nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* |
2 | * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997 |
||
3 | * The Regents of the University of California. All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that: (1) source code distributions |
||
7 | * retain the above copyright notice and this paragraph in its entirety, (2) |
||
8 | * distributions including binary code include the above copyright notice and |
||
9 | * this paragraph in its entirety in the documentation or other materials |
||
10 | * provided with the distribution, and (3) all advertising materials mentioning |
||
11 | * features or use of this software display the following acknowledgement: |
||
12 | * ``This product includes software developed by the University of California, |
||
13 | * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
||
14 | * the University nor the names of its contributors may be used to endorse |
||
15 | * or promote products derived from this software without specific prior |
||
16 | * written permission. |
||
17 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
||
18 | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
||
19 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
||
20 | */ |
||
21 | |||
22 | /* |
||
23 | * txtproto_print() derived from original code by Hannes Gredler |
||
24 | * (hannes@juniper.net): |
||
25 | * |
||
26 | * Redistribution and use in source and binary forms, with or without |
||
27 | * modification, are permitted provided that: (1) source code |
||
28 | * distributions retain the above copyright notice and this paragraph |
||
29 | * in its entirety, and (2) distributions including binary code include |
||
30 | * the above copyright notice and this paragraph in its entirety in |
||
31 | * the documentation or other materials provided with the distribution. |
||
32 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND |
||
33 | * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT |
||
34 | * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
35 | * FOR A PARTICULAR PURPOSE. |
||
36 | */ |
||
37 | |||
38 | #define NETDISSECT_REWORKED |
||
39 | #ifdef HAVE_CONFIG_H |
||
40 | #include "config.h" |
||
41 | #endif |
||
42 | |||
43 | #include <tcpdump-stdinc.h> |
||
44 | |||
45 | #include <sys/stat.h> |
||
46 | |||
47 | #ifdef HAVE_FCNTL_H |
||
48 | #include <fcntl.h> |
||
49 | #endif |
||
50 | #include <stdio.h> |
||
51 | #include <stdarg.h> |
||
52 | #include <stdlib.h> |
||
53 | #include <string.h> |
||
54 | |||
55 | #include "interface.h" |
||
56 | |||
57 | /* |
||
58 | * Print out a null-terminated filename (or other ascii string). |
||
59 | * If ep is NULL, assume no truncation check is needed. |
||
60 | * Return true if truncated. |
||
61 | */ |
||
62 | int |
||
63 | fn_print(netdissect_options *ndo, |
||
64 | register const u_char *s, register const u_char *ep) |
||
65 | { |
||
66 | register int ret; |
||
67 | register u_char c; |
||
68 | |||
69 | ret = 1; /* assume truncated */ |
||
70 | while (ep == NULL || s < ep) { |
||
71 | c = *s++; |
||
72 | if (c == '\0') { |
||
73 | ret = 0; |
||
74 | break; |
||
75 | } |
||
76 | if (!ND_ISASCII(c)) { |
||
77 | c = ND_TOASCII(c); |
||
78 | ND_PRINT((ndo, "M-")); |
||
79 | } |
||
80 | if (!ND_ISPRINT(c)) { |
||
81 | c ^= 0x40; /* DEL to ?, others to alpha */ |
||
82 | ND_PRINT((ndo, "^")); |
||
83 | } |
||
84 | ND_PRINT((ndo, "%c", c)); |
||
85 | } |
||
86 | return(ret); |
||
87 | } |
||
88 | |||
89 | /* |
||
90 | * Print out a counted filename (or other ascii string). |
||
91 | * If ep is NULL, assume no truncation check is needed. |
||
92 | * Return true if truncated. |
||
93 | */ |
||
94 | int |
||
95 | fn_printn(netdissect_options *ndo, |
||
96 | register const u_char *s, register u_int n, register const u_char *ep) |
||
97 | { |
||
98 | register u_char c; |
||
99 | |||
100 | while (n > 0 && (ep == NULL || s < ep)) { |
||
101 | n--; |
||
102 | c = *s++; |
||
103 | if (!ND_ISASCII(c)) { |
||
104 | c = ND_TOASCII(c); |
||
105 | ND_PRINT((ndo, "M-")); |
||
106 | } |
||
107 | if (!ND_ISPRINT(c)) { |
||
108 | c ^= 0x40; /* DEL to ?, others to alpha */ |
||
109 | ND_PRINT((ndo, "^")); |
||
110 | } |
||
111 | ND_PRINT((ndo, "%c", c)); |
||
112 | } |
||
113 | return (n == 0) ? 0 : 1; |
||
114 | } |
||
115 | |||
116 | /* |
||
117 | * Print out a null-padded filename (or other ascii string). |
||
118 | * If ep is NULL, assume no truncation check is needed. |
||
119 | * Return true if truncated. |
||
120 | */ |
||
121 | int |
||
122 | fn_printzp(netdissect_options *ndo, |
||
123 | register const u_char *s, register u_int n, |
||
124 | register const u_char *ep) |
||
125 | { |
||
126 | register int ret; |
||
127 | register u_char c; |
||
128 | |||
129 | ret = 1; /* assume truncated */ |
||
130 | while (n > 0 && (ep == NULL || s < ep)) { |
||
131 | n--; |
||
132 | c = *s++; |
||
133 | if (c == '\0') { |
||
134 | ret = 0; |
||
135 | break; |
||
136 | } |
||
137 | if (!ND_ISASCII(c)) { |
||
138 | c = ND_TOASCII(c); |
||
139 | ND_PRINT((ndo, "M-")); |
||
140 | } |
||
141 | if (!ND_ISPRINT(c)) { |
||
142 | c ^= 0x40; /* DEL to ?, others to alpha */ |
||
143 | ND_PRINT((ndo, "^")); |
||
144 | } |
||
145 | ND_PRINT((ndo, "%c", c)); |
||
146 | } |
||
147 | return (n == 0) ? 0 : ret; |
||
148 | } |
||
149 | |||
150 | /* |
||
151 | * Format the timestamp |
||
152 | */ |
||
153 | static char * |
||
154 | ts_format(netdissect_options *ndo |
||
155 | #ifndef HAVE_PCAP_SET_TSTAMP_PRECISION |
||
156 | _U_ |
||
157 | #endif |
||
158 | , int sec, int usec) |
||
159 | { |
||
160 | static char buf[sizeof("00:00:00.000000000")]; |
||
161 | const char *format; |
||
162 | |||
163 | #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION |
||
164 | switch (ndo->ndo_tstamp_precision) { |
||
165 | |||
166 | case PCAP_TSTAMP_PRECISION_MICRO: |
||
167 | format = "%02d:%02d:%02d.%06u"; |
||
168 | break; |
||
169 | |||
170 | case PCAP_TSTAMP_PRECISION_NANO: |
||
171 | format = "%02d:%02d:%02d.%09u"; |
||
172 | break; |
||
173 | |||
174 | default: |
||
175 | format = "%02d:%02d:%02d.{unknown precision}"; |
||
176 | break; |
||
177 | } |
||
178 | #else |
||
179 | format = "%02d:%02d:%02d.%06u"; |
||
180 | #endif |
||
181 | |||
182 | snprintf(buf, sizeof(buf), format, |
||
183 | sec / 3600, (sec % 3600) / 60, sec % 60, usec); |
||
184 | |||
185 | return buf; |
||
186 | } |
||
187 | |||
188 | /* |
||
189 | * Print the timestamp |
||
190 | */ |
||
191 | void |
||
192 | ts_print(netdissect_options *ndo, |
||
193 | register const struct timeval *tvp) |
||
194 | { |
||
195 | register int s; |
||
196 | struct tm *tm; |
||
197 | time_t Time; |
||
198 | static unsigned b_sec; |
||
199 | static unsigned b_usec; |
||
200 | int d_usec; |
||
201 | int d_sec; |
||
202 | |||
203 | switch (ndo->ndo_tflag) { |
||
204 | |||
205 | case 0: /* Default */ |
||
206 | s = (tvp->tv_sec + thiszone) % 86400; |
||
207 | ND_PRINT((ndo, "%s ", ts_format(ndo, s, tvp->tv_usec))); |
||
208 | break; |
||
209 | |||
210 | case 1: /* No time stamp */ |
||
211 | break; |
||
212 | |||
213 | case 2: /* Unix timeval style */ |
||
214 | ND_PRINT((ndo, "%u.%06u ", |
||
215 | (unsigned)tvp->tv_sec, |
||
216 | (unsigned)tvp->tv_usec)); |
||
217 | break; |
||
218 | |||
219 | case 3: /* Microseconds since previous packet */ |
||
220 | case 5: /* Microseconds since first packet */ |
||
221 | if (b_sec == 0) { |
||
222 | /* init timestamp for first packet */ |
||
223 | b_usec = tvp->tv_usec; |
||
224 | b_sec = tvp->tv_sec; |
||
225 | } |
||
226 | |||
227 | d_usec = tvp->tv_usec - b_usec; |
||
228 | d_sec = tvp->tv_sec - b_sec; |
||
229 | |||
230 | while (d_usec < 0) { |
||
231 | d_usec += 1000000; |
||
232 | d_sec--; |
||
233 | } |
||
234 | |||
235 | ND_PRINT((ndo, "%s ", ts_format(ndo, d_sec, d_usec))); |
||
236 | |||
237 | if (ndo->ndo_tflag == 3) { /* set timestamp for last packet */ |
||
238 | b_sec = tvp->tv_sec; |
||
239 | b_usec = tvp->tv_usec; |
||
240 | } |
||
241 | break; |
||
242 | |||
243 | case 4: /* Default + Date*/ |
||
244 | s = (tvp->tv_sec + thiszone) % 86400; |
||
245 | Time = (tvp->tv_sec + thiszone) - s; |
||
246 | tm = gmtime (&Time); |
||
247 | if (!tm) |
||
248 | ND_PRINT((ndo, "Date fail ")); |
||
249 | else |
||
250 | ND_PRINT((ndo, "%04d-%02d-%02d %s ", |
||
251 | tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday, |
||
252 | ts_format(ndo, s, tvp->tv_usec))); |
||
253 | break; |
||
254 | } |
||
255 | } |
||
256 | |||
257 | /* |
||
258 | * Print a relative number of seconds (e.g. hold time, prune timer) |
||
259 | * in the form 5m1s. This does no truncation, so 32230861 seconds |
||
260 | * is represented as 1y1w1d1h1m1s. |
||
261 | */ |
||
262 | void |
||
263 | relts_print(netdissect_options *ndo, |
||
264 | int secs) |
||
265 | { |
||
266 | static const char *lengths[] = {"y", "w", "d", "h", "m", "s"}; |
||
267 | static const int seconds[] = {31536000, 604800, 86400, 3600, 60, 1}; |
||
268 | const char **l = lengths; |
||
269 | const int *s = seconds; |
||
270 | |||
271 | if (secs == 0) { |
||
272 | ND_PRINT((ndo, "0s")); |
||
273 | return; |
||
274 | } |
||
275 | if (secs < 0) { |
||
276 | ND_PRINT((ndo, "-")); |
||
277 | secs = -secs; |
||
278 | } |
||
279 | while (secs > 0) { |
||
280 | if (secs >= *s) { |
||
281 | ND_PRINT((ndo, "%d%s", secs / *s, *l)); |
||
282 | secs -= (secs / *s) * *s; |
||
283 | } |
||
284 | s++; |
||
285 | l++; |
||
286 | } |
||
287 | } |
||
288 | |||
289 | /* |
||
290 | * this is a generic routine for printing unknown data; |
||
291 | * we pass on the linefeed plus indentation string to |
||
292 | * get a proper output - returns 0 on error |
||
293 | */ |
||
294 | |||
295 | int |
||
296 | print_unknown_data(netdissect_options *ndo, const u_char *cp,const char *ident,int len) |
||
297 | { |
||
298 | if (len < 0) { |
||
299 | ND_PRINT((ndo,"%sDissector error: print_unknown_data called with negative length", |
||
300 | ident)); |
||
301 | return(0); |
||
302 | } |
||
303 | if (ndo->ndo_snapend - cp < len) |
||
304 | len = ndo->ndo_snapend - cp; |
||
305 | if (len < 0) { |
||
306 | ND_PRINT((ndo,"%sDissector error: print_unknown_data called with pointer past end of packet", |
||
307 | ident)); |
||
308 | return(0); |
||
309 | } |
||
310 | hex_print(ndo, ident,cp,len); |
||
311 | return(1); /* everything is ok */ |
||
312 | } |
||
313 | |||
314 | /* |
||
315 | * Convert a token value to a string; use "fmt" if not found. |
||
316 | */ |
||
317 | const char * |
||
318 | tok2strbuf(register const struct tok *lp, register const char *fmt, |
||
319 | register u_int v, char *buf, size_t bufsize) |
||
320 | { |
||
321 | if (lp != NULL) { |
||
322 | while (lp->s != NULL) { |
||
323 | if (lp->v == v) |
||
324 | return (lp->s); |
||
325 | ++lp; |
||
326 | } |
||
327 | } |
||
328 | if (fmt == NULL) |
||
329 | fmt = "#%d"; |
||
330 | |||
331 | (void)snprintf(buf, bufsize, fmt, v); |
||
332 | return (const char *)buf; |
||
333 | } |
||
334 | |||
335 | /* |
||
336 | * Convert a token value to a string; use "fmt" if not found. |
||
337 | */ |
||
338 | const char * |
||
339 | tok2str(register const struct tok *lp, register const char *fmt, |
||
340 | register u_int v) |
||
341 | { |
||
342 | static char buf[4][128]; |
||
343 | static int idx = 0; |
||
344 | char *ret; |
||
345 | |||
346 | ret = buf[idx]; |
||
347 | idx = (idx+1) & 3; |
||
348 | return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0])); |
||
349 | } |
||
350 | |||
351 | /* |
||
352 | * Convert a bit token value to a string; use "fmt" if not found. |
||
353 | * this is useful for parsing bitfields, the output strings are seperated |
||
354 | * if the s field is positive. |
||
355 | */ |
||
356 | static char * |
||
357 | bittok2str_internal(register const struct tok *lp, register const char *fmt, |
||
358 | register u_int v, const char *sep) |
||
359 | { |
||
360 | static char buf[256]; /* our stringbuffer */ |
||
361 | int buflen=0; |
||
362 | register u_int rotbit; /* this is the bit we rotate through all bitpositions */ |
||
363 | register u_int tokval; |
||
364 | const char * sepstr = ""; |
||
365 | |||
366 | while (lp != NULL && lp->s != NULL) { |
||
367 | tokval=lp->v; /* load our first value */ |
||
368 | rotbit=1; |
||
369 | while (rotbit != 0) { |
||
370 | /* |
||
371 | * lets AND the rotating bit with our token value |
||
372 | * and see if we have got a match |
||
373 | */ |
||
374 | if (tokval == (v&rotbit)) { |
||
375 | /* ok we have found something */ |
||
376 | buflen+=snprintf(buf+buflen, sizeof(buf)-buflen, "%s%s", |
||
377 | sepstr, lp->s); |
||
378 | sepstr = sep; |
||
379 | break; |
||
380 | } |
||
381 | rotbit=rotbit<<1; /* no match - lets shift and try again */ |
||
382 | } |
||
383 | lp++; |
||
384 | } |
||
385 | |||
386 | if (buflen == 0) |
||
387 | /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */ |
||
388 | (void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v); |
||
389 | return (buf); |
||
390 | } |
||
391 | |||
392 | /* |
||
393 | * Convert a bit token value to a string; use "fmt" if not found. |
||
394 | * this is useful for parsing bitfields, the output strings are not seperated. |
||
395 | */ |
||
396 | char * |
||
397 | bittok2str_nosep(register const struct tok *lp, register const char *fmt, |
||
398 | register u_int v) |
||
399 | { |
||
400 | return (bittok2str_internal(lp, fmt, v, "")); |
||
401 | } |
||
402 | |||
403 | /* |
||
404 | * Convert a bit token value to a string; use "fmt" if not found. |
||
405 | * this is useful for parsing bitfields, the output strings are comma seperated. |
||
406 | */ |
||
407 | char * |
||
408 | bittok2str(register const struct tok *lp, register const char *fmt, |
||
409 | register u_int v) |
||
410 | { |
||
411 | return (bittok2str_internal(lp, fmt, v, ", ")); |
||
412 | } |
||
413 | |||
414 | /* |
||
415 | * Convert a value to a string using an array; the macro |
||
416 | * tok2strary() in <interface.h> is the public interface to |
||
417 | * this function and ensures that the second argument is |
||
418 | * correct for bounds-checking. |
||
419 | */ |
||
420 | const char * |
||
421 | tok2strary_internal(register const char **lp, int n, register const char *fmt, |
||
422 | register int v) |
||
423 | { |
||
424 | static char buf[128]; |
||
425 | |||
426 | if (v >= 0 && v < n && lp[v] != NULL) |
||
427 | return lp[v]; |
||
428 | if (fmt == NULL) |
||
429 | fmt = "#%d"; |
||
430 | (void)snprintf(buf, sizeof(buf), fmt, v); |
||
431 | return (buf); |
||
432 | } |
||
433 | |||
434 | /* |
||
435 | * Convert a 32-bit netmask to prefixlen if possible |
||
436 | * the function returns the prefix-len; if plen == -1 |
||
437 | * then conversion was not possible; |
||
438 | */ |
||
439 | |||
440 | int |
||
441 | mask2plen(uint32_t mask) |
||
442 | { |
||
443 | uint32_t bitmasks[33] = { |
||
444 | 0x00000000, |
||
445 | 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, |
||
446 | 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000, |
||
447 | 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000, |
||
448 | 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, |
||
449 | 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000, |
||
450 | 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00, |
||
451 | 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, |
||
452 | 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff |
||
453 | }; |
||
454 | int prefix_len = 32; |
||
455 | |||
456 | /* let's see if we can transform the mask into a prefixlen */ |
||
457 | while (prefix_len >= 0) { |
||
458 | if (bitmasks[prefix_len] == mask) |
||
459 | break; |
||
460 | prefix_len--; |
||
461 | } |
||
462 | return (prefix_len); |
||
463 | } |
||
464 | |||
465 | #ifdef INET6 |
||
466 | int |
||
467 | mask62plen(const u_char *mask) |
||
468 | { |
||
469 | u_char bitmasks[9] = { |
||
470 | 0x00, |
||
471 | 0x80, 0xc0, 0xe0, 0xf0, |
||
472 | 0xf8, 0xfc, 0xfe, 0xff |
||
473 | }; |
||
474 | int byte; |
||
475 | int cidr_len = 0; |
||
476 | |||
477 | for (byte = 0; byte < 16; byte++) { |
||
478 | u_int bits; |
||
479 | |||
480 | for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) { |
||
481 | if (mask[byte] == bitmasks[bits]) { |
||
482 | cidr_len += bits; |
||
483 | break; |
||
484 | } |
||
485 | } |
||
486 | |||
487 | if (mask[byte] != 0xff) |
||
488 | break; |
||
489 | } |
||
490 | return (cidr_len); |
||
491 | } |
||
492 | #endif /* INET6 */ |
||
493 | |||
494 | /* |
||
495 | * Routine to print out information for text-based protocols such as FTP, |
||
496 | * HTTP, SMTP, RTSP, SIP, .... |
||
497 | */ |
||
498 | #define MAX_TOKEN 128 |
||
499 | |||
500 | /* |
||
501 | * Fetch a token from a packet, starting at the specified index, |
||
502 | * and return the length of the token. |
||
503 | * |
||
504 | * Returns 0 on error; yes, this is indistinguishable from an empty |
||
505 | * token, but an "empty token" isn't a valid token - it just means |
||
506 | * either a space character at the beginning of the line (this |
||
507 | * includes a blank line) or no more tokens remaining on the line. |
||
508 | */ |
||
509 | static int |
||
510 | fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len, |
||
511 | u_char *tbuf, size_t tbuflen) |
||
512 | { |
||
513 | size_t toklen = 0; |
||
514 | |||
515 | for (; idx < len; idx++) { |
||
516 | if (!ND_TTEST(*(pptr + idx))) { |
||
517 | /* ran past end of captured data */ |
||
518 | return (0); |
||
519 | } |
||
520 | if (!isascii(*(pptr + idx))) { |
||
521 | /* not an ASCII character */ |
||
522 | return (0); |
||
523 | } |
||
524 | if (isspace(*(pptr + idx))) { |
||
525 | /* end of token */ |
||
526 | break; |
||
527 | } |
||
528 | if (!isprint(*(pptr + idx))) { |
||
529 | /* not part of a command token or response code */ |
||
530 | return (0); |
||
531 | } |
||
532 | if (toklen + 2 > tbuflen) { |
||
533 | /* no room for this character and terminating '\0' */ |
||
534 | return (0); |
||
535 | } |
||
536 | tbuf[toklen] = *(pptr + idx); |
||
537 | toklen++; |
||
538 | } |
||
539 | if (toklen == 0) { |
||
540 | /* no token */ |
||
541 | return (0); |
||
542 | } |
||
543 | tbuf[toklen] = '\0'; |
||
544 | |||
545 | /* |
||
546 | * Skip past any white space after the token, until we see |
||
547 | * an end-of-line (CR or LF). |
||
548 | */ |
||
549 | for (; idx < len; idx++) { |
||
550 | if (!ND_TTEST(*(pptr + idx))) { |
||
551 | /* ran past end of captured data */ |
||
552 | break; |
||
553 | } |
||
554 | if (*(pptr + idx) == '\r' || *(pptr + idx) == '\n') { |
||
555 | /* end of line */ |
||
556 | break; |
||
557 | } |
||
558 | if (!isascii(*(pptr + idx)) || !isprint(*(pptr + idx))) { |
||
559 | /* not a printable ASCII character */ |
||
560 | break; |
||
561 | } |
||
562 | if (!isspace(*(pptr + idx))) { |
||
563 | /* beginning of next token */ |
||
564 | break; |
||
565 | } |
||
566 | } |
||
567 | return (idx); |
||
568 | } |
||
569 | |||
570 | /* |
||
571 | * Scan a buffer looking for a line ending - LF or CR-LF. |
||
572 | * Return the index of the character after the line ending or 0 if |
||
573 | * we encounter a non-ASCII or non-printable character or don't find |
||
574 | * the line ending. |
||
575 | */ |
||
576 | static u_int |
||
577 | print_txt_line(netdissect_options *ndo, const char *protoname, |
||
578 | const char *prefix, const u_char *pptr, u_int idx, u_int len) |
||
579 | { |
||
580 | u_int startidx; |
||
581 | u_int linelen; |
||
582 | |||
583 | startidx = idx; |
||
584 | while (idx < len) { |
||
585 | ND_TCHECK(*(pptr+idx)); |
||
586 | if (*(pptr+idx) == '\n') { |
||
587 | /* |
||
588 | * LF without CR; end of line. |
||
589 | * Skip the LF and print the line, with the |
||
590 | * exception of the LF. |
||
591 | */ |
||
592 | linelen = idx - startidx; |
||
593 | idx++; |
||
594 | goto print; |
||
595 | } else if (*(pptr+idx) == '\r') { |
||
596 | /* CR - any LF? */ |
||
597 | if ((idx+1) >= len) { |
||
598 | /* not in this packet */ |
||
599 | return (0); |
||
600 | } |
||
601 | ND_TCHECK(*(pptr+idx+1)); |
||
602 | if (*(pptr+idx+1) == '\n') { |
||
603 | /* |
||
604 | * CR-LF; end of line. |
||
605 | * Skip the CR-LF and print the line, with |
||
606 | * the exception of the CR-LF. |
||
607 | */ |
||
608 | linelen = idx - startidx; |
||
609 | idx += 2; |
||
610 | goto print; |
||
611 | } |
||
612 | |||
613 | /* |
||
614 | * CR followed by something else; treat this |
||
615 | * as if it were binary data, and don't print |
||
616 | * it. |
||
617 | */ |
||
618 | return (0); |
||
619 | } else if (!isascii(*(pptr+idx)) || |
||
620 | (!isprint(*(pptr+idx)) && *(pptr+idx) != '\t')) { |
||
621 | /* |
||
622 | * Not a printable ASCII character and not a tab; |
||
623 | * treat this as if it were binary data, and |
||
624 | * don't print it. |
||
625 | */ |
||
626 | return (0); |
||
627 | } |
||
628 | idx++; |
||
629 | } |
||
630 | |||
631 | /* |
||
632 | * All printable ASCII, but no line ending after that point |
||
633 | * in the buffer; treat this as if it were truncated. |
||
634 | */ |
||
635 | trunc: |
||
636 | linelen = idx - startidx; |
||
637 | ND_PRINT((ndo, "%s%.*s[!%s]", prefix, (int)linelen, pptr + startidx, |
||
638 | protoname)); |
||
639 | return (0); |
||
640 | |||
641 | print: |
||
642 | ND_PRINT((ndo, "%s%.*s", prefix, (int)linelen, pptr + startidx)); |
||
643 | return (idx); |
||
644 | } |
||
645 | |||
646 | void |
||
647 | txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len, |
||
648 | const char *protoname, const char **cmds, u_int flags) |
||
649 | { |
||
650 | u_int idx, eol; |
||
651 | u_char token[MAX_TOKEN+1]; |
||
652 | const char *cmd; |
||
653 | int is_reqresp = 0; |
||
654 | const char *pnp; |
||
655 | |||
656 | if (cmds != NULL) { |
||
657 | /* |
||
658 | * This protocol has more than just request and |
||
659 | * response lines; see whether this looks like a |
||
660 | * request or response. |
||
661 | */ |
||
662 | idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token)); |
||
663 | if (idx != 0) { |
||
664 | /* Is this a valid request name? */ |
||
665 | while ((cmd = *cmds++) != NULL) { |
||
666 | if (strcasecmp((const char *)token, cmd) == 0) { |
||
667 | /* Yes. */ |
||
668 | is_reqresp = 1; |
||
669 | break; |
||
670 | } |
||
671 | } |
||
672 | |||
673 | /* |
||
674 | * No - is this a valid response code (3 digits)? |
||
675 | * |
||
676 | * Is this token the response code, or is the next |
||
677 | * token the response code? |
||
678 | */ |
||
679 | if (flags & RESP_CODE_SECOND_TOKEN) { |
||
680 | /* |
||
681 | * Next token - get it. |
||
682 | */ |
||
683 | idx = fetch_token(ndo, pptr, idx, len, token, |
||
684 | sizeof(token)); |
||
685 | } |
||
686 | if (idx != 0) { |
||
687 | if (isdigit(token[0]) && isdigit(token[1]) && |
||
688 | isdigit(token[2]) && token[3] == '\0') { |
||
689 | /* Yes. */ |
||
690 | is_reqresp = 1; |
||
691 | } |
||
692 | } |
||
693 | } |
||
694 | } else { |
||
695 | /* |
||
696 | * This protocol has only request and response lines |
||
697 | * (e.g., FTP, where all the data goes over a |
||
698 | * different connection); assume the payload is |
||
699 | * a request or response. |
||
700 | */ |
||
701 | is_reqresp = 1; |
||
702 | } |
||
703 | |||
704 | /* Capitalize the protocol name */ |
||
705 | for (pnp = protoname; *pnp != '\0'; pnp++) |
||
706 | ND_PRINT((ndo, "%c", toupper(*pnp))); |
||
707 | |||
708 | if (is_reqresp) { |
||
709 | /* |
||
710 | * In non-verbose mode, just print the protocol, followed |
||
711 | * by the first line as the request or response info. |
||
712 | * |
||
713 | * In verbose mode, print lines as text until we run out |
||
714 | * of characters or see something that's not a |
||
715 | * printable-ASCII line. |
||
716 | */ |
||
717 | if (ndo->ndo_vflag) { |
||
718 | /* |
||
719 | * We're going to print all the text lines in the |
||
720 | * request or response; just print the length |
||
721 | * on the first line of the output. |
||
722 | */ |
||
723 | ND_PRINT((ndo, ", length: %u", len)); |
||
724 | for (idx = 0; |
||
725 | idx < len && (eol = print_txt_line(ndo, protoname, "\n\t", pptr, idx, len)) != 0; |
||
726 | idx = eol) |
||
727 | ; |
||
728 | } else { |
||
729 | /* |
||
730 | * Just print the first text line. |
||
731 | */ |
||
732 | print_txt_line(ndo, protoname, ": ", pptr, 0, len); |
||
733 | } |
||
734 | } |
||
735 | } |
||
736 | |||
737 | /* VARARGS */ |
||
738 | void |
||
739 | error(const char *fmt, ...) |
||
740 | { |
||
741 | va_list ap; |
||
742 | |||
743 | (void)fprintf(stderr, "%s: ", program_name); |
||
744 | va_start(ap, fmt); |
||
745 | (void)vfprintf(stderr, fmt, ap); |
||
746 | va_end(ap); |
||
747 | if (*fmt) { |
||
748 | fmt += strlen(fmt); |
||
749 | if (fmt[-1] != '\n') |
||
750 | (void)fputc('\n', stderr); |
||
751 | } |
||
752 | exit(1); |
||
753 | /* NOTREACHED */ |
||
754 | } |
||
755 | |||
756 | /* VARARGS */ |
||
757 | void |
||
758 | warning(const char *fmt, ...) |
||
759 | { |
||
760 | va_list ap; |
||
761 | |||
762 | (void)fprintf(stderr, "%s: WARNING: ", program_name); |
||
763 | va_start(ap, fmt); |
||
764 | (void)vfprintf(stderr, fmt, ap); |
||
765 | va_end(ap); |
||
766 | if (*fmt) { |
||
767 | fmt += strlen(fmt); |
||
768 | if (fmt[-1] != '\n') |
||
769 | (void)fputc('\n', stderr); |
||
770 | } |
||
771 | } |
||
772 | |||
773 | /* |
||
774 | * Copy arg vector into a new buffer, concatenating arguments with spaces. |
||
775 | */ |
||
776 | char * |
||
777 | copy_argv(register char **argv) |
||
778 | { |
||
779 | register char **p; |
||
780 | register u_int len = 0; |
||
781 | char *buf; |
||
782 | char *src, *dst; |
||
783 | |||
784 | p = argv; |
||
785 | if (*p == 0) |
||
786 | return 0; |
||
787 | |||
788 | while (*p) |
||
789 | len += strlen(*p++) + 1; |
||
790 | |||
791 | buf = (char *)malloc(len); |
||
792 | if (buf == NULL) |
||
793 | error("copy_argv: malloc"); |
||
794 | |||
795 | p = argv; |
||
796 | dst = buf; |
||
797 | while ((src = *p++) != NULL) { |
||
798 | while ((*dst++ = *src++) != '\0') |
||
799 | ; |
||
800 | dst[-1] = ' '; |
||
801 | } |
||
802 | dst[-1] = '\0'; |
||
803 | |||
804 | return buf; |
||
805 | } |
||
806 | |||
807 | /* |
||
808 | * On Windows, we need to open the file in binary mode, so that |
||
809 | * we get all the bytes specified by the size we get from "fstat()". |
||
810 | * On UNIX, that's not necessary. O_BINARY is defined on Windows; |
||
811 | * we define it as 0 if it's not defined, so it does nothing. |
||
812 | */ |
||
813 | #ifndef O_BINARY |
||
814 | #define O_BINARY 0 |
||
815 | #endif |
||
816 | |||
817 | char * |
||
818 | read_infile(char *fname) |
||
819 | { |
||
820 | register int i, fd, cc; |
||
821 | register char *cp; |
||
822 | struct stat buf; |
||
823 | |||
824 | fd = open(fname, O_RDONLY|O_BINARY); |
||
825 | if (fd < 0) |
||
826 | error("can't open %s: %s", fname, pcap_strerror(errno)); |
||
827 | |||
828 | if (fstat(fd, &buf) < 0) |
||
829 | error("can't stat %s: %s", fname, pcap_strerror(errno)); |
||
830 | |||
831 | cp = malloc((u_int)buf.st_size + 1); |
||
832 | if (cp == NULL) |
||
833 | error("malloc(%d) for %s: %s", (u_int)buf.st_size + 1, |
||
834 | fname, pcap_strerror(errno)); |
||
835 | cc = read(fd, cp, (u_int)buf.st_size); |
||
836 | if (cc < 0) |
||
837 | error("read %s: %s", fname, pcap_strerror(errno)); |
||
838 | if (cc != buf.st_size) |
||
839 | error("short read %s (%d != %d)", fname, cc, (int)buf.st_size); |
||
840 | |||
841 | close(fd); |
||
842 | /* replace "# comment" with spaces */ |
||
843 | for (i = 0; i < cc; i++) { |
||
844 | if (cp[i] == '#') |
||
845 | while (i < cc && cp[i] != '\n') |
||
846 | cp[i++] = ' '; |
||
847 | } |
||
848 | cp[cc] = '\0'; |
||
849 | return (cp); |
||
850 | } |
||
851 | |||
852 | void |
||
853 | safeputs(netdissect_options *ndo, |
||
854 | const u_char *s, const u_int maxlen) |
||
855 | { |
||
856 | u_int idx = 0; |
||
857 | |||
858 | while (*s && idx < maxlen) { |
||
859 | safeputchar(ndo, *s); |
||
860 | idx++; |
||
861 | s++; |
||
862 | } |
||
863 | } |
||
864 | |||
865 | void |
||
866 | safeputchar(netdissect_options *ndo, |
||
867 | const u_char c) |
||
868 | { |
||
869 | ND_PRINT((ndo, (c < 0x80 && ND_ISPRINT(c)) ? "%c" : "\\0x%02x", c)); |
||
870 | } |
||
871 | |||
872 | #ifdef LBL_ALIGN |
||
873 | /* |
||
874 | * Some compilers try to optimize memcpy(), using the alignment constraint |
||
875 | * on the argument pointer type. by using this function, we try to avoid the |
||
876 | * optimization. |
||
877 | */ |
||
878 | void |
||
879 | unaligned_memcpy(void *p, const void *q, size_t l) |
||
880 | { |
||
881 | memcpy(p, q, l); |
||
882 | } |
||
883 | |||
884 | /* As with memcpy(), so with memcmp(). */ |
||
885 | int |
||
886 | unaligned_memcmp(const void *p, const void *q, size_t l) |
||
887 | { |
||
888 | return (memcmp(p, q, l)); |
||
889 | } |
||
890 | #endif |