialize switch core\n");
                        return -ENODEV;
                }

        mac_addr = of_get_mac_address(priv->dev->of_node);
        if (mac_addr)
                ether_addr_copy(dev->dev_addr, mac_addr);

        /* If the mac address is invalid, use random mac address  */
        if (!is_valid_ether_addr(dev->dev_addr)) {
                random_ether_addr(dev->dev_addr);
                dev_err(priv->dev, "generated random MAC address %pM\n",
                        dev->dev_addr);
        }

        err = fe_mdio_init(priv);
        if (err)
                return err;

        if (priv->soc->port_init)
                for_each_child_of_node(priv->dev->of_node, port)
                        if (of_device_is_compatible(port, "mediatek,eth-port") &&
                            of_device_is_available(port))
                                priv->soc->port_init(priv, port);

        if (priv->phy) {
                err = priv->phy->connect(priv);
                if (err)
                        goto err_phy_disconnect;
        }

        err = fe_hw_init(dev);
        if (err)
                goto err_phy_disconnect;

        if ((priv->flags & FE_FLAG_HAS_SWITCH) && priv->soc->switch_config)
                priv->soc->switch_config(priv);

        return 0;

err_phy_disconnect:
        if (priv->phy)
                priv->phy->disconnect(priv);
        fe_mdio_cleanup(priv);

        return err;
}

static void fe_uninit(struct net_device *dev)
{
        struct fe_priv *priv = netdev_priv(dev);

        if (priv->phy)
                priv->phy->disconnect(priv);
        fe_mdio_cleanup(priv);

        fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
        free_irq(dev->irq, dev);
}

static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
        struct fe_priv *priv = netdev_priv(dev);

        if (!priv->phy_dev)
                return -ENODEV;

        switch (cmd) {
        case SIOCETHTOOL:
                return phy_ethtool_ioctl(priv->phy_dev,
                                (void *) ifr->ifr_data);
        case SIOCGMIIPHY:
        case SIOCGMIIREG:
        case SIOCSMIIREG:
                return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
        default:
                break;
        }

        return -EOPNOTSUPP;
}

static int fe_change_mtu(struct net_device *dev, int new_mtu)
{
        struct fe_priv *priv = netdev_priv(dev);
        int frag_size, old_mtu;
        u32 fwd_cfg;

        if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
                return eth_change_mtu(dev, new_mtu);

        if (IS_ENABLED(CONFIG_SOC_MT7621))
                if (new_mtu > 2048)
                        return -EINVAL;

        frag_size = fe_max_frag_size(new_mtu);
        if (new_mtu < 68 || frag_size > PAGE_SIZE)
                return -EINVAL;

        old_mtu = dev->mtu;
        dev->mtu = new_mtu;

        /* return early if the buffer sizes will not change */
        if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
                return 0;
        if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
                return 0;

        if (new_mtu <= ETH_DATA_LEN)
                priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
        else
                priv->rx_ring.frag_size = PAGE_SIZE;
        priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);

        if (!netif_running(dev))
                return 0;

        fe_stop(dev);
        if (!IS_ENABLED(CONFIG_SOC_MT7621)) {
                fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
                if (new_mtu <= ETH_DATA_LEN) {
                        fwd_cfg &= ~FE_GDM1_JMB_EN;
                } else {
                        fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
                        fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
                        FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
                }
                fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
        }

        return fe_open(dev);
}

#ifdef CONFIG_NET_MEDIATEK_OFFLOAD
static int
fe_flow_offload(enum flow_offload_type type, struct flow_offload *flow,
                struct flow_offload_hw_path *src,
                struct flow_offload_hw_path *dest)
{
        struct fe_priv *priv;

        if (src->dev != dest->dev)
                return -EINVAL;

        priv = netdev_priv(src->dev);

        return mtk_flow_offload(priv, type, flow, src, dest);
}
#endif

static const struct net_device_ops fe_netdev_ops = {
        .ndo_init               = fe_init,
        .ndo_uninit             = fe_uninit,
        .ndo_open               = fe_open,
        .ndo_stop               = fe_stop,
        .ndo_start_xmit         = fe_start_xmit,
        .ndo_set_mac_address    = fe_set_mac_address,
        .ndo_validate_addr      = eth_validate_addr,
        .ndo_do_ioctl           = fe_do_ioctl,
        .ndo_change_mtu         = fe_change_mtu,
        .ndo_tx_timeout         = fe_tx_timeout,
        .ndo_get_stats64        = fe_get_stats64,
        .ndo_vlan_rx_add_vid    = fe_vlan_rx_add_vid,
        .ndo_vlan_rx_kill_vid   = fe_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
        .ndo_poll_controller    = fe_poll_controller,
#endif
#ifdef CONFIG_NET_MEDIATEK_OFFLOAD
        .ndo_flow_offload       = fe_flow_offload,
#endif
};

static void fe_reset_pending(struct fe_priv *priv)
{
        struct net_device *dev = priv->netdev;
        int err;

        rtnl_lock();
        fe_stop(dev);

        err = fe_open(dev);
        if (err) {
                netif_alert(priv, ifup, dev,
                            "Driver up/down cycle failed, closing device.\n");
                dev_close(dev);
        }
        rtnl_unlock();
}

static const struct fe_work_t fe_work[] = {
        {FE_FLAG_RESET_PENDING, fe_reset_pending},
};

static void fe_pending_work(struct work_struct *work)
{
        struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
        int i;
        bool pending;

        for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
                pending = test_and_clear_bit(fe_work[i].bitnr,
                                             priv->pending_flags);
                if (pending)
                        fe_work[i].action(priv);
        }
}

static int fe_probe(struct platform_device *pdev)
{
        struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
        const struct of_device_id *match;
        struct fe_soc_data *soc;
        struct net_device *netdev;
        struct fe_priv *priv;
        struct clk *sysclk;
        int err, napi_weight;

        device_reset(&pdev->dev);

        match = of_match_device(of_fe_match, &pdev->dev);
        soc = (struct fe_soc_data *)match->data;

        if (soc->reg_table)
                fe_reg_table = soc->reg_table;
        else
                soc->reg_table = fe_reg_table;

        fe_base = devm_ioremap_resource(&pdev->dev, res);
        if (IS_ERR(fe_base)) {
                err = -EADDRNOTAVAIL;
                goto err_out;
        }

        netdev = alloc_etherdev(sizeof(*priv));
        if (!netdev) {
                dev_err(&pdev->dev, "alloc_etherdev failed\n");
                err = -ENOMEM;
                goto err_iounmap;
        }

        SET_NETDEV_DEV(netdev, &pdev->dev);
        netdev->netdev_ops = &fe_netdev_ops;
        netdev->base_addr = (unsigned long)fe_base;

        netdev->irq = platform_get_irq(pdev, 0);
        if (netdev->irq < 0) {
                dev_err(&pdev->dev, "no IRQ resource found\n");
                err = -ENXIO;
                goto err_free_dev;
        }

        if (soc->init_data)
                soc->init_data(soc, netdev);
        netdev->vlan_features = netdev->hw_features & ~NETIF_F_HW_VLAN_CTAG_TX;
        netdev->features |= netdev->hw_features;

        /* fake rx vlan filter func. to support tx vlan offload func */
        if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
                netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;

        priv = netdev_priv(netdev);
        spin_lock_init(&priv->page_lock);
        if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
                priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
                if (!priv->hw_stats) {
                        err = -ENOMEM;
                        goto err_free_dev;
                }
                spin_lock_init(&priv->hw_stats->stats_lock);
        }

        sysclk = devm_clk_get(&pdev->dev, NULL);
        if (!IS_ERR(sysclk)) {
                priv->sysclk = clk_get_rate(sysclk);
        } else if ((priv->flags & FE_FLAG_CALIBRATE_CLK)) {
                dev_err(&pdev->dev, "this soc needs a clk for calibration\n");
                err = -ENXIO;
                goto err_free_dev;
        }

        priv->switch_np = of_parse_phandle(pdev->dev.of_node, "mediatek,switch", 0);
        if ((priv->flags & FE_FLAG_HAS_SWITCH) && !priv->switch_np) {
                dev_err(&pdev->dev, "failed to read switch phandle\n");
                err = -ENODEV;
                goto err_free_dev;
        }

        priv->netdev = netdev;
        priv->dev = &pdev->dev;
        priv->soc = soc;
        priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
        priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
        priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
        priv->tx_ring.tx_ring_size = NUM_DMA_DESC;
        priv->rx_ring.rx_ring_size = NUM_DMA_DESC;
        INIT_WORK(&priv->pending_work, fe_pending_work);
        u64_stats_init(&priv->hw_stats->syncp);

        napi_weight = 16;
        if (priv->flags & FE_FLAG_NAPI_WEIGHT) {
                napi_weight *= 4;
                priv->tx_ring.tx_ring_size *= 4;
                priv->rx_ring.rx_ring_size *= 4;
        }
        netif_napi_add(netdev, &priv->rx_napi, fe_poll, napi_weight);
        fe_set_ethtool_ops(netdev);

        err = register_netdev(netdev);
        if (err) {
                dev_err(&pdev->dev, "error bringing up device\n");
                goto err_free_dev;
        }

        platform_set_drvdata(pdev, netdev);

        netif_info(priv, probe, netdev, "mediatek frame engine at 0x%08lx, irq %d\n",
                   netdev->base_addr, netdev->irq);

        return 0;

err_free_dev:
        free_netdev(netdev);
err_iounmap:
        devm_iounmap(&pdev->dev, fe_base);
err_out:
        return err;
}

static int fe_remove(struct platform_device *pdev)
{
        struct net_device *dev = platform_get_drvdata(pdev);
        struct fe_priv *priv = netdev_priv(dev);

        netif_napi_del(&priv->rx_napi);
        kfree(priv->hw_stats);

        cancel_work_sync(&priv->pending_work);

        unregister_netdev(dev);
        free_netdev(dev);
        platform_set_drvdata(pdev, NULL);

        return 0;
}

static struct platform_driver fe_driver = {
        .probe = fe_probe,
        .remove = fe_remove,
        .driver = {
                .name = "mtk_soc_eth",
                .owner = THIS_MODULE,
                .of_match_table = of_fe_match,
        },
};

module_platform_driver(fe_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
MODULE_VERSION(MTK_FE_DRV_VERSION);