nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /*#define CHASE_CHAIN*/ |
2 | /* |
||
3 | * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 |
||
4 | * The Regents of the University of California. All rights reserved. |
||
5 | * |
||
6 | * Redistribution and use in source and binary forms, with or without |
||
7 | * modification, are permitted provided that: (1) source code distributions |
||
8 | * retain the above copyright notice and this paragraph in its entirety, (2) |
||
9 | * distributions including binary code include the above copyright notice and |
||
10 | * this paragraph in its entirety in the documentation or other materials |
||
11 | * provided with the distribution, and (3) all advertising materials mentioning |
||
12 | * features or use of this software display the following acknowledgement: |
||
13 | * ``This product includes software developed by the University of California, |
||
14 | * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
||
15 | * the University nor the names of its contributors may be used to endorse |
||
16 | * or promote products derived from this software without specific prior |
||
17 | * written permission. |
||
18 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
||
19 | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
||
20 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
||
21 | */ |
||
22 | |||
23 | #ifdef HAVE_CONFIG_H |
||
24 | #include "config.h" |
||
25 | #endif |
||
26 | |||
27 | #ifdef WIN32 |
||
28 | #include <pcap-stdinc.h> |
||
29 | #else /* WIN32 */ |
||
30 | #if HAVE_INTTYPES_H |
||
31 | #include <inttypes.h> |
||
32 | #elif HAVE_STDINT_H |
||
33 | #include <stdint.h> |
||
34 | #endif |
||
35 | #ifdef HAVE_SYS_BITYPES_H |
||
36 | #include <sys/bitypes.h> |
||
37 | #endif |
||
38 | #include <sys/types.h> |
||
39 | #include <sys/socket.h> |
||
40 | #endif /* WIN32 */ |
||
41 | |||
42 | /* |
||
43 | * XXX - why was this included even on UNIX? |
||
44 | */ |
||
45 | #ifdef __MINGW32__ |
||
46 | #include "ip6_misc.h" |
||
47 | #endif |
||
48 | |||
49 | #ifndef WIN32 |
||
50 | |||
51 | #ifdef __NetBSD__ |
||
52 | #include <sys/param.h> |
||
53 | #endif |
||
54 | |||
55 | #include <netinet/in.h> |
||
56 | #include <arpa/inet.h> |
||
57 | |||
58 | #endif /* WIN32 */ |
||
59 | |||
60 | #include <stdlib.h> |
||
61 | #include <string.h> |
||
62 | #include <memory.h> |
||
63 | #include <setjmp.h> |
||
64 | #include <stdarg.h> |
||
65 | |||
66 | #ifdef MSDOS |
||
67 | #include "pcap-dos.h" |
||
68 | #endif |
||
69 | |||
70 | #include "pcap-int.h" |
||
71 | |||
72 | #include "ethertype.h" |
||
73 | #include "nlpid.h" |
||
74 | #include "llc.h" |
||
75 | #include "gencode.h" |
||
76 | #include "ieee80211.h" |
||
77 | #include "atmuni31.h" |
||
78 | #include "sunatmpos.h" |
||
79 | #include "ppp.h" |
||
80 | #include "pcap/sll.h" |
||
81 | #include "pcap/ipnet.h" |
||
82 | #include "arcnet.h" |
||
83 | #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) |
||
84 | #include <linux/types.h> |
||
85 | #include <linux/if_packet.h> |
||
86 | #include <linux/filter.h> |
||
87 | #endif |
||
88 | #ifdef HAVE_NET_PFVAR_H |
||
89 | #include <sys/socket.h> |
||
90 | #include <net/if.h> |
||
91 | #include <net/pfvar.h> |
||
92 | #include <net/if_pflog.h> |
||
93 | #endif |
||
94 | #ifndef offsetof |
||
95 | #define offsetof(s, e) ((size_t)&((s *)0)->e) |
||
96 | #endif |
||
97 | #ifdef INET6 |
||
98 | #ifndef WIN32 |
||
99 | #include <netdb.h> /* for "struct addrinfo" */ |
||
100 | #endif /* WIN32 */ |
||
101 | #endif /*INET6*/ |
||
102 | #include <pcap/namedb.h> |
||
103 | |||
104 | #define ETHERMTU 1500 |
||
105 | |||
106 | #ifndef ETHERTYPE_TEB |
||
107 | #define ETHERTYPE_TEB 0x6558 |
||
108 | #endif |
||
109 | |||
110 | #ifndef IPPROTO_HOPOPTS |
||
111 | #define IPPROTO_HOPOPTS 0 |
||
112 | #endif |
||
113 | #ifndef IPPROTO_ROUTING |
||
114 | #define IPPROTO_ROUTING 43 |
||
115 | #endif |
||
116 | #ifndef IPPROTO_FRAGMENT |
||
117 | #define IPPROTO_FRAGMENT 44 |
||
118 | #endif |
||
119 | #ifndef IPPROTO_DSTOPTS |
||
120 | #define IPPROTO_DSTOPTS 60 |
||
121 | #endif |
||
122 | #ifndef IPPROTO_SCTP |
||
123 | #define IPPROTO_SCTP 132 |
||
124 | #endif |
||
125 | |||
126 | #define GENEVE_PORT 6081 |
||
127 | |||
128 | #ifdef HAVE_OS_PROTO_H |
||
129 | #include "os-proto.h" |
||
130 | #endif |
||
131 | |||
132 | #define JMP(c) ((c)|BPF_JMP|BPF_K) |
||
133 | |||
134 | /* Locals */ |
||
135 | static jmp_buf top_ctx; |
||
136 | static pcap_t *bpf_pcap; |
||
137 | |||
138 | /* Hack for handling VLAN and MPLS stacks. */ |
||
139 | #ifdef WIN32 |
||
140 | static u_int label_stack_depth = (u_int)-1, vlan_stack_depth = (u_int)-1; |
||
141 | #else |
||
142 | static u_int label_stack_depth = -1U, vlan_stack_depth = -1U; |
||
143 | #endif |
||
144 | |||
145 | /* XXX */ |
||
146 | static int pcap_fddipad; |
||
147 | |||
148 | /* VARARGS */ |
||
149 | void |
||
150 | bpf_error(const char *fmt, ...) |
||
151 | { |
||
152 | va_list ap; |
||
153 | |||
154 | va_start(ap, fmt); |
||
155 | if (bpf_pcap != NULL) |
||
156 | (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE, |
||
157 | fmt, ap); |
||
158 | va_end(ap); |
||
159 | longjmp(top_ctx, 1); |
||
160 | /* NOTREACHED */ |
||
161 | } |
||
162 | |||
163 | static void init_linktype(pcap_t *); |
||
164 | |||
165 | static void init_regs(void); |
||
166 | static int alloc_reg(void); |
||
167 | static void free_reg(int); |
||
168 | |||
169 | static struct block *root; |
||
170 | |||
171 | /* |
||
172 | * Absolute offsets, which are offsets from the beginning of the raw |
||
173 | * packet data, are, in the general case, the sum of a variable value |
||
174 | * and a constant value; the variable value may be absent, in which |
||
175 | * case the offset is only the constant value, and the constant value |
||
176 | * may be zero, in which case the offset is only the variable value. |
||
177 | * |
||
178 | * bpf_abs_offset is a structure containing all that information: |
||
179 | * |
||
180 | * is_variable is 1 if there's a variable part. |
||
181 | * |
||
182 | * constant_part is the constant part of the value, possibly zero; |
||
183 | * |
||
184 | * if is_variable is 1, reg is the register number for a register |
||
185 | * containing the variable value if the register has been assigned, |
||
186 | * and -1 otherwise. |
||
187 | */ |
||
188 | typedef struct { |
||
189 | int is_variable; |
||
190 | u_int constant_part; |
||
191 | int reg; |
||
192 | } bpf_abs_offset; |
||
193 | |||
194 | /* |
||
195 | * Value passed to gen_load_a() to indicate what the offset argument |
||
196 | * is relative to the beginning of. |
||
197 | */ |
||
198 | enum e_offrel { |
||
199 | OR_PACKET, /* full packet data */ |
||
200 | OR_LINKHDR, /* link-layer header */ |
||
201 | OR_PREVLINKHDR, /* previous link-layer header */ |
||
202 | OR_LLC, /* 802.2 LLC header */ |
||
203 | OR_PREVMPLSHDR, /* previous MPLS header */ |
||
204 | OR_LINKTYPE, /* link-layer type */ |
||
205 | OR_LINKPL, /* link-layer payload */ |
||
206 | OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */ |
||
207 | OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */ |
||
208 | OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */ |
||
209 | }; |
||
210 | |||
211 | #ifdef INET6 |
||
212 | /* |
||
213 | * As errors are handled by a longjmp, anything allocated must be freed |
||
214 | * in the longjmp handler, so it must be reachable from that handler. |
||
215 | * One thing that's allocated is the result of pcap_nametoaddrinfo(); |
||
216 | * it must be freed with freeaddrinfo(). This variable points to any |
||
217 | * addrinfo structure that would need to be freed. |
||
218 | */ |
||
219 | static struct addrinfo *ai; |
||
220 | #endif |
||
221 | |||
222 | /* |
||
223 | * We divy out chunks of memory rather than call malloc each time so |
||
224 | * we don't have to worry about leaking memory. It's probably |
||
225 | * not a big deal if all this memory was wasted but if this ever |
||
226 | * goes into a library that would probably not be a good idea. |
||
227 | * |
||
228 | * XXX - this *is* in a library.... |
||
229 | */ |
||
230 | #define NCHUNKS 16 |
||
231 | #define CHUNK0SIZE 1024 |
||
232 | struct chunk { |
||
233 | u_int n_left; |
||
234 | void *m; |
||
235 | }; |
||
236 | |||
237 | static struct chunk chunks[NCHUNKS]; |
||
238 | static int cur_chunk; |
||
239 | |||
240 | static void *newchunk(u_int); |
||
241 | static void freechunks(void); |
||
242 | static inline struct block *new_block(int); |
||
243 | static inline struct slist *new_stmt(int); |
||
244 | static struct block *gen_retblk(int); |
||
245 | static inline void syntax(void); |
||
246 | |||
247 | static void backpatch(struct block *, struct block *); |
||
248 | static void merge(struct block *, struct block *); |
||
249 | static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32); |
||
250 | static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32); |
||
251 | static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32); |
||
252 | static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32); |
||
253 | static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32); |
||
254 | static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32, |
||
255 | bpf_u_int32); |
||
256 | static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *); |
||
257 | static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32, |
||
258 | bpf_u_int32, bpf_u_int32, int, bpf_int32); |
||
259 | static struct slist *gen_load_absoffsetrel(bpf_abs_offset *, u_int, u_int); |
||
260 | static struct slist *gen_load_a(enum e_offrel, u_int, u_int); |
||
261 | static struct slist *gen_loadx_iphdrlen(void); |
||
262 | static struct block *gen_uncond(int); |
||
263 | static inline struct block *gen_true(void); |
||
264 | static inline struct block *gen_false(void); |
||
265 | static struct block *gen_ether_linktype(int); |
||
266 | static struct block *gen_ipnet_linktype(int); |
||
267 | static struct block *gen_linux_sll_linktype(int); |
||
268 | static struct slist *gen_load_prism_llprefixlen(void); |
||
269 | static struct slist *gen_load_avs_llprefixlen(void); |
||
270 | static struct slist *gen_load_radiotap_llprefixlen(void); |
||
271 | static struct slist *gen_load_ppi_llprefixlen(void); |
||
272 | static void insert_compute_vloffsets(struct block *); |
||
273 | static struct slist *gen_abs_offset_varpart(bpf_abs_offset *); |
||
274 | static int ethertype_to_ppptype(int); |
||
275 | static struct block *gen_linktype(int); |
||
276 | static struct block *gen_snap(bpf_u_int32, bpf_u_int32); |
||
277 | static struct block *gen_llc_linktype(int); |
||
278 | static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int); |
||
279 | #ifdef INET6 |
||
280 | static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int); |
||
281 | #endif |
||
282 | static struct block *gen_ahostop(const u_char *, int); |
||
283 | static struct block *gen_ehostop(const u_char *, int); |
||
284 | static struct block *gen_fhostop(const u_char *, int); |
||
285 | static struct block *gen_thostop(const u_char *, int); |
||
286 | static struct block *gen_wlanhostop(const u_char *, int); |
||
287 | static struct block *gen_ipfchostop(const u_char *, int); |
||
288 | static struct block *gen_dnhostop(bpf_u_int32, int); |
||
289 | static struct block *gen_mpls_linktype(int); |
||
290 | static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int); |
||
291 | #ifdef INET6 |
||
292 | static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int); |
||
293 | #endif |
||
294 | #ifndef INET6 |
||
295 | static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int); |
||
296 | #endif |
||
297 | static struct block *gen_ipfrag(void); |
||
298 | static struct block *gen_portatom(int, bpf_int32); |
||
299 | static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32); |
||
300 | static struct block *gen_portatom6(int, bpf_int32); |
||
301 | static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32); |
||
302 | struct block *gen_portop(int, int, int); |
||
303 | static struct block *gen_port(int, int, int); |
||
304 | struct block *gen_portrangeop(int, int, int, int); |
||
305 | static struct block *gen_portrange(int, int, int, int); |
||
306 | struct block *gen_portop6(int, int, int); |
||
307 | static struct block *gen_port6(int, int, int); |
||
308 | struct block *gen_portrangeop6(int, int, int, int); |
||
309 | static struct block *gen_portrange6(int, int, int, int); |
||
310 | static int lookup_proto(const char *, int); |
||
311 | static struct block *gen_protochain(int, int, int); |
||
312 | static struct block *gen_proto(int, int, int); |
||
313 | static struct slist *xfer_to_x(struct arth *); |
||
314 | static struct slist *xfer_to_a(struct arth *); |
||
315 | static struct block *gen_mac_multicast(int); |
||
316 | static struct block *gen_len(int, int); |
||
317 | static struct block *gen_check_802_11_data_frame(void); |
||
318 | static struct block *gen_geneve_ll_check(void); |
||
319 | |||
320 | static struct block *gen_ppi_dlt_check(void); |
||
321 | static struct block *gen_msg_abbrev(int type); |
||
322 | |||
323 | static void * |
||
324 | newchunk(n) |
||
325 | u_int n; |
||
326 | { |
||
327 | struct chunk *cp; |
||
328 | int k; |
||
329 | size_t size; |
||
330 | |||
331 | #ifndef __NetBSD__ |
||
332 | /* XXX Round up to nearest long. */ |
||
333 | n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1); |
||
334 | #else |
||
335 | /* XXX Round up to structure boundary. */ |
||
336 | n = ALIGN(n); |
||
337 | #endif |
||
338 | |||
339 | cp = &chunks[cur_chunk]; |
||
340 | if (n > cp->n_left) { |
||
341 | ++cp, k = ++cur_chunk; |
||
342 | if (k >= NCHUNKS) |
||
343 | bpf_error("out of memory"); |
||
344 | size = CHUNK0SIZE << k; |
||
345 | cp->m = (void *)malloc(size); |
||
346 | if (cp->m == NULL) |
||
347 | bpf_error("out of memory"); |
||
348 | memset((char *)cp->m, 0, size); |
||
349 | cp->n_left = size; |
||
350 | if (n > size) |
||
351 | bpf_error("out of memory"); |
||
352 | } |
||
353 | cp->n_left -= n; |
||
354 | return (void *)((char *)cp->m + cp->n_left); |
||
355 | } |
||
356 | |||
357 | static void |
||
358 | freechunks() |
||
359 | { |
||
360 | int i; |
||
361 | |||
362 | cur_chunk = 0; |
||
363 | for (i = 0; i < NCHUNKS; ++i) |
||
364 | if (chunks[i].m != NULL) { |
||
365 | free(chunks[i].m); |
||
366 | chunks[i].m = NULL; |
||
367 | } |
||
368 | } |
||
369 | |||
370 | /* |
||
371 | * A strdup whose allocations are freed after code generation is over. |
||
372 | */ |
||
373 | char * |
||
374 | sdup(s) |
||
375 | register const char *s; |
||
376 | { |
||
377 | int n = strlen(s) + 1; |
||
378 | char *cp = newchunk(n); |
||
379 | |||
380 | strlcpy(cp, s, n); |
||
381 | return (cp); |
||
382 | } |
||
383 | |||
384 | static inline struct block * |
||
385 | new_block(code) |
||
386 | int code; |
||
387 | { |
||
388 | struct block *p; |
||
389 | |||
390 | p = (struct block *)newchunk(sizeof(*p)); |
||
391 | p->s.code = code; |
||
392 | p->head = p; |
||
393 | |||
394 | return p; |
||
395 | } |
||
396 | |||
397 | static inline struct slist * |
||
398 | new_stmt(code) |
||
399 | int code; |
||
400 | { |
||
401 | struct slist *p; |
||
402 | |||
403 | p = (struct slist *)newchunk(sizeof(*p)); |
||
404 | p->s.code = code; |
||
405 | |||
406 | return p; |
||
407 | } |
||
408 | |||
409 | static struct block * |
||
410 | gen_retblk(v) |
||
411 | int v; |
||
412 | { |
||
413 | struct block *b = new_block(BPF_RET|BPF_K); |
||
414 | |||
415 | b->s.k = v; |
||
416 | return b; |
||
417 | } |
||
418 | |||
419 | static inline void |
||
420 | syntax() |
||
421 | { |
||
422 | bpf_error("syntax error in filter expression"); |
||
423 | } |
||
424 | |||
425 | static bpf_u_int32 netmask; |
||
426 | static int snaplen; |
||
427 | int no_optimize; |
||
428 | |||
429 | int |
||
430 | pcap_compile(pcap_t *p, struct bpf_program *program, |
||
431 | const char *buf, int optimize, bpf_u_int32 mask) |
||
432 | { |
||
433 | extern int n_errors; |
||
434 | const char * volatile xbuf = buf; |
||
435 | u_int len; |
||
436 | int rc; |
||
437 | |||
438 | /* |
||
439 | * XXX - single-thread this code path with pthread calls on |
||
440 | * UN*X, if the platform supports pthreads? If that requires |
||
441 | * a separate -lpthread, we might not want to do that. |
||
442 | */ |
||
443 | #ifdef WIN32 |
||
444 | extern int wsockinit (void); |
||
445 | static int done = 0; |
||
446 | |||
447 | if (!done) |
||
448 | wsockinit(); |
||
449 | done = 1; |
||
450 | EnterCriticalSection(&g_PcapCompileCriticalSection); |
||
451 | #endif |
||
452 | |||
453 | /* |
||
454 | * If this pcap_t hasn't been activated, it doesn't have a |
||
455 | * link-layer type, so we can't use it. |
||
456 | */ |
||
457 | if (!p->activated) { |
||
458 | snprintf(p->errbuf, PCAP_ERRBUF_SIZE, |
||
459 | "not-yet-activated pcap_t passed to pcap_compile"); |
||
460 | rc = -1; |
||
461 | goto quit; |
||
462 | } |
||
463 | no_optimize = 0; |
||
464 | n_errors = 0; |
||
465 | root = NULL; |
||
466 | bpf_pcap = p; |
||
467 | init_regs(); |
||
468 | |||
469 | if (setjmp(top_ctx)) { |
||
470 | #ifdef INET6 |
||
471 | if (ai != NULL) { |
||
472 | freeaddrinfo(ai); |
||
473 | ai = NULL; |
||
474 | } |
||
475 | #endif |
||
476 | lex_cleanup(); |
||
477 | freechunks(); |
||
478 | rc = -1; |
||
479 | goto quit; |
||
480 | } |
||
481 | |||
482 | netmask = mask; |
||
483 | |||
484 | snaplen = pcap_snapshot(p); |
||
485 | if (snaplen == 0) { |
||
486 | snprintf(p->errbuf, PCAP_ERRBUF_SIZE, |
||
487 | "snaplen of 0 rejects all packets"); |
||
488 | rc = -1; |
||
489 | goto quit; |
||
490 | } |
||
491 | |||
492 | lex_init(xbuf ? xbuf : ""); |
||
493 | init_linktype(p); |
||
494 | (void)pcap_parse(); |
||
495 | |||
496 | if (n_errors) |
||
497 | syntax(); |
||
498 | |||
499 | if (root == NULL) |
||
500 | root = gen_retblk(snaplen); |
||
501 | |||
502 | if (optimize && !no_optimize) { |
||
503 | bpf_optimize(&root); |
||
504 | if (root == NULL || |
||
505 | (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0)) |
||
506 | bpf_error("expression rejects all packets"); |
||
507 | } |
||
508 | program->bf_insns = icode_to_fcode(root, &len); |
||
509 | program->bf_len = len; |
||
510 | |||
511 | lex_cleanup(); |
||
512 | freechunks(); |
||
513 | |||
514 | rc = 0; /* We're all okay */ |
||
515 | |||
516 | quit: |
||
517 | |||
518 | #ifdef WIN32 |
||
519 | LeaveCriticalSection(&g_PcapCompileCriticalSection); |
||
520 | #endif |
||
521 | |||
522 | return (rc); |
||
523 | } |
||
524 | |||
525 | /* |
||
526 | * entry point for using the compiler with no pcap open |
||
527 | * pass in all the stuff that is needed explicitly instead. |
||
528 | */ |
||
529 | int |
||
530 | pcap_compile_nopcap(int snaplen_arg, int linktype_arg, |
||
531 | struct bpf_program *program, |
||
532 | const char *buf, int optimize, bpf_u_int32 mask) |
||
533 | { |
||
534 | pcap_t *p; |
||
535 | int ret; |
||
536 | |||
537 | p = pcap_open_dead(linktype_arg, snaplen_arg); |
||
538 | if (p == NULL) |
||
539 | return (-1); |
||
540 | ret = pcap_compile(p, program, buf, optimize, mask); |
||
541 | pcap_close(p); |
||
542 | return (ret); |
||
543 | } |
||
544 | |||
545 | /* |
||
546 | * Clean up a "struct bpf_program" by freeing all the memory allocated |
||
547 | * in it. |
||
548 | */ |
||
549 | void |
||
550 | pcap_freecode(struct bpf_program *program) |
||
551 | { |
||
552 | program->bf_len = 0; |
||
553 | if (program->bf_insns != NULL) { |
||
554 | free((char *)program->bf_insns); |
||
555 | program->bf_insns = NULL; |
||
556 | } |
||
557 | } |
||
558 | |||
559 | /* |
||
560 | * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates |
||
561 | * which of the jt and jf fields has been resolved and which is a pointer |
||
562 | * back to another unresolved block (or nil). At least one of the fields |
||
563 | * in each block is already resolved. |
||
564 | */ |
||
565 | static void |
||
566 | backpatch(list, target) |
||
567 | struct block *list, *target; |
||
568 | { |
||
569 | struct block *next; |
||
570 | |||
571 | while (list) { |
||
572 | if (!list->sense) { |
||
573 | next = JT(list); |
||
574 | JT(list) = target; |
||
575 | } else { |
||
576 | next = JF(list); |
||
577 | JF(list) = target; |
||
578 | } |
||
579 | list = next; |
||
580 | } |
||
581 | } |
||
582 | |||
583 | /* |
||
584 | * Merge the lists in b0 and b1, using the 'sense' field to indicate |
||
585 | * which of jt and jf is the link. |
||
586 | */ |
||
587 | static void |
||
588 | merge(b0, b1) |
||
589 | struct block *b0, *b1; |
||
590 | { |
||
591 | register struct block **p = &b0; |
||
592 | |||
593 | /* Find end of list. */ |
||
594 | while (*p) |
||
595 | p = !((*p)->sense) ? &JT(*p) : &JF(*p); |
||
596 | |||
597 | /* Concatenate the lists. */ |
||
598 | *p = b1; |
||
599 | } |
||
600 | |||
601 | void |
||
602 | finish_parse(p) |
||
603 | struct block *p; |
||
604 | { |
||
605 | struct block *ppi_dlt_check; |
||
606 | |||
607 | /* |
||
608 | * Insert before the statements of the first (root) block any |
||
609 | * statements needed to load the lengths of any variable-length |
||
610 | * headers into registers. |
||
611 | * |
||
612 | * XXX - a fancier strategy would be to insert those before the |
||
613 | * statements of all blocks that use those lengths and that |
||
614 | * have no predecessors that use them, so that we only compute |
||
615 | * the lengths if we need them. There might be even better |
||
616 | * approaches than that. |
||
617 | * |
||
618 | * However, those strategies would be more complicated, and |
||
619 | * as we don't generate code to compute a length if the |
||
620 | * program has no tests that use the length, and as most |
||
621 | * tests will probably use those lengths, we would just |
||
622 | * postpone computing the lengths so that it's not done |
||
623 | * for tests that fail early, and it's not clear that's |
||
624 | * worth the effort. |
||
625 | */ |
||
626 | insert_compute_vloffsets(p->head); |
||
627 | |||
628 | /* |
||
629 | * For DLT_PPI captures, generate a check of the per-packet |
||
630 | * DLT value to make sure it's DLT_IEEE802_11. |
||
631 | */ |
||
632 | ppi_dlt_check = gen_ppi_dlt_check(); |
||
633 | if (ppi_dlt_check != NULL) |
||
634 | gen_and(ppi_dlt_check, p); |
||
635 | |||
636 | backpatch(p, gen_retblk(snaplen)); |
||
637 | p->sense = !p->sense; |
||
638 | backpatch(p, gen_retblk(0)); |
||
639 | root = p->head; |
||
640 | } |
||
641 | |||
642 | void |
||
643 | gen_and(b0, b1) |
||
644 | struct block *b0, *b1; |
||
645 | { |
||
646 | backpatch(b0, b1->head); |
||
647 | b0->sense = !b0->sense; |
||
648 | b1->sense = !b1->sense; |
||
649 | merge(b1, b0); |
||
650 | b1->sense = !b1->sense; |
||
651 | b1->head = b0->head; |
||
652 | } |
||
653 | |||
654 | void |
||
655 | gen_or(b0, b1) |
||
656 | struct block *b0, *b1; |
||
657 | { |
||
658 | b0->sense = !b0->sense; |
||
659 | backpatch(b0, b1->head); |
||
660 | b0->sense = !b0->sense; |
||
661 | merge(b1, b0); |
||
662 | b1->head = b0->head; |
||
663 | } |
||
664 | |||
665 | void |
||
666 | gen_not(b) |
||
667 | struct block *b; |
||
668 | { |
||
669 | b->sense = !b->sense; |
||
670 | } |
||
671 | |||
672 | static struct block * |
||
673 | gen_cmp(offrel, offset, size, v) |
||
674 | enum e_offrel offrel; |
||
675 | u_int offset, size; |
||
676 | bpf_int32 v; |
||
677 | { |
||
678 | return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v); |
||
679 | } |
||
680 | |||
681 | static struct block * |
||
682 | gen_cmp_gt(offrel, offset, size, v) |
||
683 | enum e_offrel offrel; |
||
684 | u_int offset, size; |
||
685 | bpf_int32 v; |
||
686 | { |
||
687 | return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v); |
||
688 | } |
||
689 | |||
690 | static struct block * |
||
691 | gen_cmp_ge(offrel, offset, size, v) |
||
692 | enum e_offrel offrel; |
||
693 | u_int offset, size; |
||
694 | bpf_int32 v; |
||
695 | { |
||
696 | return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v); |
||
697 | } |
||
698 | |||
699 | static struct block * |
||
700 | gen_cmp_lt(offrel, offset, size, v) |
||
701 | enum e_offrel offrel; |
||
702 | u_int offset, size; |
||
703 | bpf_int32 v; |
||
704 | { |
||
705 | return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v); |
||
706 | } |
||
707 | |||
708 | static struct block * |
||
709 | gen_cmp_le(offrel, offset, size, v) |
||
710 | enum e_offrel offrel; |
||
711 | u_int offset, size; |
||
712 | bpf_int32 v; |
||
713 | { |
||
714 | return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v); |
||
715 | } |
||
716 | |||
717 | static struct block * |
||
718 | gen_mcmp(offrel, offset, size, v, mask) |
||
719 | enum e_offrel offrel; |
||
720 | u_int offset, size; |
||
721 | bpf_int32 v; |
||
722 | bpf_u_int32 mask; |
||
723 | { |
||
724 | return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v); |
||
725 | } |
||
726 | |||
727 | static struct block * |
||
728 | gen_bcmp(offrel, offset, size, v) |
||
729 | enum e_offrel offrel; |
||
730 | register u_int offset, size; |
||
731 | register const u_char *v; |
||
732 | { |
||
733 | register struct block *b, *tmp; |
||
734 | |||
735 | b = NULL; |
||
736 | while (size >= 4) { |
||
737 | register const u_char *p = &v[size - 4]; |
||
738 | bpf_int32 w = ((bpf_int32)p[0] << 24) | |
||
739 | ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3]; |
||
740 | |||
741 | tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w); |
||
742 | if (b != NULL) |
||
743 | gen_and(b, tmp); |
||
744 | b = tmp; |
||
745 | size -= 4; |
||
746 | } |
||
747 | while (size >= 2) { |
||
748 | register const u_char *p = &v[size - 2]; |
||
749 | bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1]; |
||
750 | |||
751 | tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w); |
||
752 | if (b != NULL) |
||
753 | gen_and(b, tmp); |
||
754 | b = tmp; |
||
755 | size -= 2; |
||
756 | } |
||
757 | if (size > 0) { |
||
758 | tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]); |
||
759 | if (b != NULL) |
||
760 | gen_and(b, tmp); |
||
761 | b = tmp; |
||
762 | } |
||
763 | return b; |
||
764 | } |
||
765 | |||
766 | /* |
||
767 | * AND the field of size "size" at offset "offset" relative to the header |
||
768 | * specified by "offrel" with "mask", and compare it with the value "v" |
||
769 | * with the test specified by "jtype"; if "reverse" is true, the test |
||
770 | * should test the opposite of "jtype". |
||
771 | */ |
||
772 | static struct block * |
||
773 | gen_ncmp(offrel, offset, size, mask, jtype, reverse, v) |
||
774 | enum e_offrel offrel; |
||
775 | bpf_int32 v; |
||
776 | bpf_u_int32 offset, size, mask, jtype; |
||
777 | int reverse; |
||
778 | { |
||
779 | struct slist *s, *s2; |
||
780 | struct block *b; |
||
781 | |||
782 | s = gen_load_a(offrel, offset, size); |
||
783 | |||
784 | if (mask != 0xffffffff) { |
||
785 | s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K); |
||
786 | s2->s.k = mask; |
||
787 | sappend(s, s2); |
||
788 | } |
||
789 | |||
790 | b = new_block(JMP(jtype)); |
||
791 | b->stmts = s; |
||
792 | b->s.k = v; |
||
793 | if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE)) |
||
794 | gen_not(b); |
||
795 | return b; |
||
796 | } |
||
797 | |||
798 | /* |
||
799 | * Various code constructs need to know the layout of the packet. |
||
800 | * These variables give the necessary offsets from the beginning |
||
801 | * of the packet data. |
||
802 | */ |
||
803 | |||
804 | /* |
||
805 | * Absolute offset of the beginning of the link-layer header. |
||
806 | */ |
||
807 | static bpf_abs_offset off_linkhdr; |
||
808 | |||
809 | /* |
||
810 | * If we're checking a link-layer header for a packet encapsulated in |
||
811 | * another protocol layer, this is the equivalent information for the |
||
812 | * previous layers' link-layer header from the beginning of the raw |
||
813 | * packet data. |
||
814 | */ |
||
815 | static bpf_abs_offset off_prevlinkhdr; |
||
816 | |||
817 | /* |
||
818 | * This is the equivalent information for the outermost layers' link-layer |
||
819 | * header. |
||
820 | */ |
||
821 | static bpf_abs_offset off_outermostlinkhdr; |
||
822 | |||
823 | /* |
||
824 | * "Push" the current value of the link-layer header type and link-layer |
||
825 | * header offset onto a "stack", and set a new value. (It's not a |
||
826 | * full-blown stack; we keep only the top two items.) |
||
827 | */ |
||
828 | #define PUSH_LINKHDR(new_linktype, new_is_variable, new_constant_part, new_reg) \ |
||
829 | { \ |
||
830 | prevlinktype = new_linktype; \ |
||
831 | off_prevlinkhdr = off_linkhdr; \ |
||
832 | linktype = new_linktype; \ |
||
833 | off_linkhdr.is_variable = new_is_variable; \ |
||
834 | off_linkhdr.constant_part = new_constant_part; \ |
||
835 | off_linkhdr.reg = new_reg; \ |
||
836 | is_geneve = 0; \ |
||
837 | } |
||
838 | |||
839 | /* |
||
840 | * Absolute offset of the beginning of the link-layer payload. |
||
841 | */ |
||
842 | static bpf_abs_offset off_linkpl; |
||
843 | |||
844 | /* |
||
845 | * "off_linktype" is the offset to information in the link-layer header |
||
846 | * giving the packet type. This is an absolute offset from the beginning |
||
847 | * of the packet. |
||
848 | * |
||
849 | * For Ethernet, it's the offset of the Ethernet type field; this |
||
850 | * means that it must have a value that skips VLAN tags. |
||
851 | * |
||
852 | * For link-layer types that always use 802.2 headers, it's the |
||
853 | * offset of the LLC header; this means that it must have a value |
||
854 | * that skips VLAN tags. |
||
855 | * |
||
856 | * For PPP, it's the offset of the PPP type field. |
||
857 | * |
||
858 | * For Cisco HDLC, it's the offset of the CHDLC type field. |
||
859 | * |
||
860 | * For BSD loopback, it's the offset of the AF_ value. |
||
861 | * |
||
862 | * For Linux cooked sockets, it's the offset of the type field. |
||
863 | * |
||
864 | * off_linktype.constant_part is set to -1 for no encapsulation, |
||
865 | * in which case, IP is assumed. |
||
866 | */ |
||
867 | static bpf_abs_offset off_linktype; |
||
868 | |||
869 | /* |
||
870 | * TRUE if the link layer includes an ATM pseudo-header. |
||
871 | */ |
||
872 | static int is_atm = 0; |
||
873 | |||
874 | /* |
||
875 | * TRUE if "geneve" appeared in the filter; it causes us to generate |
||
876 | * code that checks for a Geneve header and assume that later filters |
||
877 | * apply to the encapsulated payload. |
||
878 | */ |
||
879 | static int is_geneve = 0; |
||
880 | |||
881 | /* |
||
882 | * These are offsets for the ATM pseudo-header. |
||
883 | */ |
||
884 | static u_int off_vpi; |
||
885 | static u_int off_vci; |
||
886 | static u_int off_proto; |
||
887 | |||
888 | /* |
||
889 | * These are offsets for the MTP2 fields. |
||
890 | */ |
||
891 | static u_int off_li; |
||
892 | static u_int off_li_hsl; |
||
893 | |||
894 | /* |
||
895 | * These are offsets for the MTP3 fields. |
||
896 | */ |
||
897 | static u_int off_sio; |
||
898 | static u_int off_opc; |
||
899 | static u_int off_dpc; |
||
900 | static u_int off_sls; |
||
901 | |||
902 | /* |
||
903 | * This is the offset of the first byte after the ATM pseudo_header, |
||
904 | * or -1 if there is no ATM pseudo-header. |
||
905 | */ |
||
906 | static u_int off_payload; |
||
907 | |||
908 | /* |
||
909 | * These are offsets to the beginning of the network-layer header. |
||
910 | * They are relative to the beginning of the link-layer payload (i.e., |
||
911 | * they don't include off_linkhdr.constant_part or off_linkpl.constant_part). |
||
912 | * |
||
913 | * If the link layer never uses 802.2 LLC: |
||
914 | * |
||
915 | * "off_nl" and "off_nl_nosnap" are the same. |
||
916 | * |
||
917 | * If the link layer always uses 802.2 LLC: |
||
918 | * |
||
919 | * "off_nl" is the offset if there's a SNAP header following |
||
920 | * the 802.2 header; |
||
921 | * |
||
922 | * "off_nl_nosnap" is the offset if there's no SNAP header. |
||
923 | * |
||
924 | * If the link layer is Ethernet: |
||
925 | * |
||
926 | * "off_nl" is the offset if the packet is an Ethernet II packet |
||
927 | * (we assume no 802.3+802.2+SNAP); |
||
928 | * |
||
929 | * "off_nl_nosnap" is the offset if the packet is an 802.3 packet |
||
930 | * with an 802.2 header following it. |
||
931 | */ |
||
932 | static u_int off_nl; |
||
933 | static u_int off_nl_nosnap; |
||
934 | |||
935 | static int linktype; |
||
936 | static int prevlinktype; |
||
937 | static int outermostlinktype; |
||
938 | |||
939 | static void |
||
940 | init_linktype(p) |
||
941 | pcap_t *p; |
||
942 | { |
||
943 | pcap_fddipad = p->fddipad; |
||
944 | |||
945 | /* |
||
946 | * We start out with only one link-layer header. |
||
947 | */ |
||
948 | outermostlinktype = pcap_datalink(p); |
||
949 | off_outermostlinkhdr.constant_part = 0; |
||
950 | off_outermostlinkhdr.is_variable = 0; |
||
951 | off_outermostlinkhdr.reg = -1; |
||
952 | |||
953 | prevlinktype = outermostlinktype; |
||
954 | off_prevlinkhdr.constant_part = 0; |
||
955 | off_prevlinkhdr.is_variable = 0; |
||
956 | off_prevlinkhdr.reg = -1; |
||
957 | |||
958 | linktype = outermostlinktype; |
||
959 | off_linkhdr.constant_part = 0; |
||
960 | off_linkhdr.is_variable = 0; |
||
961 | off_linkhdr.reg = -1; |
||
962 | |||
963 | /* |
||
964 | * XXX |
||
965 | */ |
||
966 | off_linkpl.constant_part = 0; |
||
967 | off_linkpl.is_variable = 0; |
||
968 | off_linkpl.reg = -1; |
||
969 | |||
970 | off_linktype.constant_part = 0; |
||
971 | off_linktype.is_variable = 0; |
||
972 | off_linktype.reg = -1; |
||
973 | |||
974 | /* |
||
975 | * Assume it's not raw ATM with a pseudo-header, for now. |
||
976 | */ |
||
977 | is_atm = 0; |
||
978 | off_vpi = -1; |
||
979 | off_vci = -1; |
||
980 | off_proto = -1; |
||
981 | off_payload = -1; |
||
982 | |||
983 | /* |
||
984 | * And not Geneve. |
||
985 | */ |
||
986 | is_geneve = 0; |
||
987 | |||
988 | /* |
||
989 | * And assume we're not doing SS7. |
||
990 | */ |
||
991 | off_li = -1; |
||
992 | off_li_hsl = -1; |
||
993 | off_sio = -1; |
||
994 | off_opc = -1; |
||
995 | off_dpc = -1; |
||
996 | off_sls = -1; |
||
997 | |||
998 | label_stack_depth = 0; |
||
999 | vlan_stack_depth = 0; |
||
1000 | |||
1001 | switch (linktype) { |
||
1002 | |||
1003 | case DLT_ARCNET: |
||
1004 | off_linktype.constant_part = 2; |
||
1005 | off_linkpl.constant_part = 6; |
||
1006 | off_nl = 0; /* XXX in reality, variable! */ |
||
1007 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1008 | break; |
||
1009 | |||
1010 | case DLT_ARCNET_LINUX: |
||
1011 | off_linktype.constant_part = 4; |
||
1012 | off_linkpl.constant_part = 8; |
||
1013 | off_nl = 0; /* XXX in reality, variable! */ |
||
1014 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1015 | break; |
||
1016 | |||
1017 | case DLT_EN10MB: |
||
1018 | off_linktype.constant_part = 12; |
||
1019 | off_linkpl.constant_part = 14; /* Ethernet header length */ |
||
1020 | off_nl = 0; /* Ethernet II */ |
||
1021 | off_nl_nosnap = 3; /* 802.3+802.2 */ |
||
1022 | break; |
||
1023 | |||
1024 | case DLT_SLIP: |
||
1025 | /* |
||
1026 | * SLIP doesn't have a link level type. The 16 byte |
||
1027 | * header is hacked into our SLIP driver. |
||
1028 | */ |
||
1029 | off_linktype.constant_part = -1; |
||
1030 | off_linkpl.constant_part = 16; |
||
1031 | off_nl = 0; |
||
1032 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1033 | break; |
||
1034 | |||
1035 | case DLT_SLIP_BSDOS: |
||
1036 | /* XXX this may be the same as the DLT_PPP_BSDOS case */ |
||
1037 | off_linktype.constant_part = -1; |
||
1038 | /* XXX end */ |
||
1039 | off_linkpl.constant_part = 24; |
||
1040 | off_nl = 0; |
||
1041 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1042 | break; |
||
1043 | |||
1044 | case DLT_NULL: |
||
1045 | case DLT_LOOP: |
||
1046 | off_linktype.constant_part = 0; |
||
1047 | off_linkpl.constant_part = 4; |
||
1048 | off_nl = 0; |
||
1049 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1050 | break; |
||
1051 | |||
1052 | case DLT_ENC: |
||
1053 | off_linktype.constant_part = 0; |
||
1054 | off_linkpl.constant_part = 12; |
||
1055 | off_nl = 0; |
||
1056 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1057 | break; |
||
1058 | |||
1059 | case DLT_PPP: |
||
1060 | case DLT_PPP_PPPD: |
||
1061 | case DLT_C_HDLC: /* BSD/OS Cisco HDLC */ |
||
1062 | case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */ |
||
1063 | off_linktype.constant_part = 2; /* skip HDLC-like framing */ |
||
1064 | off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */ |
||
1065 | off_nl = 0; |
||
1066 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1067 | break; |
||
1068 | |||
1069 | case DLT_PPP_ETHER: |
||
1070 | /* |
||
1071 | * This does no include the Ethernet header, and |
||
1072 | * only covers session state. |
||
1073 | */ |
||
1074 | off_linktype.constant_part = 6; |
||
1075 | off_linkpl.constant_part = 8; |
||
1076 | off_nl = 0; |
||
1077 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1078 | break; |
||
1079 | |||
1080 | case DLT_PPP_BSDOS: |
||
1081 | off_linktype.constant_part = 5; |
||
1082 | off_linkpl.constant_part = 24; |
||
1083 | off_nl = 0; |
||
1084 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1085 | break; |
||
1086 | |||
1087 | case DLT_FDDI: |
||
1088 | /* |
||
1089 | * FDDI doesn't really have a link-level type field. |
||
1090 | * We set "off_linktype" to the offset of the LLC header. |
||
1091 | * |
||
1092 | * To check for Ethernet types, we assume that SSAP = SNAP |
||
1093 | * is being used and pick out the encapsulated Ethernet type. |
||
1094 | * XXX - should we generate code to check for SNAP? |
||
1095 | */ |
||
1096 | off_linktype.constant_part = 13; |
||
1097 | off_linktype.constant_part += pcap_fddipad; |
||
1098 | off_linkpl.constant_part = 13; /* FDDI MAC header length */ |
||
1099 | off_linkpl.constant_part += pcap_fddipad; |
||
1100 | off_nl = 8; /* 802.2+SNAP */ |
||
1101 | off_nl_nosnap = 3; /* 802.2 */ |
||
1102 | break; |
||
1103 | |||
1104 | case DLT_IEEE802: |
||
1105 | /* |
||
1106 | * Token Ring doesn't really have a link-level type field. |
||
1107 | * We set "off_linktype" to the offset of the LLC header. |
||
1108 | * |
||
1109 | * To check for Ethernet types, we assume that SSAP = SNAP |
||
1110 | * is being used and pick out the encapsulated Ethernet type. |
||
1111 | * XXX - should we generate code to check for SNAP? |
||
1112 | * |
||
1113 | * XXX - the header is actually variable-length. |
||
1114 | * Some various Linux patched versions gave 38 |
||
1115 | * as "off_linktype" and 40 as "off_nl"; however, |
||
1116 | * if a token ring packet has *no* routing |
||
1117 | * information, i.e. is not source-routed, the correct |
||
1118 | * values are 20 and 22, as they are in the vanilla code. |
||
1119 | * |
||
1120 | * A packet is source-routed iff the uppermost bit |
||
1121 | * of the first byte of the source address, at an |
||
1122 | * offset of 8, has the uppermost bit set. If the |
||
1123 | * packet is source-routed, the total number of bytes |
||
1124 | * of routing information is 2 plus bits 0x1F00 of |
||
1125 | * the 16-bit value at an offset of 14 (shifted right |
||
1126 | * 8 - figure out which byte that is). |
||
1127 | */ |
||
1128 | off_linktype.constant_part = 14; |
||
1129 | off_linkpl.constant_part = 14; /* Token Ring MAC header length */ |
||
1130 | off_nl = 8; /* 802.2+SNAP */ |
||
1131 | off_nl_nosnap = 3; /* 802.2 */ |
||
1132 | break; |
||
1133 | |||
1134 | case DLT_PRISM_HEADER: |
||
1135 | case DLT_IEEE802_11_RADIO_AVS: |
||
1136 | case DLT_IEEE802_11_RADIO: |
||
1137 | off_linkhdr.is_variable = 1; |
||
1138 | /* Fall through, 802.11 doesn't have a variable link |
||
1139 | * prefix but is otherwise the same. */ |
||
1140 | |||
1141 | case DLT_IEEE802_11: |
||
1142 | /* |
||
1143 | * 802.11 doesn't really have a link-level type field. |
||
1144 | * We set "off_linktype.constant_part" to the offset of |
||
1145 | * the LLC header. |
||
1146 | * |
||
1147 | * To check for Ethernet types, we assume that SSAP = SNAP |
||
1148 | * is being used and pick out the encapsulated Ethernet type. |
||
1149 | * XXX - should we generate code to check for SNAP? |
||
1150 | * |
||
1151 | * We also handle variable-length radio headers here. |
||
1152 | * The Prism header is in theory variable-length, but in |
||
1153 | * practice it's always 144 bytes long. However, some |
||
1154 | * drivers on Linux use ARPHRD_IEEE80211_PRISM, but |
||
1155 | * sometimes or always supply an AVS header, so we |
||
1156 | * have to check whether the radio header is a Prism |
||
1157 | * header or an AVS header, so, in practice, it's |
||
1158 | * variable-length. |
||
1159 | */ |
||
1160 | off_linktype.constant_part = 24; |
||
1161 | off_linkpl.constant_part = 0; /* link-layer header is variable-length */ |
||
1162 | off_linkpl.is_variable = 1; |
||
1163 | off_nl = 8; /* 802.2+SNAP */ |
||
1164 | off_nl_nosnap = 3; /* 802.2 */ |
||
1165 | break; |
||
1166 | |||
1167 | case DLT_PPI: |
||
1168 | /* |
||
1169 | * At the moment we treat PPI the same way that we treat |
||
1170 | * normal Radiotap encoded packets. The difference is in |
||
1171 | * the function that generates the code at the beginning |
||
1172 | * to compute the header length. Since this code generator |
||
1173 | * of PPI supports bare 802.11 encapsulation only (i.e. |
||
1174 | * the encapsulated DLT should be DLT_IEEE802_11) we |
||
1175 | * generate code to check for this too. |
||
1176 | */ |
||
1177 | off_linktype.constant_part = 24; |
||
1178 | off_linkpl.constant_part = 0; /* link-layer header is variable-length */ |
||
1179 | off_linkpl.is_variable = 1; |
||
1180 | off_linkhdr.is_variable = 1; |
||
1181 | off_nl = 8; /* 802.2+SNAP */ |
||
1182 | off_nl_nosnap = 3; /* 802.2 */ |
||
1183 | break; |
||
1184 | |||
1185 | case DLT_ATM_RFC1483: |
||
1186 | case DLT_ATM_CLIP: /* Linux ATM defines this */ |
||
1187 | /* |
||
1188 | * assume routed, non-ISO PDUs |
||
1189 | * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00) |
||
1190 | * |
||
1191 | * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS, |
||
1192 | * or PPP with the PPP NLPID (e.g., PPPoA)? The |
||
1193 | * latter would presumably be treated the way PPPoE |
||
1194 | * should be, so you can do "pppoe and udp port 2049" |
||
1195 | * or "pppoa and tcp port 80" and have it check for |
||
1196 | * PPPo{A,E} and a PPP protocol of IP and.... |
||
1197 | */ |
||
1198 | off_linktype.constant_part = 0; |
||
1199 | off_linkpl.constant_part = 0; /* packet begins with LLC header */ |
||
1200 | off_nl = 8; /* 802.2+SNAP */ |
||
1201 | off_nl_nosnap = 3; /* 802.2 */ |
||
1202 | break; |
||
1203 | |||
1204 | case DLT_SUNATM: |
||
1205 | /* |
||
1206 | * Full Frontal ATM; you get AALn PDUs with an ATM |
||
1207 | * pseudo-header. |
||
1208 | */ |
||
1209 | is_atm = 1; |
||
1210 | off_vpi = SUNATM_VPI_POS; |
||
1211 | off_vci = SUNATM_VCI_POS; |
||
1212 | off_proto = PROTO_POS; |
||
1213 | off_payload = SUNATM_PKT_BEGIN_POS; |
||
1214 | off_linktype.constant_part = off_payload; |
||
1215 | off_linkpl.constant_part = off_payload; /* if LLC-encapsulated */ |
||
1216 | off_nl = 8; /* 802.2+SNAP */ |
||
1217 | off_nl_nosnap = 3; /* 802.2 */ |
||
1218 | break; |
||
1219 | |||
1220 | case DLT_RAW: |
||
1221 | case DLT_IPV4: |
||
1222 | case DLT_IPV6: |
||
1223 | off_linktype.constant_part = -1; |
||
1224 | off_linkpl.constant_part = 0; |
||
1225 | off_nl = 0; |
||
1226 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1227 | break; |
||
1228 | |||
1229 | case DLT_LINUX_SLL: /* fake header for Linux cooked socket */ |
||
1230 | off_linktype.constant_part = 14; |
||
1231 | off_linkpl.constant_part = 16; |
||
1232 | off_nl = 0; |
||
1233 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1234 | break; |
||
1235 | |||
1236 | case DLT_LTALK: |
||
1237 | /* |
||
1238 | * LocalTalk does have a 1-byte type field in the LLAP header, |
||
1239 | * but really it just indicates whether there is a "short" or |
||
1240 | * "long" DDP packet following. |
||
1241 | */ |
||
1242 | off_linktype.constant_part = -1; |
||
1243 | off_linkpl.constant_part = 0; |
||
1244 | off_nl = 0; |
||
1245 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1246 | break; |
||
1247 | |||
1248 | case DLT_IP_OVER_FC: |
||
1249 | /* |
||
1250 | * RFC 2625 IP-over-Fibre-Channel doesn't really have a |
||
1251 | * link-level type field. We set "off_linktype" to the |
||
1252 | * offset of the LLC header. |
||
1253 | * |
||
1254 | * To check for Ethernet types, we assume that SSAP = SNAP |
||
1255 | * is being used and pick out the encapsulated Ethernet type. |
||
1256 | * XXX - should we generate code to check for SNAP? RFC |
||
1257 | * 2625 says SNAP should be used. |
||
1258 | */ |
||
1259 | off_linktype.constant_part = 16; |
||
1260 | off_linkpl.constant_part = 16; |
||
1261 | off_nl = 8; /* 802.2+SNAP */ |
||
1262 | off_nl_nosnap = 3; /* 802.2 */ |
||
1263 | break; |
||
1264 | |||
1265 | case DLT_FRELAY: |
||
1266 | /* |
||
1267 | * XXX - we should set this to handle SNAP-encapsulated |
||
1268 | * frames (NLPID of 0x80). |
||
1269 | */ |
||
1270 | off_linktype.constant_part = -1; |
||
1271 | off_linkpl.constant_part = 0; |
||
1272 | off_nl = 0; |
||
1273 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1274 | break; |
||
1275 | |||
1276 | /* |
||
1277 | * the only BPF-interesting FRF.16 frames are non-control frames; |
||
1278 | * Frame Relay has a variable length link-layer |
||
1279 | * so lets start with offset 4 for now and increments later on (FIXME); |
||
1280 | */ |
||
1281 | case DLT_MFR: |
||
1282 | off_linktype.constant_part = -1; |
||
1283 | off_linkpl.constant_part = 0; |
||
1284 | off_nl = 4; |
||
1285 | off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */ |
||
1286 | break; |
||
1287 | |||
1288 | case DLT_APPLE_IP_OVER_IEEE1394: |
||
1289 | off_linktype.constant_part = 16; |
||
1290 | off_linkpl.constant_part = 18; |
||
1291 | off_nl = 0; |
||
1292 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1293 | break; |
||
1294 | |||
1295 | case DLT_SYMANTEC_FIREWALL: |
||
1296 | off_linktype.constant_part = 6; |
||
1297 | off_linkpl.constant_part = 44; |
||
1298 | off_nl = 0; /* Ethernet II */ |
||
1299 | off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */ |
||
1300 | break; |
||
1301 | |||
1302 | #ifdef HAVE_NET_PFVAR_H |
||
1303 | case DLT_PFLOG: |
||
1304 | off_linktype.constant_part = 0; |
||
1305 | off_linkpl.constant_part = PFLOG_HDRLEN; |
||
1306 | off_nl = 0; |
||
1307 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
1308 | break; |
||
1309 | #endif |
||
1310 | |||
1311 | case DLT_JUNIPER_MFR: |
||
1312 | case DLT_JUNIPER_MLFR: |
||
1313 | case DLT_JUNIPER_MLPPP: |
||
1314 | case DLT_JUNIPER_PPP: |
||
1315 | case DLT_JUNIPER_CHDLC: |
||
1316 | case DLT_JUNIPER_FRELAY: |
||
1317 | off_linktype.constant_part = 4; |
||
1318 | off_linkpl.constant_part = 4; |
||
1319 | off_nl = 0; |
||
1320 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1321 | break; |
||
1322 | |||
1323 | case DLT_JUNIPER_ATM1: |
||
1324 | off_linktype.constant_part = 4; /* in reality variable between 4-8 */ |
||
1325 | off_linkpl.constant_part = 4; /* in reality variable between 4-8 */ |
||
1326 | off_nl = 0; |
||
1327 | off_nl_nosnap = 10; |
||
1328 | break; |
||
1329 | |||
1330 | case DLT_JUNIPER_ATM2: |
||
1331 | off_linktype.constant_part = 8; /* in reality variable between 8-12 */ |
||
1332 | off_linkpl.constant_part = 8; /* in reality variable between 8-12 */ |
||
1333 | off_nl = 0; |
||
1334 | off_nl_nosnap = 10; |
||
1335 | break; |
||
1336 | |||
1337 | /* frames captured on a Juniper PPPoE service PIC |
||
1338 | * contain raw ethernet frames */ |
||
1339 | case DLT_JUNIPER_PPPOE: |
||
1340 | case DLT_JUNIPER_ETHER: |
||
1341 | off_linkpl.constant_part = 14; |
||
1342 | off_linktype.constant_part = 16; |
||
1343 | off_nl = 18; /* Ethernet II */ |
||
1344 | off_nl_nosnap = 21; /* 802.3+802.2 */ |
||
1345 | break; |
||
1346 | |||
1347 | case DLT_JUNIPER_PPPOE_ATM: |
||
1348 | off_linktype.constant_part = 4; |
||
1349 | off_linkpl.constant_part = 6; |
||
1350 | off_nl = 0; |
||
1351 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1352 | break; |
||
1353 | |||
1354 | case DLT_JUNIPER_GGSN: |
||
1355 | off_linktype.constant_part = 6; |
||
1356 | off_linkpl.constant_part = 12; |
||
1357 | off_nl = 0; |
||
1358 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1359 | break; |
||
1360 | |||
1361 | case DLT_JUNIPER_ES: |
||
1362 | off_linktype.constant_part = 6; |
||
1363 | off_linkpl.constant_part = -1; /* not really a network layer but raw IP addresses */ |
||
1364 | off_nl = -1; /* not really a network layer but raw IP addresses */ |
||
1365 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1366 | break; |
||
1367 | |||
1368 | case DLT_JUNIPER_MONITOR: |
||
1369 | off_linktype.constant_part = 12; |
||
1370 | off_linkpl.constant_part = 12; |
||
1371 | off_nl = 0; /* raw IP/IP6 header */ |
||
1372 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1373 | break; |
||
1374 | |||
1375 | case DLT_BACNET_MS_TP: |
||
1376 | off_linktype.constant_part = -1; |
||
1377 | off_linkpl.constant_part = -1; |
||
1378 | off_nl = -1; |
||
1379 | off_nl_nosnap = -1; |
||
1380 | break; |
||
1381 | |||
1382 | case DLT_JUNIPER_SERVICES: |
||
1383 | off_linktype.constant_part = 12; |
||
1384 | off_linkpl.constant_part = -1; /* L3 proto location dep. on cookie type */ |
||
1385 | off_nl = -1; /* L3 proto location dep. on cookie type */ |
||
1386 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1387 | break; |
||
1388 | |||
1389 | case DLT_JUNIPER_VP: |
||
1390 | off_linktype.constant_part = 18; |
||
1391 | off_linkpl.constant_part = -1; |
||
1392 | off_nl = -1; |
||
1393 | off_nl_nosnap = -1; |
||
1394 | break; |
||
1395 | |||
1396 | case DLT_JUNIPER_ST: |
||
1397 | off_linktype.constant_part = 18; |
||
1398 | off_linkpl.constant_part = -1; |
||
1399 | off_nl = -1; |
||
1400 | off_nl_nosnap = -1; |
||
1401 | break; |
||
1402 | |||
1403 | case DLT_JUNIPER_ISM: |
||
1404 | off_linktype.constant_part = 8; |
||
1405 | off_linkpl.constant_part = -1; |
||
1406 | off_nl = -1; |
||
1407 | off_nl_nosnap = -1; |
||
1408 | break; |
||
1409 | |||
1410 | case DLT_JUNIPER_VS: |
||
1411 | case DLT_JUNIPER_SRX_E2E: |
||
1412 | case DLT_JUNIPER_FIBRECHANNEL: |
||
1413 | case DLT_JUNIPER_ATM_CEMIC: |
||
1414 | off_linktype.constant_part = 8; |
||
1415 | off_linkpl.constant_part = -1; |
||
1416 | off_nl = -1; |
||
1417 | off_nl_nosnap = -1; |
||
1418 | break; |
||
1419 | |||
1420 | case DLT_MTP2: |
||
1421 | off_li = 2; |
||
1422 | off_li_hsl = 4; |
||
1423 | off_sio = 3; |
||
1424 | off_opc = 4; |
||
1425 | off_dpc = 4; |
||
1426 | off_sls = 7; |
||
1427 | off_linktype.constant_part = -1; |
||
1428 | off_linkpl.constant_part = -1; |
||
1429 | off_nl = -1; |
||
1430 | off_nl_nosnap = -1; |
||
1431 | break; |
||
1432 | |||
1433 | case DLT_MTP2_WITH_PHDR: |
||
1434 | off_li = 6; |
||
1435 | off_li_hsl = 8; |
||
1436 | off_sio = 7; |
||
1437 | off_opc = 8; |
||
1438 | off_dpc = 8; |
||
1439 | off_sls = 11; |
||
1440 | off_linktype.constant_part = -1; |
||
1441 | off_linkpl.constant_part = -1; |
||
1442 | off_nl = -1; |
||
1443 | off_nl_nosnap = -1; |
||
1444 | break; |
||
1445 | |||
1446 | case DLT_ERF: |
||
1447 | off_li = 22; |
||
1448 | off_li_hsl = 24; |
||
1449 | off_sio = 23; |
||
1450 | off_opc = 24; |
||
1451 | off_dpc = 24; |
||
1452 | off_sls = 27; |
||
1453 | off_linktype.constant_part = -1; |
||
1454 | off_linkpl.constant_part = -1; |
||
1455 | off_nl = -1; |
||
1456 | off_nl_nosnap = -1; |
||
1457 | break; |
||
1458 | |||
1459 | case DLT_PFSYNC: |
||
1460 | off_linktype.constant_part = -1; |
||
1461 | off_linkpl.constant_part = 4; |
||
1462 | off_nl = 0; |
||
1463 | off_nl_nosnap = 0; |
||
1464 | break; |
||
1465 | |||
1466 | case DLT_AX25_KISS: |
||
1467 | /* |
||
1468 | * Currently, only raw "link[N:M]" filtering is supported. |
||
1469 | */ |
||
1470 | off_linktype.constant_part = -1; /* variable, min 15, max 71 steps of 7 */ |
||
1471 | off_linkpl.constant_part = -1; |
||
1472 | off_nl = -1; /* variable, min 16, max 71 steps of 7 */ |
||
1473 | off_nl_nosnap = -1; /* no 802.2 LLC */ |
||
1474 | break; |
||
1475 | |||
1476 | case DLT_IPNET: |
||
1477 | off_linktype.constant_part = 1; |
||
1478 | off_linkpl.constant_part = 24; /* ipnet header length */ |
||
1479 | off_nl = 0; |
||
1480 | off_nl_nosnap = -1; |
||
1481 | break; |
||
1482 | |||
1483 | case DLT_NETANALYZER: |
||
1484 | off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */ |
||
1485 | off_linktype.constant_part = off_linkhdr.constant_part + 12; |
||
1486 | off_linkpl.constant_part = off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */ |
||
1487 | off_nl = 0; /* Ethernet II */ |
||
1488 | off_nl_nosnap = 3; /* 802.3+802.2 */ |
||
1489 | break; |
||
1490 | |||
1491 | case DLT_NETANALYZER_TRANSPARENT: |
||
1492 | off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */ |
||
1493 | off_linktype.constant_part = off_linkhdr.constant_part + 12; |
||
1494 | off_linkpl.constant_part = off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */ |
||
1495 | off_nl = 0; /* Ethernet II */ |
||
1496 | off_nl_nosnap = 3; /* 802.3+802.2 */ |
||
1497 | break; |
||
1498 | |||
1499 | default: |
||
1500 | /* |
||
1501 | * For values in the range in which we've assigned new |
||
1502 | * DLT_ values, only raw "link[N:M]" filtering is supported. |
||
1503 | */ |
||
1504 | if (linktype >= DLT_MATCHING_MIN && |
||
1505 | linktype <= DLT_MATCHING_MAX) { |
||
1506 | off_linktype.constant_part = -1; |
||
1507 | off_linkpl.constant_part = -1; |
||
1508 | off_nl = -1; |
||
1509 | off_nl_nosnap = -1; |
||
1510 | } else { |
||
1511 | bpf_error("unknown data link type %d", linktype); |
||
1512 | } |
||
1513 | break; |
||
1514 | } |
||
1515 | |||
1516 | off_outermostlinkhdr = off_prevlinkhdr = off_linkhdr; |
||
1517 | } |
||
1518 | |||
1519 | /* |
||
1520 | * Load a value relative to the specified absolute offset. |
||
1521 | */ |
||
1522 | static struct slist * |
||
1523 | gen_load_absoffsetrel(bpf_abs_offset *abs_offset, u_int offset, u_int size) |
||
1524 | { |
||
1525 | struct slist *s, *s2; |
||
1526 | |||
1527 | s = gen_abs_offset_varpart(abs_offset); |
||
1528 | |||
1529 | /* |
||
1530 | * If "s" is non-null, it has code to arrange that the X register |
||
1531 | * contains the variable part of the absolute offset, so we |
||
1532 | * generate a load relative to that, with an offset of |
||
1533 | * abs_offset->constant_part + offset. |
||
1534 | * |
||
1535 | * Otherwise, we can do an absolute load with an offset of |
||
1536 | * abs_offset->constant_part + offset. |
||
1537 | */ |
||
1538 | if (s != NULL) { |
||
1539 | /* |
||
1540 | * "s" points to a list of statements that puts the |
||
1541 | * variable part of the absolute offset into the X register. |
||
1542 | * Do an indirect load, to use the X register as an offset. |
||
1543 | */ |
||
1544 | s2 = new_stmt(BPF_LD|BPF_IND|size); |
||
1545 | s2->s.k = abs_offset->constant_part + offset; |
||
1546 | sappend(s, s2); |
||
1547 | } else { |
||
1548 | /* |
||
1549 | * There is no variable part of the absolute offset, so |
||
1550 | * just do an absolute load. |
||
1551 | */ |
||
1552 | s = new_stmt(BPF_LD|BPF_ABS|size); |
||
1553 | s->s.k = abs_offset->constant_part + offset; |
||
1554 | } |
||
1555 | return s; |
||
1556 | } |
||
1557 | |||
1558 | /* |
||
1559 | * Load a value relative to the beginning of the specified header. |
||
1560 | */ |
||
1561 | static struct slist * |
||
1562 | gen_load_a(offrel, offset, size) |
||
1563 | enum e_offrel offrel; |
||
1564 | u_int offset, size; |
||
1565 | { |
||
1566 | struct slist *s, *s2; |
||
1567 | |||
1568 | switch (offrel) { |
||
1569 | |||
1570 | case OR_PACKET: |
||
1571 | s = new_stmt(BPF_LD|BPF_ABS|size); |
||
1572 | s->s.k = offset; |
||
1573 | break; |
||
1574 | |||
1575 | case OR_LINKHDR: |
||
1576 | s = gen_load_absoffsetrel(&off_linkhdr, offset, size); |
||
1577 | break; |
||
1578 | |||
1579 | case OR_PREVLINKHDR: |
||
1580 | s = gen_load_absoffsetrel(&off_prevlinkhdr, offset, size); |
||
1581 | break; |
||
1582 | |||
1583 | case OR_LLC: |
||
1584 | s = gen_load_absoffsetrel(&off_linkpl, offset, size); |
||
1585 | break; |
||
1586 | |||
1587 | case OR_PREVMPLSHDR: |
||
1588 | s = gen_load_absoffsetrel(&off_linkpl, off_nl - 4 + offset, size); |
||
1589 | break; |
||
1590 | |||
1591 | case OR_LINKPL: |
||
1592 | s = gen_load_absoffsetrel(&off_linkpl, off_nl + offset, size); |
||
1593 | break; |
||
1594 | |||
1595 | case OR_LINKPL_NOSNAP: |
||
1596 | s = gen_load_absoffsetrel(&off_linkpl, off_nl_nosnap + offset, size); |
||
1597 | break; |
||
1598 | |||
1599 | case OR_LINKTYPE: |
||
1600 | s = gen_load_absoffsetrel(&off_linktype, offset, size); |
||
1601 | break; |
||
1602 | |||
1603 | case OR_TRAN_IPV4: |
||
1604 | /* |
||
1605 | * Load the X register with the length of the IPv4 header |
||
1606 | * (plus the offset of the link-layer header, if it's |
||
1607 | * preceded by a variable-length header such as a radio |
||
1608 | * header), in bytes. |
||
1609 | */ |
||
1610 | s = gen_loadx_iphdrlen(); |
||
1611 | |||
1612 | /* |
||
1613 | * Load the item at {offset of the link-layer payload} + |
||
1614 | * {offset, relative to the start of the link-layer |
||
1615 | * paylod, of the IPv4 header} + {length of the IPv4 header} + |
||
1616 | * {specified offset}. |
||
1617 | * |
||
1618 | * If the offset of the link-layer payload is variable, |
||
1619 | * the variable part of that offset is included in the |
||
1620 | * value in the X register, and we include the constant |
||
1621 | * part in the offset of the load. |
||
1622 | */ |
||
1623 | s2 = new_stmt(BPF_LD|BPF_IND|size); |
||
1624 | s2->s.k = off_linkpl.constant_part + off_nl + offset; |
||
1625 | sappend(s, s2); |
||
1626 | break; |
||
1627 | |||
1628 | case OR_TRAN_IPV6: |
||
1629 | s = gen_load_absoffsetrel(&off_linkpl, off_nl + 40 + offset, size); |
||
1630 | break; |
||
1631 | |||
1632 | default: |
||
1633 | abort(); |
||
1634 | return NULL; |
||
1635 | } |
||
1636 | return s; |
||
1637 | } |
||
1638 | |||
1639 | /* |
||
1640 | * Generate code to load into the X register the sum of the length of |
||
1641 | * the IPv4 header and the variable part of the offset of the link-layer |
||
1642 | * payload. |
||
1643 | */ |
||
1644 | static struct slist * |
||
1645 | gen_loadx_iphdrlen() |
||
1646 | { |
||
1647 | struct slist *s, *s2; |
||
1648 | |||
1649 | s = gen_abs_offset_varpart(&off_linkpl); |
||
1650 | if (s != NULL) { |
||
1651 | /* |
||
1652 | * The offset of the link-layer payload has a variable |
||
1653 | * part. "s" points to a list of statements that put |
||
1654 | * the variable part of that offset into the X register. |
||
1655 | * |
||
1656 | * The 4*([k]&0xf) addressing mode can't be used, as we |
||
1657 | * don't have a constant offset, so we have to load the |
||
1658 | * value in question into the A register and add to it |
||
1659 | * the value from the X register. |
||
1660 | */ |
||
1661 | s2 = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
1662 | s2->s.k = off_linkpl.constant_part + off_nl; |
||
1663 | sappend(s, s2); |
||
1664 | s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K); |
||
1665 | s2->s.k = 0xf; |
||
1666 | sappend(s, s2); |
||
1667 | s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K); |
||
1668 | s2->s.k = 2; |
||
1669 | sappend(s, s2); |
||
1670 | |||
1671 | /* |
||
1672 | * The A register now contains the length of the IP header. |
||
1673 | * We need to add to it the variable part of the offset of |
||
1674 | * the link-layer payload, which is still in the X |
||
1675 | * register, and move the result into the X register. |
||
1676 | */ |
||
1677 | sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X)); |
||
1678 | sappend(s, new_stmt(BPF_MISC|BPF_TAX)); |
||
1679 | } else { |
||
1680 | /* |
||
1681 | * The offset of the link-layer payload is a constant, |
||
1682 | * so no code was generated to load the (non-existent) |
||
1683 | * variable part of that offset. |
||
1684 | * |
||
1685 | * This means we can use the 4*([k]&0xf) addressing |
||
1686 | * mode. Load the length of the IPv4 header, which |
||
1687 | * is at an offset of off_nl from the beginning of |
||
1688 | * the link-layer payload, and thus at an offset of |
||
1689 | * off_linkpl.constant_part + off_nl from the beginning |
||
1690 | * of the raw packet data, using that addressing mode. |
||
1691 | */ |
||
1692 | s = new_stmt(BPF_LDX|BPF_MSH|BPF_B); |
||
1693 | s->s.k = off_linkpl.constant_part + off_nl; |
||
1694 | } |
||
1695 | return s; |
||
1696 | } |
||
1697 | |||
1698 | static struct block * |
||
1699 | gen_uncond(rsense) |
||
1700 | int rsense; |
||
1701 | { |
||
1702 | struct block *b; |
||
1703 | struct slist *s; |
||
1704 | |||
1705 | s = new_stmt(BPF_LD|BPF_IMM); |
||
1706 | s->s.k = !rsense; |
||
1707 | b = new_block(JMP(BPF_JEQ)); |
||
1708 | b->stmts = s; |
||
1709 | |||
1710 | return b; |
||
1711 | } |
||
1712 | |||
1713 | static inline struct block * |
||
1714 | gen_true() |
||
1715 | { |
||
1716 | return gen_uncond(1); |
||
1717 | } |
||
1718 | |||
1719 | static inline struct block * |
||
1720 | gen_false() |
||
1721 | { |
||
1722 | return gen_uncond(0); |
||
1723 | } |
||
1724 | |||
1725 | /* |
||
1726 | * Byte-swap a 32-bit number. |
||
1727 | * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on |
||
1728 | * big-endian platforms.) |
||
1729 | */ |
||
1730 | #define SWAPLONG(y) \ |
||
1731 | ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff)) |
||
1732 | |||
1733 | /* |
||
1734 | * Generate code to match a particular packet type. |
||
1735 | * |
||
1736 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
||
1737 | * value, if <= ETHERMTU. We use that to determine whether to |
||
1738 | * match the type/length field or to check the type/length field for |
||
1739 | * a value <= ETHERMTU to see whether it's a type field and then do |
||
1740 | * the appropriate test. |
||
1741 | */ |
||
1742 | static struct block * |
||
1743 | gen_ether_linktype(proto) |
||
1744 | register int proto; |
||
1745 | { |
||
1746 | struct block *b0, *b1; |
||
1747 | |||
1748 | switch (proto) { |
||
1749 | |||
1750 | case LLCSAP_ISONS: |
||
1751 | case LLCSAP_IP: |
||
1752 | case LLCSAP_NETBEUI: |
||
1753 | /* |
||
1754 | * OSI protocols and NetBEUI always use 802.2 encapsulation, |
||
1755 | * so we check the DSAP and SSAP. |
||
1756 | * |
||
1757 | * LLCSAP_IP checks for IP-over-802.2, rather |
||
1758 | * than IP-over-Ethernet or IP-over-SNAP. |
||
1759 | * |
||
1760 | * XXX - should we check both the DSAP and the |
||
1761 | * SSAP, like this, or should we check just the |
||
1762 | * DSAP, as we do for other types <= ETHERMTU |
||
1763 | * (i.e., other SAP values)? |
||
1764 | */ |
||
1765 | b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
||
1766 | gen_not(b0); |
||
1767 | b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32) |
||
1768 | ((proto << 8) | proto)); |
||
1769 | gen_and(b0, b1); |
||
1770 | return b1; |
||
1771 | |||
1772 | case LLCSAP_IPX: |
||
1773 | /* |
||
1774 | * Check for; |
||
1775 | * |
||
1776 | * Ethernet_II frames, which are Ethernet |
||
1777 | * frames with a frame type of ETHERTYPE_IPX; |
||
1778 | * |
||
1779 | * Ethernet_802.3 frames, which are 802.3 |
||
1780 | * frames (i.e., the type/length field is |
||
1781 | * a length field, <= ETHERMTU, rather than |
||
1782 | * a type field) with the first two bytes |
||
1783 | * after the Ethernet/802.3 header being |
||
1784 | * 0xFFFF; |
||
1785 | * |
||
1786 | * Ethernet_802.2 frames, which are 802.3 |
||
1787 | * frames with an 802.2 LLC header and |
||
1788 | * with the IPX LSAP as the DSAP in the LLC |
||
1789 | * header; |
||
1790 | * |
||
1791 | * Ethernet_SNAP frames, which are 802.3 |
||
1792 | * frames with an LLC header and a SNAP |
||
1793 | * header and with an OUI of 0x000000 |
||
1794 | * (encapsulated Ethernet) and a protocol |
||
1795 | * ID of ETHERTYPE_IPX in the SNAP header. |
||
1796 | * |
||
1797 | * XXX - should we generate the same code both |
||
1798 | * for tests for LLCSAP_IPX and for ETHERTYPE_IPX? |
||
1799 | */ |
||
1800 | |||
1801 | /* |
||
1802 | * This generates code to check both for the |
||
1803 | * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3. |
||
1804 | */ |
||
1805 | b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX); |
||
1806 | b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF); |
||
1807 | gen_or(b0, b1); |
||
1808 | |||
1809 | /* |
||
1810 | * Now we add code to check for SNAP frames with |
||
1811 | * ETHERTYPE_IPX, i.e. Ethernet_SNAP. |
||
1812 | */ |
||
1813 | b0 = gen_snap(0x000000, ETHERTYPE_IPX); |
||
1814 | gen_or(b0, b1); |
||
1815 | |||
1816 | /* |
||
1817 | * Now we generate code to check for 802.3 |
||
1818 | * frames in general. |
||
1819 | */ |
||
1820 | b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
||
1821 | gen_not(b0); |
||
1822 | |||
1823 | /* |
||
1824 | * Now add the check for 802.3 frames before the |
||
1825 | * check for Ethernet_802.2 and Ethernet_802.3, |
||
1826 | * as those checks should only be done on 802.3 |
||
1827 | * frames, not on Ethernet frames. |
||
1828 | */ |
||
1829 | gen_and(b0, b1); |
||
1830 | |||
1831 | /* |
||
1832 | * Now add the check for Ethernet_II frames, and |
||
1833 | * do that before checking for the other frame |
||
1834 | * types. |
||
1835 | */ |
||
1836 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX); |
||
1837 | gen_or(b0, b1); |
||
1838 | return b1; |
||
1839 | |||
1840 | case ETHERTYPE_ATALK: |
||
1841 | case ETHERTYPE_AARP: |
||
1842 | /* |
||
1843 | * EtherTalk (AppleTalk protocols on Ethernet link |
||
1844 | * layer) may use 802.2 encapsulation. |
||
1845 | */ |
||
1846 | |||
1847 | /* |
||
1848 | * Check for 802.2 encapsulation (EtherTalk phase 2?); |
||
1849 | * we check for an Ethernet type field less than |
||
1850 | * 1500, which means it's an 802.3 length field. |
||
1851 | */ |
||
1852 | b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
||
1853 | gen_not(b0); |
||
1854 | |||
1855 | /* |
||
1856 | * 802.2-encapsulated ETHERTYPE_ATALK packets are |
||
1857 | * SNAP packets with an organization code of |
||
1858 | * 0x080007 (Apple, for Appletalk) and a protocol |
||
1859 | * type of ETHERTYPE_ATALK (Appletalk). |
||
1860 | * |
||
1861 | * 802.2-encapsulated ETHERTYPE_AARP packets are |
||
1862 | * SNAP packets with an organization code of |
||
1863 | * 0x000000 (encapsulated Ethernet) and a protocol |
||
1864 | * type of ETHERTYPE_AARP (Appletalk ARP). |
||
1865 | */ |
||
1866 | if (proto == ETHERTYPE_ATALK) |
||
1867 | b1 = gen_snap(0x080007, ETHERTYPE_ATALK); |
||
1868 | else /* proto == ETHERTYPE_AARP */ |
||
1869 | b1 = gen_snap(0x000000, ETHERTYPE_AARP); |
||
1870 | gen_and(b0, b1); |
||
1871 | |||
1872 | /* |
||
1873 | * Check for Ethernet encapsulation (Ethertalk |
||
1874 | * phase 1?); we just check for the Ethernet |
||
1875 | * protocol type. |
||
1876 | */ |
||
1877 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
||
1878 | |||
1879 | gen_or(b0, b1); |
||
1880 | return b1; |
||
1881 | |||
1882 | default: |
||
1883 | if (proto <= ETHERMTU) { |
||
1884 | /* |
||
1885 | * This is an LLC SAP value, so the frames |
||
1886 | * that match would be 802.2 frames. |
||
1887 | * Check that the frame is an 802.2 frame |
||
1888 | * (i.e., that the length/type field is |
||
1889 | * a length field, <= ETHERMTU) and |
||
1890 | * then check the DSAP. |
||
1891 | */ |
||
1892 | b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
||
1893 | gen_not(b0); |
||
1894 | b1 = gen_cmp(OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto); |
||
1895 | gen_and(b0, b1); |
||
1896 | return b1; |
||
1897 | } else { |
||
1898 | /* |
||
1899 | * This is an Ethernet type, so compare |
||
1900 | * the length/type field with it (if |
||
1901 | * the frame is an 802.2 frame, the length |
||
1902 | * field will be <= ETHERMTU, and, as |
||
1903 | * "proto" is > ETHERMTU, this test |
||
1904 | * will fail and the frame won't match, |
||
1905 | * which is what we want). |
||
1906 | */ |
||
1907 | return gen_cmp(OR_LINKTYPE, 0, BPF_H, |
||
1908 | (bpf_int32)proto); |
||
1909 | } |
||
1910 | } |
||
1911 | } |
||
1912 | |||
1913 | /* |
||
1914 | * "proto" is an Ethernet type value and for IPNET, if it is not IPv4 |
||
1915 | * or IPv6 then we have an error. |
||
1916 | */ |
||
1917 | static struct block * |
||
1918 | gen_ipnet_linktype(proto) |
||
1919 | register int proto; |
||
1920 | { |
||
1921 | switch (proto) { |
||
1922 | |||
1923 | case ETHERTYPE_IP: |
||
1924 | return gen_cmp(OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET); |
||
1925 | /* NOTREACHED */ |
||
1926 | |||
1927 | case ETHERTYPE_IPV6: |
||
1928 | return gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
1929 | (bpf_int32)IPH_AF_INET6); |
||
1930 | /* NOTREACHED */ |
||
1931 | |||
1932 | default: |
||
1933 | break; |
||
1934 | } |
||
1935 | |||
1936 | return gen_false(); |
||
1937 | } |
||
1938 | |||
1939 | /* |
||
1940 | * Generate code to match a particular packet type. |
||
1941 | * |
||
1942 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
||
1943 | * value, if <= ETHERMTU. We use that to determine whether to |
||
1944 | * match the type field or to check the type field for the special |
||
1945 | * LINUX_SLL_P_802_2 value and then do the appropriate test. |
||
1946 | */ |
||
1947 | static struct block * |
||
1948 | gen_linux_sll_linktype(proto) |
||
1949 | register int proto; |
||
1950 | { |
||
1951 | struct block *b0, *b1; |
||
1952 | |||
1953 | switch (proto) { |
||
1954 | |||
1955 | case LLCSAP_ISONS: |
||
1956 | case LLCSAP_IP: |
||
1957 | case LLCSAP_NETBEUI: |
||
1958 | /* |
||
1959 | * OSI protocols and NetBEUI always use 802.2 encapsulation, |
||
1960 | * so we check the DSAP and SSAP. |
||
1961 | * |
||
1962 | * LLCSAP_IP checks for IP-over-802.2, rather |
||
1963 | * than IP-over-Ethernet or IP-over-SNAP. |
||
1964 | * |
||
1965 | * XXX - should we check both the DSAP and the |
||
1966 | * SSAP, like this, or should we check just the |
||
1967 | * DSAP, as we do for other types <= ETHERMTU |
||
1968 | * (i.e., other SAP values)? |
||
1969 | */ |
||
1970 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
||
1971 | b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32) |
||
1972 | ((proto << 8) | proto)); |
||
1973 | gen_and(b0, b1); |
||
1974 | return b1; |
||
1975 | |||
1976 | case LLCSAP_IPX: |
||
1977 | /* |
||
1978 | * Ethernet_II frames, which are Ethernet |
||
1979 | * frames with a frame type of ETHERTYPE_IPX; |
||
1980 | * |
||
1981 | * Ethernet_802.3 frames, which have a frame |
||
1982 | * type of LINUX_SLL_P_802_3; |
||
1983 | * |
||
1984 | * Ethernet_802.2 frames, which are 802.3 |
||
1985 | * frames with an 802.2 LLC header (i.e, have |
||
1986 | * a frame type of LINUX_SLL_P_802_2) and |
||
1987 | * with the IPX LSAP as the DSAP in the LLC |
||
1988 | * header; |
||
1989 | * |
||
1990 | * Ethernet_SNAP frames, which are 802.3 |
||
1991 | * frames with an LLC header and a SNAP |
||
1992 | * header and with an OUI of 0x000000 |
||
1993 | * (encapsulated Ethernet) and a protocol |
||
1994 | * ID of ETHERTYPE_IPX in the SNAP header. |
||
1995 | * |
||
1996 | * First, do the checks on LINUX_SLL_P_802_2 |
||
1997 | * frames; generate the check for either |
||
1998 | * Ethernet_802.2 or Ethernet_SNAP frames, and |
||
1999 | * then put a check for LINUX_SLL_P_802_2 frames |
||
2000 | * before it. |
||
2001 | */ |
||
2002 | b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX); |
||
2003 | b1 = gen_snap(0x000000, ETHERTYPE_IPX); |
||
2004 | gen_or(b0, b1); |
||
2005 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
||
2006 | gen_and(b0, b1); |
||
2007 | |||
2008 | /* |
||
2009 | * Now check for 802.3 frames and OR that with |
||
2010 | * the previous test. |
||
2011 | */ |
||
2012 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3); |
||
2013 | gen_or(b0, b1); |
||
2014 | |||
2015 | /* |
||
2016 | * Now add the check for Ethernet_II frames, and |
||
2017 | * do that before checking for the other frame |
||
2018 | * types. |
||
2019 | */ |
||
2020 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX); |
||
2021 | gen_or(b0, b1); |
||
2022 | return b1; |
||
2023 | |||
2024 | case ETHERTYPE_ATALK: |
||
2025 | case ETHERTYPE_AARP: |
||
2026 | /* |
||
2027 | * EtherTalk (AppleTalk protocols on Ethernet link |
||
2028 | * layer) may use 802.2 encapsulation. |
||
2029 | */ |
||
2030 | |||
2031 | /* |
||
2032 | * Check for 802.2 encapsulation (EtherTalk phase 2?); |
||
2033 | * we check for the 802.2 protocol type in the |
||
2034 | * "Ethernet type" field. |
||
2035 | */ |
||
2036 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
||
2037 | |||
2038 | /* |
||
2039 | * 802.2-encapsulated ETHERTYPE_ATALK packets are |
||
2040 | * SNAP packets with an organization code of |
||
2041 | * 0x080007 (Apple, for Appletalk) and a protocol |
||
2042 | * type of ETHERTYPE_ATALK (Appletalk). |
||
2043 | * |
||
2044 | * 802.2-encapsulated ETHERTYPE_AARP packets are |
||
2045 | * SNAP packets with an organization code of |
||
2046 | * 0x000000 (encapsulated Ethernet) and a protocol |
||
2047 | * type of ETHERTYPE_AARP (Appletalk ARP). |
||
2048 | */ |
||
2049 | if (proto == ETHERTYPE_ATALK) |
||
2050 | b1 = gen_snap(0x080007, ETHERTYPE_ATALK); |
||
2051 | else /* proto == ETHERTYPE_AARP */ |
||
2052 | b1 = gen_snap(0x000000, ETHERTYPE_AARP); |
||
2053 | gen_and(b0, b1); |
||
2054 | |||
2055 | /* |
||
2056 | * Check for Ethernet encapsulation (Ethertalk |
||
2057 | * phase 1?); we just check for the Ethernet |
||
2058 | * protocol type. |
||
2059 | */ |
||
2060 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
||
2061 | |||
2062 | gen_or(b0, b1); |
||
2063 | return b1; |
||
2064 | |||
2065 | default: |
||
2066 | if (proto <= ETHERMTU) { |
||
2067 | /* |
||
2068 | * This is an LLC SAP value, so the frames |
||
2069 | * that match would be 802.2 frames. |
||
2070 | * Check for the 802.2 protocol type |
||
2071 | * in the "Ethernet type" field, and |
||
2072 | * then check the DSAP. |
||
2073 | */ |
||
2074 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
||
2075 | b1 = gen_cmp(OR_LINKHDR, off_linkpl.constant_part, BPF_B, |
||
2076 | (bpf_int32)proto); |
||
2077 | gen_and(b0, b1); |
||
2078 | return b1; |
||
2079 | } else { |
||
2080 | /* |
||
2081 | * This is an Ethernet type, so compare |
||
2082 | * the length/type field with it (if |
||
2083 | * the frame is an 802.2 frame, the length |
||
2084 | * field will be <= ETHERMTU, and, as |
||
2085 | * "proto" is > ETHERMTU, this test |
||
2086 | * will fail and the frame won't match, |
||
2087 | * which is what we want). |
||
2088 | */ |
||
2089 | return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
||
2090 | } |
||
2091 | } |
||
2092 | } |
||
2093 | |||
2094 | static struct slist * |
||
2095 | gen_load_prism_llprefixlen() |
||
2096 | { |
||
2097 | struct slist *s1, *s2; |
||
2098 | struct slist *sjeq_avs_cookie; |
||
2099 | struct slist *sjcommon; |
||
2100 | |||
2101 | /* |
||
2102 | * This code is not compatible with the optimizer, as |
||
2103 | * we are generating jmp instructions within a normal |
||
2104 | * slist of instructions |
||
2105 | */ |
||
2106 | no_optimize = 1; |
||
2107 | |||
2108 | /* |
||
2109 | * Generate code to load the length of the radio header into |
||
2110 | * the register assigned to hold that length, if one has been |
||
2111 | * assigned. (If one hasn't been assigned, no code we've |
||
2112 | * generated uses that prefix, so we don't need to generate any |
||
2113 | * code to load it.) |
||
2114 | * |
||
2115 | * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes |
||
2116 | * or always use the AVS header rather than the Prism header. |
||
2117 | * We load a 4-byte big-endian value at the beginning of the |
||
2118 | * raw packet data, and see whether, when masked with 0xFFFFF000, |
||
2119 | * it's equal to 0x80211000. If so, that indicates that it's |
||
2120 | * an AVS header (the masked-out bits are the version number). |
||
2121 | * Otherwise, it's a Prism header. |
||
2122 | * |
||
2123 | * XXX - the Prism header is also, in theory, variable-length, |
||
2124 | * but no known software generates headers that aren't 144 |
||
2125 | * bytes long. |
||
2126 | */ |
||
2127 | if (off_linkhdr.reg != -1) { |
||
2128 | /* |
||
2129 | * Load the cookie. |
||
2130 | */ |
||
2131 | s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS); |
||
2132 | s1->s.k = 0; |
||
2133 | |||
2134 | /* |
||
2135 | * AND it with 0xFFFFF000. |
||
2136 | */ |
||
2137 | s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K); |
||
2138 | s2->s.k = 0xFFFFF000; |
||
2139 | sappend(s1, s2); |
||
2140 | |||
2141 | /* |
||
2142 | * Compare with 0x80211000. |
||
2143 | */ |
||
2144 | sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ)); |
||
2145 | sjeq_avs_cookie->s.k = 0x80211000; |
||
2146 | sappend(s1, sjeq_avs_cookie); |
||
2147 | |||
2148 | /* |
||
2149 | * If it's AVS: |
||
2150 | * |
||
2151 | * The 4 bytes at an offset of 4 from the beginning of |
||
2152 | * the AVS header are the length of the AVS header. |
||
2153 | * That field is big-endian. |
||
2154 | */ |
||
2155 | s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS); |
||
2156 | s2->s.k = 4; |
||
2157 | sappend(s1, s2); |
||
2158 | sjeq_avs_cookie->s.jt = s2; |
||
2159 | |||
2160 | /* |
||
2161 | * Now jump to the code to allocate a register |
||
2162 | * into which to save the header length and |
||
2163 | * store the length there. (The "jump always" |
||
2164 | * instruction needs to have the k field set; |
||
2165 | * it's added to the PC, so, as we're jumping |
||
2166 | * over a single instruction, it should be 1.) |
||
2167 | */ |
||
2168 | sjcommon = new_stmt(JMP(BPF_JA)); |
||
2169 | sjcommon->s.k = 1; |
||
2170 | sappend(s1, sjcommon); |
||
2171 | |||
2172 | /* |
||
2173 | * Now for the code that handles the Prism header. |
||
2174 | * Just load the length of the Prism header (144) |
||
2175 | * into the A register. Have the test for an AVS |
||
2176 | * header branch here if we don't have an AVS header. |
||
2177 | */ |
||
2178 | s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM); |
||
2179 | s2->s.k = 144; |
||
2180 | sappend(s1, s2); |
||
2181 | sjeq_avs_cookie->s.jf = s2; |
||
2182 | |||
2183 | /* |
||
2184 | * Now allocate a register to hold that value and store |
||
2185 | * it. The code for the AVS header will jump here after |
||
2186 | * loading the length of the AVS header. |
||
2187 | */ |
||
2188 | s2 = new_stmt(BPF_ST); |
||
2189 | s2->s.k = off_linkhdr.reg; |
||
2190 | sappend(s1, s2); |
||
2191 | sjcommon->s.jf = s2; |
||
2192 | |||
2193 | /* |
||
2194 | * Now move it into the X register. |
||
2195 | */ |
||
2196 | s2 = new_stmt(BPF_MISC|BPF_TAX); |
||
2197 | sappend(s1, s2); |
||
2198 | |||
2199 | return (s1); |
||
2200 | } else |
||
2201 | return (NULL); |
||
2202 | } |
||
2203 | |||
2204 | static struct slist * |
||
2205 | gen_load_avs_llprefixlen() |
||
2206 | { |
||
2207 | struct slist *s1, *s2; |
||
2208 | |||
2209 | /* |
||
2210 | * Generate code to load the length of the AVS header into |
||
2211 | * the register assigned to hold that length, if one has been |
||
2212 | * assigned. (If one hasn't been assigned, no code we've |
||
2213 | * generated uses that prefix, so we don't need to generate any |
||
2214 | * code to load it.) |
||
2215 | */ |
||
2216 | if (off_linkhdr.reg != -1) { |
||
2217 | /* |
||
2218 | * The 4 bytes at an offset of 4 from the beginning of |
||
2219 | * the AVS header are the length of the AVS header. |
||
2220 | * That field is big-endian. |
||
2221 | */ |
||
2222 | s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS); |
||
2223 | s1->s.k = 4; |
||
2224 | |||
2225 | /* |
||
2226 | * Now allocate a register to hold that value and store |
||
2227 | * it. |
||
2228 | */ |
||
2229 | s2 = new_stmt(BPF_ST); |
||
2230 | s2->s.k = off_linkhdr.reg; |
||
2231 | sappend(s1, s2); |
||
2232 | |||
2233 | /* |
||
2234 | * Now move it into the X register. |
||
2235 | */ |
||
2236 | s2 = new_stmt(BPF_MISC|BPF_TAX); |
||
2237 | sappend(s1, s2); |
||
2238 | |||
2239 | return (s1); |
||
2240 | } else |
||
2241 | return (NULL); |
||
2242 | } |
||
2243 | |||
2244 | static struct slist * |
||
2245 | gen_load_radiotap_llprefixlen() |
||
2246 | { |
||
2247 | struct slist *s1, *s2; |
||
2248 | |||
2249 | /* |
||
2250 | * Generate code to load the length of the radiotap header into |
||
2251 | * the register assigned to hold that length, if one has been |
||
2252 | * assigned. (If one hasn't been assigned, no code we've |
||
2253 | * generated uses that prefix, so we don't need to generate any |
||
2254 | * code to load it.) |
||
2255 | */ |
||
2256 | if (off_linkhdr.reg != -1) { |
||
2257 | /* |
||
2258 | * The 2 bytes at offsets of 2 and 3 from the beginning |
||
2259 | * of the radiotap header are the length of the radiotap |
||
2260 | * header; unfortunately, it's little-endian, so we have |
||
2261 | * to load it a byte at a time and construct the value. |
||
2262 | */ |
||
2263 | |||
2264 | /* |
||
2265 | * Load the high-order byte, at an offset of 3, shift it |
||
2266 | * left a byte, and put the result in the X register. |
||
2267 | */ |
||
2268 | s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS); |
||
2269 | s1->s.k = 3; |
||
2270 | s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K); |
||
2271 | sappend(s1, s2); |
||
2272 | s2->s.k = 8; |
||
2273 | s2 = new_stmt(BPF_MISC|BPF_TAX); |
||
2274 | sappend(s1, s2); |
||
2275 | |||
2276 | /* |
||
2277 | * Load the next byte, at an offset of 2, and OR the |
||
2278 | * value from the X register into it. |
||
2279 | */ |
||
2280 | s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS); |
||
2281 | sappend(s1, s2); |
||
2282 | s2->s.k = 2; |
||
2283 | s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X); |
||
2284 | sappend(s1, s2); |
||
2285 | |||
2286 | /* |
||
2287 | * Now allocate a register to hold that value and store |
||
2288 | * it. |
||
2289 | */ |
||
2290 | s2 = new_stmt(BPF_ST); |
||
2291 | s2->s.k = off_linkhdr.reg; |
||
2292 | sappend(s1, s2); |
||
2293 | |||
2294 | /* |
||
2295 | * Now move it into the X register. |
||
2296 | */ |
||
2297 | s2 = new_stmt(BPF_MISC|BPF_TAX); |
||
2298 | sappend(s1, s2); |
||
2299 | |||
2300 | return (s1); |
||
2301 | } else |
||
2302 | return (NULL); |
||
2303 | } |
||
2304 | |||
2305 | /* |
||
2306 | * At the moment we treat PPI as normal Radiotap encoded |
||
2307 | * packets. The difference is in the function that generates |
||
2308 | * the code at the beginning to compute the header length. |
||
2309 | * Since this code generator of PPI supports bare 802.11 |
||
2310 | * encapsulation only (i.e. the encapsulated DLT should be |
||
2311 | * DLT_IEEE802_11) we generate code to check for this too; |
||
2312 | * that's done in finish_parse(). |
||
2313 | */ |
||
2314 | static struct slist * |
||
2315 | gen_load_ppi_llprefixlen() |
||
2316 | { |
||
2317 | struct slist *s1, *s2; |
||
2318 | |||
2319 | /* |
||
2320 | * Generate code to load the length of the radiotap header |
||
2321 | * into the register assigned to hold that length, if one has |
||
2322 | * been assigned. |
||
2323 | */ |
||
2324 | if (off_linkhdr.reg != -1) { |
||
2325 | /* |
||
2326 | * The 2 bytes at offsets of 2 and 3 from the beginning |
||
2327 | * of the radiotap header are the length of the radiotap |
||
2328 | * header; unfortunately, it's little-endian, so we have |
||
2329 | * to load it a byte at a time and construct the value. |
||
2330 | */ |
||
2331 | |||
2332 | /* |
||
2333 | * Load the high-order byte, at an offset of 3, shift it |
||
2334 | * left a byte, and put the result in the X register. |
||
2335 | */ |
||
2336 | s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS); |
||
2337 | s1->s.k = 3; |
||
2338 | s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K); |
||
2339 | sappend(s1, s2); |
||
2340 | s2->s.k = 8; |
||
2341 | s2 = new_stmt(BPF_MISC|BPF_TAX); |
||
2342 | sappend(s1, s2); |
||
2343 | |||
2344 | /* |
||
2345 | * Load the next byte, at an offset of 2, and OR the |
||
2346 | * value from the X register into it. |
||
2347 | */ |
||
2348 | s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS); |
||
2349 | sappend(s1, s2); |
||
2350 | s2->s.k = 2; |
||
2351 | s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X); |
||
2352 | sappend(s1, s2); |
||
2353 | |||
2354 | /* |
||
2355 | * Now allocate a register to hold that value and store |
||
2356 | * it. |
||
2357 | */ |
||
2358 | s2 = new_stmt(BPF_ST); |
||
2359 | s2->s.k = off_linkhdr.reg; |
||
2360 | sappend(s1, s2); |
||
2361 | |||
2362 | /* |
||
2363 | * Now move it into the X register. |
||
2364 | */ |
||
2365 | s2 = new_stmt(BPF_MISC|BPF_TAX); |
||
2366 | sappend(s1, s2); |
||
2367 | |||
2368 | return (s1); |
||
2369 | } else |
||
2370 | return (NULL); |
||
2371 | } |
||
2372 | |||
2373 | /* |
||
2374 | * Load a value relative to the beginning of the link-layer header after the 802.11 |
||
2375 | * header, i.e. LLC_SNAP. |
||
2376 | * The link-layer header doesn't necessarily begin at the beginning |
||
2377 | * of the packet data; there might be a variable-length prefix containing |
||
2378 | * radio information. |
||
2379 | */ |
||
2380 | static struct slist * |
||
2381 | gen_load_802_11_header_len(struct slist *s, struct slist *snext) |
||
2382 | { |
||
2383 | struct slist *s2; |
||
2384 | struct slist *sjset_data_frame_1; |
||
2385 | struct slist *sjset_data_frame_2; |
||
2386 | struct slist *sjset_qos; |
||
2387 | struct slist *sjset_radiotap_flags; |
||
2388 | struct slist *sjset_radiotap_tsft; |
||
2389 | struct slist *sjset_tsft_datapad, *sjset_notsft_datapad; |
||
2390 | struct slist *s_roundup; |
||
2391 | |||
2392 | if (off_linkpl.reg == -1) { |
||
2393 | /* |
||
2394 | * No register has been assigned to the offset of |
||
2395 | * the link-layer payload, which means nobody needs |
||
2396 | * it; don't bother computing it - just return |
||
2397 | * what we already have. |
||
2398 | */ |
||
2399 | return (s); |
||
2400 | } |
||
2401 | |||
2402 | /* |
||
2403 | * This code is not compatible with the optimizer, as |
||
2404 | * we are generating jmp instructions within a normal |
||
2405 | * slist of instructions |
||
2406 | */ |
||
2407 | no_optimize = 1; |
||
2408 | |||
2409 | /* |
||
2410 | * If "s" is non-null, it has code to arrange that the X register |
||
2411 | * contains the length of the prefix preceding the link-layer |
||
2412 | * header. |
||
2413 | * |
||
2414 | * Otherwise, the length of the prefix preceding the link-layer |
||
2415 | * header is "off_outermostlinkhdr.constant_part". |
||
2416 | */ |
||
2417 | if (s == NULL) { |
||
2418 | /* |
||
2419 | * There is no variable-length header preceding the |
||
2420 | * link-layer header. |
||
2421 | * |
||
2422 | * Load the length of the fixed-length prefix preceding |
||
2423 | * the link-layer header (if any) into the X register, |
||
2424 | * and store it in the off_linkpl.reg register. |
||
2425 | * That length is off_outermostlinkhdr.constant_part. |
||
2426 | */ |
||
2427 | s = new_stmt(BPF_LDX|BPF_IMM); |
||
2428 | s->s.k = off_outermostlinkhdr.constant_part; |
||
2429 | } |
||
2430 | |||
2431 | /* |
||
2432 | * The X register contains the offset of the beginning of the |
||
2433 | * link-layer header; add 24, which is the minimum length |
||
2434 | * of the MAC header for a data frame, to that, and store it |
||
2435 | * in off_linkpl.reg, and then load the Frame Control field, |
||
2436 | * which is at the offset in the X register, with an indexed load. |
||
2437 | */ |
||
2438 | s2 = new_stmt(BPF_MISC|BPF_TXA); |
||
2439 | sappend(s, s2); |
||
2440 | s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
2441 | s2->s.k = 24; |
||
2442 | sappend(s, s2); |
||
2443 | s2 = new_stmt(BPF_ST); |
||
2444 | s2->s.k = off_linkpl.reg; |
||
2445 | sappend(s, s2); |
||
2446 | |||
2447 | s2 = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
2448 | s2->s.k = 0; |
||
2449 | sappend(s, s2); |
||
2450 | |||
2451 | /* |
||
2452 | * Check the Frame Control field to see if this is a data frame; |
||
2453 | * a data frame has the 0x08 bit (b3) in that field set and the |
||
2454 | * 0x04 bit (b2) clear. |
||
2455 | */ |
||
2456 | sjset_data_frame_1 = new_stmt(JMP(BPF_JSET)); |
||
2457 | sjset_data_frame_1->s.k = 0x08; |
||
2458 | sappend(s, sjset_data_frame_1); |
||
2459 | |||
2460 | /* |
||
2461 | * If b3 is set, test b2, otherwise go to the first statement of |
||
2462 | * the rest of the program. |
||
2463 | */ |
||
2464 | sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET)); |
||
2465 | sjset_data_frame_2->s.k = 0x04; |
||
2466 | sappend(s, sjset_data_frame_2); |
||
2467 | sjset_data_frame_1->s.jf = snext; |
||
2468 | |||
2469 | /* |
||
2470 | * If b2 is not set, this is a data frame; test the QoS bit. |
||
2471 | * Otherwise, go to the first statement of the rest of the |
||
2472 | * program. |
||
2473 | */ |
||
2474 | sjset_data_frame_2->s.jt = snext; |
||
2475 | sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET)); |
||
2476 | sjset_qos->s.k = 0x80; /* QoS bit */ |
||
2477 | sappend(s, sjset_qos); |
||
2478 | |||
2479 | /* |
||
2480 | * If it's set, add 2 to off_linkpl.reg, to skip the QoS |
||
2481 | * field. |
||
2482 | * Otherwise, go to the first statement of the rest of the |
||
2483 | * program. |
||
2484 | */ |
||
2485 | sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM); |
||
2486 | s2->s.k = off_linkpl.reg; |
||
2487 | sappend(s, s2); |
||
2488 | s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM); |
||
2489 | s2->s.k = 2; |
||
2490 | sappend(s, s2); |
||
2491 | s2 = new_stmt(BPF_ST); |
||
2492 | s2->s.k = off_linkpl.reg; |
||
2493 | sappend(s, s2); |
||
2494 | |||
2495 | /* |
||
2496 | * If we have a radiotap header, look at it to see whether |
||
2497 | * there's Atheros padding between the MAC-layer header |
||
2498 | * and the payload. |
||
2499 | * |
||
2500 | * Note: all of the fields in the radiotap header are |
||
2501 | * little-endian, so we byte-swap all of the values |
||
2502 | * we test against, as they will be loaded as big-endian |
||
2503 | * values. |
||
2504 | */ |
||
2505 | if (linktype == DLT_IEEE802_11_RADIO) { |
||
2506 | /* |
||
2507 | * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set |
||
2508 | * in the presence flag? |
||
2509 | */ |
||
2510 | sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W); |
||
2511 | s2->s.k = 4; |
||
2512 | sappend(s, s2); |
||
2513 | |||
2514 | sjset_radiotap_flags = new_stmt(JMP(BPF_JSET)); |
||
2515 | sjset_radiotap_flags->s.k = SWAPLONG(0x00000002); |
||
2516 | sappend(s, sjset_radiotap_flags); |
||
2517 | |||
2518 | /* |
||
2519 | * If not, skip all of this. |
||
2520 | */ |
||
2521 | sjset_radiotap_flags->s.jf = snext; |
||
2522 | |||
2523 | /* |
||
2524 | * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set? |
||
2525 | */ |
||
2526 | sjset_radiotap_tsft = sjset_radiotap_flags->s.jt = |
||
2527 | new_stmt(JMP(BPF_JSET)); |
||
2528 | sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001); |
||
2529 | sappend(s, sjset_radiotap_tsft); |
||
2530 | |||
2531 | /* |
||
2532 | * If IEEE80211_RADIOTAP_TSFT is set, the flags field is |
||
2533 | * at an offset of 16 from the beginning of the raw packet |
||
2534 | * data (8 bytes for the radiotap header and 8 bytes for |
||
2535 | * the TSFT field). |
||
2536 | * |
||
2537 | * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20) |
||
2538 | * is set. |
||
2539 | */ |
||
2540 | sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B); |
||
2541 | s2->s.k = 16; |
||
2542 | sappend(s, s2); |
||
2543 | |||
2544 | sjset_tsft_datapad = new_stmt(JMP(BPF_JSET)); |
||
2545 | sjset_tsft_datapad->s.k = 0x20; |
||
2546 | sappend(s, sjset_tsft_datapad); |
||
2547 | |||
2548 | /* |
||
2549 | * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is |
||
2550 | * at an offset of 8 from the beginning of the raw packet |
||
2551 | * data (8 bytes for the radiotap header). |
||
2552 | * |
||
2553 | * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20) |
||
2554 | * is set. |
||
2555 | */ |
||
2556 | sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B); |
||
2557 | s2->s.k = 8; |
||
2558 | sappend(s, s2); |
||
2559 | |||
2560 | sjset_notsft_datapad = new_stmt(JMP(BPF_JSET)); |
||
2561 | sjset_notsft_datapad->s.k = 0x20; |
||
2562 | sappend(s, sjset_notsft_datapad); |
||
2563 | |||
2564 | /* |
||
2565 | * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is |
||
2566 | * set, round the length of the 802.11 header to |
||
2567 | * a multiple of 4. Do that by adding 3 and then |
||
2568 | * dividing by and multiplying by 4, which we do by |
||
2569 | * ANDing with ~3. |
||
2570 | */ |
||
2571 | s_roundup = new_stmt(BPF_LD|BPF_MEM); |
||
2572 | s_roundup->s.k = off_linkpl.reg; |
||
2573 | sappend(s, s_roundup); |
||
2574 | s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM); |
||
2575 | s2->s.k = 3; |
||
2576 | sappend(s, s2); |
||
2577 | s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM); |
||
2578 | s2->s.k = ~3; |
||
2579 | sappend(s, s2); |
||
2580 | s2 = new_stmt(BPF_ST); |
||
2581 | s2->s.k = off_linkpl.reg; |
||
2582 | sappend(s, s2); |
||
2583 | |||
2584 | sjset_tsft_datapad->s.jt = s_roundup; |
||
2585 | sjset_tsft_datapad->s.jf = snext; |
||
2586 | sjset_notsft_datapad->s.jt = s_roundup; |
||
2587 | sjset_notsft_datapad->s.jf = snext; |
||
2588 | } else |
||
2589 | sjset_qos->s.jf = snext; |
||
2590 | |||
2591 | return s; |
||
2592 | } |
||
2593 | |||
2594 | static void |
||
2595 | insert_compute_vloffsets(b) |
||
2596 | struct block *b; |
||
2597 | { |
||
2598 | struct slist *s; |
||
2599 | |||
2600 | /* There is an implicit dependency between the link |
||
2601 | * payload and link header since the payload computation |
||
2602 | * includes the variable part of the header. Therefore, |
||
2603 | * if nobody else has allocated a register for the link |
||
2604 | * header and we need it, do it now. */ |
||
2605 | if (off_linkpl.reg != -1 && off_linkhdr.is_variable && |
||
2606 | off_linkhdr.reg == -1) |
||
2607 | off_linkhdr.reg = alloc_reg(); |
||
2608 | |||
2609 | /* |
||
2610 | * For link-layer types that have a variable-length header |
||
2611 | * preceding the link-layer header, generate code to load |
||
2612 | * the offset of the link-layer header into the register |
||
2613 | * assigned to that offset, if any. |
||
2614 | * |
||
2615 | * XXX - this, and the next switch statement, won't handle |
||
2616 | * encapsulation of 802.11 or 802.11+radio information in |
||
2617 | * some other protocol stack. That's significantly more |
||
2618 | * complicated. |
||
2619 | */ |
||
2620 | switch (outermostlinktype) { |
||
2621 | |||
2622 | case DLT_PRISM_HEADER: |
||
2623 | s = gen_load_prism_llprefixlen(); |
||
2624 | break; |
||
2625 | |||
2626 | case DLT_IEEE802_11_RADIO_AVS: |
||
2627 | s = gen_load_avs_llprefixlen(); |
||
2628 | break; |
||
2629 | |||
2630 | case DLT_IEEE802_11_RADIO: |
||
2631 | s = gen_load_radiotap_llprefixlen(); |
||
2632 | break; |
||
2633 | |||
2634 | case DLT_PPI: |
||
2635 | s = gen_load_ppi_llprefixlen(); |
||
2636 | break; |
||
2637 | |||
2638 | default: |
||
2639 | s = NULL; |
||
2640 | break; |
||
2641 | } |
||
2642 | |||
2643 | /* |
||
2644 | * For link-layer types that have a variable-length link-layer |
||
2645 | * header, generate code to load the offset of the link-layer |
||
2646 | * payload into the register assigned to that offset, if any. |
||
2647 | */ |
||
2648 | switch (outermostlinktype) { |
||
2649 | |||
2650 | case DLT_IEEE802_11: |
||
2651 | case DLT_PRISM_HEADER: |
||
2652 | case DLT_IEEE802_11_RADIO_AVS: |
||
2653 | case DLT_IEEE802_11_RADIO: |
||
2654 | case DLT_PPI: |
||
2655 | s = gen_load_802_11_header_len(s, b->stmts); |
||
2656 | break; |
||
2657 | } |
||
2658 | |||
2659 | /* |
||
2660 | * If we have any offset-loading code, append all the |
||
2661 | * existing statements in the block to those statements, |
||
2662 | * and make the resulting list the list of statements |
||
2663 | * for the block. |
||
2664 | */ |
||
2665 | if (s != NULL) { |
||
2666 | sappend(s, b->stmts); |
||
2667 | b->stmts = s; |
||
2668 | } |
||
2669 | } |
||
2670 | |||
2671 | static struct block * |
||
2672 | gen_ppi_dlt_check(void) |
||
2673 | { |
||
2674 | struct slist *s_load_dlt; |
||
2675 | struct block *b; |
||
2676 | |||
2677 | if (linktype == DLT_PPI) |
||
2678 | { |
||
2679 | /* Create the statements that check for the DLT |
||
2680 | */ |
||
2681 | s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS); |
||
2682 | s_load_dlt->s.k = 4; |
||
2683 | |||
2684 | b = new_block(JMP(BPF_JEQ)); |
||
2685 | |||
2686 | b->stmts = s_load_dlt; |
||
2687 | b->s.k = SWAPLONG(DLT_IEEE802_11); |
||
2688 | } |
||
2689 | else |
||
2690 | { |
||
2691 | b = NULL; |
||
2692 | } |
||
2693 | |||
2694 | return b; |
||
2695 | } |
||
2696 | |||
2697 | /* |
||
2698 | * Take an absolute offset, and: |
||
2699 | * |
||
2700 | * if it has no variable part, return NULL; |
||
2701 | * |
||
2702 | * if it has a variable part, generate code to load the register |
||
2703 | * containing that variable part into the X register, returning |
||
2704 | * a pointer to that code - if no register for that offset has |
||
2705 | * been allocated, allocate it first. |
||
2706 | * |
||
2707 | * (The code to set that register will be generated later, but will |
||
2708 | * be placed earlier in the code sequence.) |
||
2709 | */ |
||
2710 | static struct slist * |
||
2711 | gen_abs_offset_varpart(bpf_abs_offset *off) |
||
2712 | { |
||
2713 | struct slist *s; |
||
2714 | |||
2715 | if (off->is_variable) { |
||
2716 | if (off->reg == -1) { |
||
2717 | /* |
||
2718 | * We haven't yet assigned a register for the |
||
2719 | * variable part of the offset of the link-layer |
||
2720 | * header; allocate one. |
||
2721 | */ |
||
2722 | off->reg = alloc_reg(); |
||
2723 | } |
||
2724 | |||
2725 | /* |
||
2726 | * Load the register containing the variable part of the |
||
2727 | * offset of the link-layer header into the X register. |
||
2728 | */ |
||
2729 | s = new_stmt(BPF_LDX|BPF_MEM); |
||
2730 | s->s.k = off->reg; |
||
2731 | return s; |
||
2732 | } else { |
||
2733 | /* |
||
2734 | * That offset isn't variable, there's no variable part, |
||
2735 | * so we don't need to generate any code. |
||
2736 | */ |
||
2737 | return NULL; |
||
2738 | } |
||
2739 | } |
||
2740 | |||
2741 | /* |
||
2742 | * Map an Ethernet type to the equivalent PPP type. |
||
2743 | */ |
||
2744 | static int |
||
2745 | ethertype_to_ppptype(proto) |
||
2746 | int proto; |
||
2747 | { |
||
2748 | switch (proto) { |
||
2749 | |||
2750 | case ETHERTYPE_IP: |
||
2751 | proto = PPP_IP; |
||
2752 | break; |
||
2753 | |||
2754 | case ETHERTYPE_IPV6: |
||
2755 | proto = PPP_IPV6; |
||
2756 | break; |
||
2757 | |||
2758 | case ETHERTYPE_DN: |
||
2759 | proto = PPP_DECNET; |
||
2760 | break; |
||
2761 | |||
2762 | case ETHERTYPE_ATALK: |
||
2763 | proto = PPP_APPLE; |
||
2764 | break; |
||
2765 | |||
2766 | case ETHERTYPE_NS: |
||
2767 | proto = PPP_NS; |
||
2768 | break; |
||
2769 | |||
2770 | case LLCSAP_ISONS: |
||
2771 | proto = PPP_OSI; |
||
2772 | break; |
||
2773 | |||
2774 | case LLCSAP_8021D: |
||
2775 | /* |
||
2776 | * I'm assuming the "Bridging PDU"s that go |
||
2777 | * over PPP are Spanning Tree Protocol |
||
2778 | * Bridging PDUs. |
||
2779 | */ |
||
2780 | proto = PPP_BRPDU; |
||
2781 | break; |
||
2782 | |||
2783 | case LLCSAP_IPX: |
||
2784 | proto = PPP_IPX; |
||
2785 | break; |
||
2786 | } |
||
2787 | return (proto); |
||
2788 | } |
||
2789 | |||
2790 | /* |
||
2791 | * Generate any tests that, for encapsulation of a link-layer packet |
||
2792 | * inside another protocol stack, need to be done to check for those |
||
2793 | * link-layer packets (and that haven't already been done by a check |
||
2794 | * for that encapsulation). |
||
2795 | */ |
||
2796 | static struct block * |
||
2797 | gen_prevlinkhdr_check(void) |
||
2798 | { |
||
2799 | struct block *b0; |
||
2800 | |||
2801 | if (is_geneve) |
||
2802 | return gen_geneve_ll_check(); |
||
2803 | |||
2804 | switch (prevlinktype) { |
||
2805 | |||
2806 | case DLT_SUNATM: |
||
2807 | /* |
||
2808 | * This is LANE-encapsulated Ethernet; check that the LANE |
||
2809 | * packet doesn't begin with an LE Control marker, i.e. |
||
2810 | * that it's data, not a control message. |
||
2811 | * |
||
2812 | * (We've already generated a test for LANE.) |
||
2813 | */ |
||
2814 | b0 = gen_cmp(OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00); |
||
2815 | gen_not(b0); |
||
2816 | return b0; |
||
2817 | |||
2818 | default: |
||
2819 | /* |
||
2820 | * No such tests are necessary. |
||
2821 | */ |
||
2822 | return NULL; |
||
2823 | } |
||
2824 | /*NOTREACHED*/ |
||
2825 | } |
||
2826 | |||
2827 | /* |
||
2828 | * Generate code to match a particular packet type by matching the |
||
2829 | * link-layer type field or fields in the 802.2 LLC header. |
||
2830 | * |
||
2831 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
||
2832 | * value, if <= ETHERMTU. |
||
2833 | */ |
||
2834 | static struct block * |
||
2835 | gen_linktype(proto) |
||
2836 | register int proto; |
||
2837 | { |
||
2838 | struct block *b0, *b1, *b2; |
||
2839 | const char *description; |
||
2840 | |||
2841 | /* are we checking MPLS-encapsulated packets? */ |
||
2842 | if (label_stack_depth > 0) { |
||
2843 | switch (proto) { |
||
2844 | case ETHERTYPE_IP: |
||
2845 | case PPP_IP: |
||
2846 | /* FIXME add other L3 proto IDs */ |
||
2847 | return gen_mpls_linktype(Q_IP); |
||
2848 | |||
2849 | case ETHERTYPE_IPV6: |
||
2850 | case PPP_IPV6: |
||
2851 | /* FIXME add other L3 proto IDs */ |
||
2852 | return gen_mpls_linktype(Q_IPV6); |
||
2853 | |||
2854 | default: |
||
2855 | bpf_error("unsupported protocol over mpls"); |
||
2856 | /* NOTREACHED */ |
||
2857 | } |
||
2858 | } |
||
2859 | |||
2860 | switch (linktype) { |
||
2861 | |||
2862 | case DLT_EN10MB: |
||
2863 | case DLT_NETANALYZER: |
||
2864 | case DLT_NETANALYZER_TRANSPARENT: |
||
2865 | /* Geneve has an EtherType regardless of whether there is an |
||
2866 | * L2 header. */ |
||
2867 | if (!is_geneve) |
||
2868 | b0 = gen_prevlinkhdr_check(); |
||
2869 | else |
||
2870 | b0 = NULL; |
||
2871 | |||
2872 | b1 = gen_ether_linktype(proto); |
||
2873 | if (b0 != NULL) |
||
2874 | gen_and(b0, b1); |
||
2875 | return b1; |
||
2876 | /*NOTREACHED*/ |
||
2877 | break; |
||
2878 | |||
2879 | case DLT_C_HDLC: |
||
2880 | switch (proto) { |
||
2881 | |||
2882 | case LLCSAP_ISONS: |
||
2883 | proto = (proto << 8 | LLCSAP_ISONS); |
||
2884 | /* fall through */ |
||
2885 | |||
2886 | default: |
||
2887 | return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
||
2888 | /*NOTREACHED*/ |
||
2889 | break; |
||
2890 | } |
||
2891 | break; |
||
2892 | |||
2893 | case DLT_IEEE802_11: |
||
2894 | case DLT_PRISM_HEADER: |
||
2895 | case DLT_IEEE802_11_RADIO_AVS: |
||
2896 | case DLT_IEEE802_11_RADIO: |
||
2897 | case DLT_PPI: |
||
2898 | /* |
||
2899 | * Check that we have a data frame. |
||
2900 | */ |
||
2901 | b0 = gen_check_802_11_data_frame(); |
||
2902 | |||
2903 | /* |
||
2904 | * Now check for the specified link-layer type. |
||
2905 | */ |
||
2906 | b1 = gen_llc_linktype(proto); |
||
2907 | gen_and(b0, b1); |
||
2908 | return b1; |
||
2909 | /*NOTREACHED*/ |
||
2910 | break; |
||
2911 | |||
2912 | case DLT_FDDI: |
||
2913 | /* |
||
2914 | * XXX - check for LLC frames. |
||
2915 | */ |
||
2916 | return gen_llc_linktype(proto); |
||
2917 | /*NOTREACHED*/ |
||
2918 | break; |
||
2919 | |||
2920 | case DLT_IEEE802: |
||
2921 | /* |
||
2922 | * XXX - check for LLC PDUs, as per IEEE 802.5. |
||
2923 | */ |
||
2924 | return gen_llc_linktype(proto); |
||
2925 | /*NOTREACHED*/ |
||
2926 | break; |
||
2927 | |||
2928 | case DLT_ATM_RFC1483: |
||
2929 | case DLT_ATM_CLIP: |
||
2930 | case DLT_IP_OVER_FC: |
||
2931 | return gen_llc_linktype(proto); |
||
2932 | /*NOTREACHED*/ |
||
2933 | break; |
||
2934 | |||
2935 | case DLT_SUNATM: |
||
2936 | /* |
||
2937 | * Check for an LLC-encapsulated version of this protocol; |
||
2938 | * if we were checking for LANE, linktype would no longer |
||
2939 | * be DLT_SUNATM. |
||
2940 | * |
||
2941 | * Check for LLC encapsulation and then check the protocol. |
||
2942 | */ |
||
2943 | b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0); |
||
2944 | b1 = gen_llc_linktype(proto); |
||
2945 | gen_and(b0, b1); |
||
2946 | return b1; |
||
2947 | /*NOTREACHED*/ |
||
2948 | break; |
||
2949 | |||
2950 | case DLT_LINUX_SLL: |
||
2951 | return gen_linux_sll_linktype(proto); |
||
2952 | /*NOTREACHED*/ |
||
2953 | break; |
||
2954 | |||
2955 | case DLT_SLIP: |
||
2956 | case DLT_SLIP_BSDOS: |
||
2957 | case DLT_RAW: |
||
2958 | /* |
||
2959 | * These types don't provide any type field; packets |
||
2960 | * are always IPv4 or IPv6. |
||
2961 | * |
||
2962 | * XXX - for IPv4, check for a version number of 4, and, |
||
2963 | * for IPv6, check for a version number of 6? |
||
2964 | */ |
||
2965 | switch (proto) { |
||
2966 | |||
2967 | case ETHERTYPE_IP: |
||
2968 | /* Check for a version number of 4. */ |
||
2969 | return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x40, 0xF0); |
||
2970 | |||
2971 | case ETHERTYPE_IPV6: |
||
2972 | /* Check for a version number of 6. */ |
||
2973 | return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x60, 0xF0); |
||
2974 | |||
2975 | default: |
||
2976 | return gen_false(); /* always false */ |
||
2977 | } |
||
2978 | /*NOTREACHED*/ |
||
2979 | break; |
||
2980 | |||
2981 | case DLT_IPV4: |
||
2982 | /* |
||
2983 | * Raw IPv4, so no type field. |
||
2984 | */ |
||
2985 | if (proto == ETHERTYPE_IP) |
||
2986 | return gen_true(); /* always true */ |
||
2987 | |||
2988 | /* Checking for something other than IPv4; always false */ |
||
2989 | return gen_false(); |
||
2990 | /*NOTREACHED*/ |
||
2991 | break; |
||
2992 | |||
2993 | case DLT_IPV6: |
||
2994 | /* |
||
2995 | * Raw IPv6, so no type field. |
||
2996 | */ |
||
2997 | if (proto == ETHERTYPE_IPV6) |
||
2998 | return gen_true(); /* always true */ |
||
2999 | |||
3000 | /* Checking for something other than IPv6; always false */ |
||
3001 | return gen_false(); |
||
3002 | /*NOTREACHED*/ |
||
3003 | break; |
||
3004 | |||
3005 | case DLT_PPP: |
||
3006 | case DLT_PPP_PPPD: |
||
3007 | case DLT_PPP_SERIAL: |
||
3008 | case DLT_PPP_ETHER: |
||
3009 | /* |
||
3010 | * We use Ethernet protocol types inside libpcap; |
||
3011 | * map them to the corresponding PPP protocol types. |
||
3012 | */ |
||
3013 | proto = ethertype_to_ppptype(proto); |
||
3014 | return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
||
3015 | /*NOTREACHED*/ |
||
3016 | break; |
||
3017 | |||
3018 | case DLT_PPP_BSDOS: |
||
3019 | /* |
||
3020 | * We use Ethernet protocol types inside libpcap; |
||
3021 | * map them to the corresponding PPP protocol types. |
||
3022 | */ |
||
3023 | switch (proto) { |
||
3024 | |||
3025 | case ETHERTYPE_IP: |
||
3026 | /* |
||
3027 | * Also check for Van Jacobson-compressed IP. |
||
3028 | * XXX - do this for other forms of PPP? |
||
3029 | */ |
||
3030 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_IP); |
||
3031 | b1 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJC); |
||
3032 | gen_or(b0, b1); |
||
3033 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJNC); |
||
3034 | gen_or(b1, b0); |
||
3035 | return b0; |
||
3036 | |||
3037 | default: |
||
3038 | proto = ethertype_to_ppptype(proto); |
||
3039 | return gen_cmp(OR_LINKTYPE, 0, BPF_H, |
||
3040 | (bpf_int32)proto); |
||
3041 | } |
||
3042 | /*NOTREACHED*/ |
||
3043 | break; |
||
3044 | |||
3045 | case DLT_NULL: |
||
3046 | case DLT_LOOP: |
||
3047 | case DLT_ENC: |
||
3048 | /* |
||
3049 | * For DLT_NULL, the link-layer header is a 32-bit |
||
3050 | * word containing an AF_ value in *host* byte order, |
||
3051 | * and for DLT_ENC, the link-layer header begins |
||
3052 | * with a 32-bit work containing an AF_ value in |
||
3053 | * host byte order. |
||
3054 | * |
||
3055 | * In addition, if we're reading a saved capture file, |
||
3056 | * the host byte order in the capture may not be the |
||
3057 | * same as the host byte order on this machine. |
||
3058 | * |
||
3059 | * For DLT_LOOP, the link-layer header is a 32-bit |
||
3060 | * word containing an AF_ value in *network* byte order. |
||
3061 | * |
||
3062 | * XXX - AF_ values may, unfortunately, be platform- |
||
3063 | * dependent; for example, FreeBSD's AF_INET6 is 24 |
||
3064 | * whilst NetBSD's and OpenBSD's is 26. |
||
3065 | * |
||
3066 | * This means that, when reading a capture file, just |
||
3067 | * checking for our AF_INET6 value won't work if the |
||
3068 | * capture file came from another OS. |
||
3069 | */ |
||
3070 | switch (proto) { |
||
3071 | |||
3072 | case ETHERTYPE_IP: |
||
3073 | proto = AF_INET; |
||
3074 | break; |
||
3075 | |||
3076 | #ifdef INET6 |
||
3077 | case ETHERTYPE_IPV6: |
||
3078 | proto = AF_INET6; |
||
3079 | break; |
||
3080 | #endif |
||
3081 | |||
3082 | default: |
||
3083 | /* |
||
3084 | * Not a type on which we support filtering. |
||
3085 | * XXX - support those that have AF_ values |
||
3086 | * #defined on this platform, at least? |
||
3087 | */ |
||
3088 | return gen_false(); |
||
3089 | } |
||
3090 | |||
3091 | if (linktype == DLT_NULL || linktype == DLT_ENC) { |
||
3092 | /* |
||
3093 | * The AF_ value is in host byte order, but |
||
3094 | * the BPF interpreter will convert it to |
||
3095 | * network byte order. |
||
3096 | * |
||
3097 | * If this is a save file, and it's from a |
||
3098 | * machine with the opposite byte order to |
||
3099 | * ours, we byte-swap the AF_ value. |
||
3100 | * |
||
3101 | * Then we run it through "htonl()", and |
||
3102 | * generate code to compare against the result. |
||
3103 | */ |
||
3104 | if (bpf_pcap->rfile != NULL && bpf_pcap->swapped) |
||
3105 | proto = SWAPLONG(proto); |
||
3106 | proto = htonl(proto); |
||
3107 | } |
||
3108 | return (gen_cmp(OR_LINKHDR, 0, BPF_W, (bpf_int32)proto)); |
||
3109 | |||
3110 | #ifdef HAVE_NET_PFVAR_H |
||
3111 | case DLT_PFLOG: |
||
3112 | /* |
||
3113 | * af field is host byte order in contrast to the rest of |
||
3114 | * the packet. |
||
3115 | */ |
||
3116 | if (proto == ETHERTYPE_IP) |
||
3117 | return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af), |
||
3118 | BPF_B, (bpf_int32)AF_INET)); |
||
3119 | else if (proto == ETHERTYPE_IPV6) |
||
3120 | return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af), |
||
3121 | BPF_B, (bpf_int32)AF_INET6)); |
||
3122 | else |
||
3123 | return gen_false(); |
||
3124 | /*NOTREACHED*/ |
||
3125 | break; |
||
3126 | #endif /* HAVE_NET_PFVAR_H */ |
||
3127 | |||
3128 | case DLT_ARCNET: |
||
3129 | case DLT_ARCNET_LINUX: |
||
3130 | /* |
||
3131 | * XXX should we check for first fragment if the protocol |
||
3132 | * uses PHDS? |
||
3133 | */ |
||
3134 | switch (proto) { |
||
3135 | |||
3136 | default: |
||
3137 | return gen_false(); |
||
3138 | |||
3139 | case ETHERTYPE_IPV6: |
||
3140 | return (gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3141 | (bpf_int32)ARCTYPE_INET6)); |
||
3142 | |||
3143 | case ETHERTYPE_IP: |
||
3144 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3145 | (bpf_int32)ARCTYPE_IP); |
||
3146 | b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3147 | (bpf_int32)ARCTYPE_IP_OLD); |
||
3148 | gen_or(b0, b1); |
||
3149 | return (b1); |
||
3150 | |||
3151 | case ETHERTYPE_ARP: |
||
3152 | b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3153 | (bpf_int32)ARCTYPE_ARP); |
||
3154 | b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3155 | (bpf_int32)ARCTYPE_ARP_OLD); |
||
3156 | gen_or(b0, b1); |
||
3157 | return (b1); |
||
3158 | |||
3159 | case ETHERTYPE_REVARP: |
||
3160 | return (gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3161 | (bpf_int32)ARCTYPE_REVARP)); |
||
3162 | |||
3163 | case ETHERTYPE_ATALK: |
||
3164 | return (gen_cmp(OR_LINKTYPE, 0, BPF_B, |
||
3165 | (bpf_int32)ARCTYPE_ATALK)); |
||
3166 | } |
||
3167 | /*NOTREACHED*/ |
||
3168 | break; |
||
3169 | |||
3170 | case DLT_LTALK: |
||
3171 | switch (proto) { |
||
3172 | case ETHERTYPE_ATALK: |
||
3173 | return gen_true(); |
||
3174 | default: |
||
3175 | return gen_false(); |
||
3176 | } |
||
3177 | /*NOTREACHED*/ |
||
3178 | break; |
||
3179 | |||
3180 | case DLT_FRELAY: |
||
3181 | /* |
||
3182 | * XXX - assumes a 2-byte Frame Relay header with |
||
3183 | * DLCI and flags. What if the address is longer? |
||
3184 | */ |
||
3185 | switch (proto) { |
||
3186 | |||
3187 | case ETHERTYPE_IP: |
||
3188 | /* |
||
3189 | * Check for the special NLPID for IP. |
||
3190 | */ |
||
3191 | return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc); |
||
3192 | |||
3193 | case ETHERTYPE_IPV6: |
||
3194 | /* |
||
3195 | * Check for the special NLPID for IPv6. |
||
3196 | */ |
||
3197 | return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e); |
||
3198 | |||
3199 | case LLCSAP_ISONS: |
||
3200 | /* |
||
3201 | * Check for several OSI protocols. |
||
3202 | * |
||
3203 | * Frame Relay packets typically have an OSI |
||
3204 | * NLPID at the beginning; we check for each |
||
3205 | * of them. |
||
3206 | * |
||
3207 | * What we check for is the NLPID and a frame |
||
3208 | * control field of UI, i.e. 0x03 followed |
||
3209 | * by the NLPID. |
||
3210 | */ |
||
3211 | b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP); |
||
3212 | b1 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS); |
||
3213 | b2 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS); |
||
3214 | gen_or(b1, b2); |
||
3215 | gen_or(b0, b2); |
||
3216 | return b2; |
||
3217 | |||
3218 | default: |
||
3219 | return gen_false(); |
||
3220 | } |
||
3221 | /*NOTREACHED*/ |
||
3222 | break; |
||
3223 | |||
3224 | case DLT_MFR: |
||
3225 | bpf_error("Multi-link Frame Relay link-layer type filtering not implemented"); |
||
3226 | |||
3227 | case DLT_JUNIPER_MFR: |
||
3228 | case DLT_JUNIPER_MLFR: |
||
3229 | case DLT_JUNIPER_MLPPP: |
||
3230 | case DLT_JUNIPER_ATM1: |
||
3231 | case DLT_JUNIPER_ATM2: |
||
3232 | case DLT_JUNIPER_PPPOE: |
||
3233 | case DLT_JUNIPER_PPPOE_ATM: |
||
3234 | case DLT_JUNIPER_GGSN: |
||
3235 | case DLT_JUNIPER_ES: |
||
3236 | case DLT_JUNIPER_MONITOR: |
||
3237 | case DLT_JUNIPER_SERVICES: |
||
3238 | case DLT_JUNIPER_ETHER: |
||
3239 | case DLT_JUNIPER_PPP: |
||
3240 | case DLT_JUNIPER_FRELAY: |
||
3241 | case DLT_JUNIPER_CHDLC: |
||
3242 | case DLT_JUNIPER_VP: |
||
3243 | case DLT_JUNIPER_ST: |
||
3244 | case DLT_JUNIPER_ISM: |
||
3245 | case DLT_JUNIPER_VS: |
||
3246 | case DLT_JUNIPER_SRX_E2E: |
||
3247 | case DLT_JUNIPER_FIBRECHANNEL: |
||
3248 | case DLT_JUNIPER_ATM_CEMIC: |
||
3249 | |||
3250 | /* just lets verify the magic number for now - |
||
3251 | * on ATM we may have up to 6 different encapsulations on the wire |
||
3252 | * and need a lot of heuristics to figure out that the payload |
||
3253 | * might be; |
||
3254 | * |
||
3255 | * FIXME encapsulation specific BPF_ filters |
||
3256 | */ |
||
3257 | return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */ |
||
3258 | |||
3259 | case DLT_BACNET_MS_TP: |
||
3260 | return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000); |
||
3261 | |||
3262 | case DLT_IPNET: |
||
3263 | return gen_ipnet_linktype(proto); |
||
3264 | |||
3265 | case DLT_LINUX_IRDA: |
||
3266 | bpf_error("IrDA link-layer type filtering not implemented"); |
||
3267 | |||
3268 | case DLT_DOCSIS: |
||
3269 | bpf_error("DOCSIS link-layer type filtering not implemented"); |
||
3270 | |||
3271 | case DLT_MTP2: |
||
3272 | case DLT_MTP2_WITH_PHDR: |
||
3273 | bpf_error("MTP2 link-layer type filtering not implemented"); |
||
3274 | |||
3275 | case DLT_ERF: |
||
3276 | bpf_error("ERF link-layer type filtering not implemented"); |
||
3277 | |||
3278 | case DLT_PFSYNC: |
||
3279 | bpf_error("PFSYNC link-layer type filtering not implemented"); |
||
3280 | |||
3281 | case DLT_LINUX_LAPD: |
||
3282 | bpf_error("LAPD link-layer type filtering not implemented"); |
||
3283 | |||
3284 | case DLT_USB: |
||
3285 | case DLT_USB_LINUX: |
||
3286 | case DLT_USB_LINUX_MMAPPED: |
||
3287 | bpf_error("USB link-layer type filtering not implemented"); |
||
3288 | |||
3289 | case DLT_BLUETOOTH_HCI_H4: |
||
3290 | case DLT_BLUETOOTH_HCI_H4_WITH_PHDR: |
||
3291 | bpf_error("Bluetooth link-layer type filtering not implemented"); |
||
3292 | |||
3293 | case DLT_CAN20B: |
||
3294 | case DLT_CAN_SOCKETCAN: |
||
3295 | bpf_error("CAN link-layer type filtering not implemented"); |
||
3296 | |||
3297 | case DLT_IEEE802_15_4: |
||
3298 | case DLT_IEEE802_15_4_LINUX: |
||
3299 | case DLT_IEEE802_15_4_NONASK_PHY: |
||
3300 | case DLT_IEEE802_15_4_NOFCS: |
||
3301 | bpf_error("IEEE 802.15.4 link-layer type filtering not implemented"); |
||
3302 | |||
3303 | case DLT_IEEE802_16_MAC_CPS_RADIO: |
||
3304 | bpf_error("IEEE 802.16 link-layer type filtering not implemented"); |
||
3305 | |||
3306 | case DLT_SITA: |
||
3307 | bpf_error("SITA link-layer type filtering not implemented"); |
||
3308 | |||
3309 | case DLT_RAIF1: |
||
3310 | bpf_error("RAIF1 link-layer type filtering not implemented"); |
||
3311 | |||
3312 | case DLT_IPMB: |
||
3313 | bpf_error("IPMB link-layer type filtering not implemented"); |
||
3314 | |||
3315 | case DLT_AX25_KISS: |
||
3316 | bpf_error("AX.25 link-layer type filtering not implemented"); |
||
3317 | |||
3318 | case DLT_NFLOG: |
||
3319 | /* Using the fixed-size NFLOG header it is possible to tell only |
||
3320 | * the address family of the packet, other meaningful data is |
||
3321 | * either missing or behind TLVs. |
||
3322 | */ |
||
3323 | bpf_error("NFLOG link-layer type filtering not implemented"); |
||
3324 | |||
3325 | default: |
||
3326 | /* |
||
3327 | * Does this link-layer header type have a field |
||
3328 | * indicating the type of the next protocol? If |
||
3329 | * so, off_linktype.constant_part will be the offset of that |
||
3330 | * field in the packet; if not, it will be -1. |
||
3331 | */ |
||
3332 | if (off_linktype.constant_part != (u_int)-1) { |
||
3333 | /* |
||
3334 | * Yes; assume it's an Ethernet type. (If |
||
3335 | * it's not, it needs to be handled specially |
||
3336 | * above.) |
||
3337 | */ |
||
3338 | return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
||
3339 | } else { |
||
3340 | /* |
||
3341 | * No; report an error. |
||
3342 | */ |
||
3343 | description = pcap_datalink_val_to_description(linktype); |
||
3344 | if (description != NULL) { |
||
3345 | bpf_error("%s link-layer type filtering not implemented", |
||
3346 | description); |
||
3347 | } else { |
||
3348 | bpf_error("DLT %u link-layer type filtering not implemented", |
||
3349 | linktype); |
||
3350 | } |
||
3351 | } |
||
3352 | break; |
||
3353 | } |
||
3354 | } |
||
3355 | |||
3356 | /* |
||
3357 | * Check for an LLC SNAP packet with a given organization code and |
||
3358 | * protocol type; we check the entire contents of the 802.2 LLC and |
||
3359 | * snap headers, checking for DSAP and SSAP of SNAP and a control |
||
3360 | * field of 0x03 in the LLC header, and for the specified organization |
||
3361 | * code and protocol type in the SNAP header. |
||
3362 | */ |
||
3363 | static struct block * |
||
3364 | gen_snap(orgcode, ptype) |
||
3365 | bpf_u_int32 orgcode; |
||
3366 | bpf_u_int32 ptype; |
||
3367 | { |
||
3368 | u_char snapblock[8]; |
||
3369 | |||
3370 | snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */ |
||
3371 | snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */ |
||
3372 | snapblock[2] = 0x03; /* control = UI */ |
||
3373 | snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */ |
||
3374 | snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */ |
||
3375 | snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */ |
||
3376 | snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */ |
||
3377 | snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */ |
||
3378 | return gen_bcmp(OR_LLC, 0, 8, snapblock); |
||
3379 | } |
||
3380 | |||
3381 | /* |
||
3382 | * Generate code to match frames with an LLC header. |
||
3383 | */ |
||
3384 | struct block * |
||
3385 | gen_llc(void) |
||
3386 | { |
||
3387 | struct block *b0, *b1; |
||
3388 | |||
3389 | switch (linktype) { |
||
3390 | |||
3391 | case DLT_EN10MB: |
||
3392 | /* |
||
3393 | * We check for an Ethernet type field less than |
||
3394 | * 1500, which means it's an 802.3 length field. |
||
3395 | */ |
||
3396 | b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
||
3397 | gen_not(b0); |
||
3398 | |||
3399 | /* |
||
3400 | * Now check for the purported DSAP and SSAP not being |
||
3401 | * 0xFF, to rule out NetWare-over-802.3. |
||
3402 | */ |
||
3403 | b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF); |
||
3404 | gen_not(b1); |
||
3405 | gen_and(b0, b1); |
||
3406 | return b1; |
||
3407 | |||
3408 | case DLT_SUNATM: |
||
3409 | /* |
||
3410 | * We check for LLC traffic. |
||
3411 | */ |
||
3412 | b0 = gen_atmtype_abbrev(A_LLC); |
||
3413 | return b0; |
||
3414 | |||
3415 | case DLT_IEEE802: /* Token Ring */ |
||
3416 | /* |
||
3417 | * XXX - check for LLC frames. |
||
3418 | */ |
||
3419 | return gen_true(); |
||
3420 | |||
3421 | case DLT_FDDI: |
||
3422 | /* |
||
3423 | * XXX - check for LLC frames. |
||
3424 | */ |
||
3425 | return gen_true(); |
||
3426 | |||
3427 | case DLT_ATM_RFC1483: |
||
3428 | /* |
||
3429 | * For LLC encapsulation, these are defined to have an |
||
3430 | * 802.2 LLC header. |
||
3431 | * |
||
3432 | * For VC encapsulation, they don't, but there's no |
||
3433 | * way to check for that; the protocol used on the VC |
||
3434 | * is negotiated out of band. |
||
3435 | */ |
||
3436 | return gen_true(); |
||
3437 | |||
3438 | case DLT_IEEE802_11: |
||
3439 | case DLT_PRISM_HEADER: |
||
3440 | case DLT_IEEE802_11_RADIO: |
||
3441 | case DLT_IEEE802_11_RADIO_AVS: |
||
3442 | case DLT_PPI: |
||
3443 | /* |
||
3444 | * Check that we have a data frame. |
||
3445 | */ |
||
3446 | b0 = gen_check_802_11_data_frame(); |
||
3447 | return b0; |
||
3448 | |||
3449 | default: |
||
3450 | bpf_error("'llc' not supported for linktype %d", linktype); |
||
3451 | /* NOTREACHED */ |
||
3452 | } |
||
3453 | } |
||
3454 | |||
3455 | struct block * |
||
3456 | gen_llc_i(void) |
||
3457 | { |
||
3458 | struct block *b0, *b1; |
||
3459 | struct slist *s; |
||
3460 | |||
3461 | /* |
||
3462 | * Check whether this is an LLC frame. |
||
3463 | */ |
||
3464 | b0 = gen_llc(); |
||
3465 | |||
3466 | /* |
||
3467 | * Load the control byte and test the low-order bit; it must |
||
3468 | * be clear for I frames. |
||
3469 | */ |
||
3470 | s = gen_load_a(OR_LLC, 2, BPF_B); |
||
3471 | b1 = new_block(JMP(BPF_JSET)); |
||
3472 | b1->s.k = 0x01; |
||
3473 | b1->stmts = s; |
||
3474 | gen_not(b1); |
||
3475 | gen_and(b0, b1); |
||
3476 | return b1; |
||
3477 | } |
||
3478 | |||
3479 | struct block * |
||
3480 | gen_llc_s(void) |
||
3481 | { |
||
3482 | struct block *b0, *b1; |
||
3483 | |||
3484 | /* |
||
3485 | * Check whether this is an LLC frame. |
||
3486 | */ |
||
3487 | b0 = gen_llc(); |
||
3488 | |||
3489 | /* |
||
3490 | * Now compare the low-order 2 bit of the control byte against |
||
3491 | * the appropriate value for S frames. |
||
3492 | */ |
||
3493 | b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03); |
||
3494 | gen_and(b0, b1); |
||
3495 | return b1; |
||
3496 | } |
||
3497 | |||
3498 | struct block * |
||
3499 | gen_llc_u(void) |
||
3500 | { |
||
3501 | struct block *b0, *b1; |
||
3502 | |||
3503 | /* |
||
3504 | * Check whether this is an LLC frame. |
||
3505 | */ |
||
3506 | b0 = gen_llc(); |
||
3507 | |||
3508 | /* |
||
3509 | * Now compare the low-order 2 bit of the control byte against |
||
3510 | * the appropriate value for U frames. |
||
3511 | */ |
||
3512 | b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03); |
||
3513 | gen_and(b0, b1); |
||
3514 | return b1; |
||
3515 | } |
||
3516 | |||
3517 | struct block * |
||
3518 | gen_llc_s_subtype(bpf_u_int32 subtype) |
||
3519 | { |
||
3520 | struct block *b0, *b1; |
||
3521 | |||
3522 | /* |
||
3523 | * Check whether this is an LLC frame. |
||
3524 | */ |
||
3525 | b0 = gen_llc(); |
||
3526 | |||
3527 | /* |
||
3528 | * Now check for an S frame with the appropriate type. |
||
3529 | */ |
||
3530 | b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK); |
||
3531 | gen_and(b0, b1); |
||
3532 | return b1; |
||
3533 | } |
||
3534 | |||
3535 | struct block * |
||
3536 | gen_llc_u_subtype(bpf_u_int32 subtype) |
||
3537 | { |
||
3538 | struct block *b0, *b1; |
||
3539 | |||
3540 | /* |
||
3541 | * Check whether this is an LLC frame. |
||
3542 | */ |
||
3543 | b0 = gen_llc(); |
||
3544 | |||
3545 | /* |
||
3546 | * Now check for a U frame with the appropriate type. |
||
3547 | */ |
||
3548 | b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK); |
||
3549 | gen_and(b0, b1); |
||
3550 | return b1; |
||
3551 | } |
||
3552 | |||
3553 | /* |
||
3554 | * Generate code to match a particular packet type, for link-layer types |
||
3555 | * using 802.2 LLC headers. |
||
3556 | * |
||
3557 | * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used |
||
3558 | * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues. |
||
3559 | * |
||
3560 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
||
3561 | * value, if <= ETHERMTU. We use that to determine whether to |
||
3562 | * match the DSAP or both DSAP and LSAP or to check the OUI and |
||
3563 | * protocol ID in a SNAP header. |
||
3564 | */ |
||
3565 | static struct block * |
||
3566 | gen_llc_linktype(proto) |
||
3567 | int proto; |
||
3568 | { |
||
3569 | /* |
||
3570 | * XXX - handle token-ring variable-length header. |
||
3571 | */ |
||
3572 | switch (proto) { |
||
3573 | |||
3574 | case LLCSAP_IP: |
||
3575 | case LLCSAP_ISONS: |
||
3576 | case LLCSAP_NETBEUI: |
||
3577 | /* |
||
3578 | * XXX - should we check both the DSAP and the |
||
3579 | * SSAP, like this, or should we check just the |
||
3580 | * DSAP, as we do for other SAP values? |
||
3581 | */ |
||
3582 | return gen_cmp(OR_LLC, 0, BPF_H, (bpf_u_int32) |
||
3583 | ((proto << 8) | proto)); |
||
3584 | |||
3585 | case LLCSAP_IPX: |
||
3586 | /* |
||
3587 | * XXX - are there ever SNAP frames for IPX on |
||
3588 | * non-Ethernet 802.x networks? |
||
3589 | */ |
||
3590 | return gen_cmp(OR_LLC, 0, BPF_B, |
||
3591 | (bpf_int32)LLCSAP_IPX); |
||
3592 | |||
3593 | case ETHERTYPE_ATALK: |
||
3594 | /* |
||
3595 | * 802.2-encapsulated ETHERTYPE_ATALK packets are |
||
3596 | * SNAP packets with an organization code of |
||
3597 | * 0x080007 (Apple, for Appletalk) and a protocol |
||
3598 | * type of ETHERTYPE_ATALK (Appletalk). |
||
3599 | * |
||
3600 | * XXX - check for an organization code of |
||
3601 | * encapsulated Ethernet as well? |
||
3602 | */ |
||
3603 | return gen_snap(0x080007, ETHERTYPE_ATALK); |
||
3604 | |||
3605 | default: |
||
3606 | /* |
||
3607 | * XXX - we don't have to check for IPX 802.3 |
||
3608 | * here, but should we check for the IPX Ethertype? |
||
3609 | */ |
||
3610 | if (proto <= ETHERMTU) { |
||
3611 | /* |
||
3612 | * This is an LLC SAP value, so check |
||
3613 | * the DSAP. |
||
3614 | */ |
||
3615 | return gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)proto); |
||
3616 | } else { |
||
3617 | /* |
||
3618 | * This is an Ethernet type; we assume that it's |
||
3619 | * unlikely that it'll appear in the right place |
||
3620 | * at random, and therefore check only the |
||
3621 | * location that would hold the Ethernet type |
||
3622 | * in a SNAP frame with an organization code of |
||
3623 | * 0x000000 (encapsulated Ethernet). |
||
3624 | * |
||
3625 | * XXX - if we were to check for the SNAP DSAP and |
||
3626 | * LSAP, as per XXX, and were also to check for an |
||
3627 | * organization code of 0x000000 (encapsulated |
||
3628 | * Ethernet), we'd do |
||
3629 | * |
||
3630 | * return gen_snap(0x000000, proto); |
||
3631 | * |
||
3632 | * here; for now, we don't, as per the above. |
||
3633 | * I don't know whether it's worth the extra CPU |
||
3634 | * time to do the right check or not. |
||
3635 | */ |
||
3636 | return gen_cmp(OR_LLC, 6, BPF_H, (bpf_int32)proto); |
||
3637 | } |
||
3638 | } |
||
3639 | } |
||
3640 | |||
3641 | static struct block * |
||
3642 | gen_hostop(addr, mask, dir, proto, src_off, dst_off) |
||
3643 | bpf_u_int32 addr; |
||
3644 | bpf_u_int32 mask; |
||
3645 | int dir, proto; |
||
3646 | u_int src_off, dst_off; |
||
3647 | { |
||
3648 | struct block *b0, *b1; |
||
3649 | u_int offset; |
||
3650 | |||
3651 | switch (dir) { |
||
3652 | |||
3653 | case Q_SRC: |
||
3654 | offset = src_off; |
||
3655 | break; |
||
3656 | |||
3657 | case Q_DST: |
||
3658 | offset = dst_off; |
||
3659 | break; |
||
3660 | |||
3661 | case Q_AND: |
||
3662 | b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off); |
||
3663 | b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off); |
||
3664 | gen_and(b0, b1); |
||
3665 | return b1; |
||
3666 | |||
3667 | case Q_OR: |
||
3668 | case Q_DEFAULT: |
||
3669 | b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off); |
||
3670 | b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off); |
||
3671 | gen_or(b0, b1); |
||
3672 | return b1; |
||
3673 | |||
3674 | default: |
||
3675 | abort(); |
||
3676 | } |
||
3677 | b0 = gen_linktype(proto); |
||
3678 | b1 = gen_mcmp(OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask); |
||
3679 | gen_and(b0, b1); |
||
3680 | return b1; |
||
3681 | } |
||
3682 | |||
3683 | #ifdef INET6 |
||
3684 | static struct block * |
||
3685 | gen_hostop6(addr, mask, dir, proto, src_off, dst_off) |
||
3686 | struct in6_addr *addr; |
||
3687 | struct in6_addr *mask; |
||
3688 | int dir, proto; |
||
3689 | u_int src_off, dst_off; |
||
3690 | { |
||
3691 | struct block *b0, *b1; |
||
3692 | u_int offset; |
||
3693 | u_int32_t *a, *m; |
||
3694 | |||
3695 | switch (dir) { |
||
3696 | |||
3697 | case Q_SRC: |
||
3698 | offset = src_off; |
||
3699 | break; |
||
3700 | |||
3701 | case Q_DST: |
||
3702 | offset = dst_off; |
||
3703 | break; |
||
3704 | |||
3705 | case Q_AND: |
||
3706 | b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off); |
||
3707 | b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off); |
||
3708 | gen_and(b0, b1); |
||
3709 | return b1; |
||
3710 | |||
3711 | case Q_OR: |
||
3712 | case Q_DEFAULT: |
||
3713 | b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off); |
||
3714 | b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off); |
||
3715 | gen_or(b0, b1); |
||
3716 | return b1; |
||
3717 | |||
3718 | default: |
||
3719 | abort(); |
||
3720 | } |
||
3721 | /* this order is important */ |
||
3722 | a = (u_int32_t *)addr; |
||
3723 | m = (u_int32_t *)mask; |
||
3724 | b1 = gen_mcmp(OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3])); |
||
3725 | b0 = gen_mcmp(OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2])); |
||
3726 | gen_and(b0, b1); |
||
3727 | b0 = gen_mcmp(OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1])); |
||
3728 | gen_and(b0, b1); |
||
3729 | b0 = gen_mcmp(OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0])); |
||
3730 | gen_and(b0, b1); |
||
3731 | b0 = gen_linktype(proto); |
||
3732 | gen_and(b0, b1); |
||
3733 | return b1; |
||
3734 | } |
||
3735 | #endif |
||
3736 | |||
3737 | static struct block * |
||
3738 | gen_ehostop(eaddr, dir) |
||
3739 | register const u_char *eaddr; |
||
3740 | register int dir; |
||
3741 | { |
||
3742 | register struct block *b0, *b1; |
||
3743 | |||
3744 | switch (dir) { |
||
3745 | case Q_SRC: |
||
3746 | return gen_bcmp(OR_LINKHDR, 6, 6, eaddr); |
||
3747 | |||
3748 | case Q_DST: |
||
3749 | return gen_bcmp(OR_LINKHDR, 0, 6, eaddr); |
||
3750 | |||
3751 | case Q_AND: |
||
3752 | b0 = gen_ehostop(eaddr, Q_SRC); |
||
3753 | b1 = gen_ehostop(eaddr, Q_DST); |
||
3754 | gen_and(b0, b1); |
||
3755 | return b1; |
||
3756 | |||
3757 | case Q_DEFAULT: |
||
3758 | case Q_OR: |
||
3759 | b0 = gen_ehostop(eaddr, Q_SRC); |
||
3760 | b1 = gen_ehostop(eaddr, Q_DST); |
||
3761 | gen_or(b0, b1); |
||
3762 | return b1; |
||
3763 | |||
3764 | case Q_ADDR1: |
||
3765 | bpf_error("'addr1' is only supported on 802.11 with 802.11 headers"); |
||
3766 | break; |
||
3767 | |||
3768 | case Q_ADDR2: |
||
3769 | bpf_error("'addr2' is only supported on 802.11 with 802.11 headers"); |
||
3770 | break; |
||
3771 | |||
3772 | case Q_ADDR3: |
||
3773 | bpf_error("'addr3' is only supported on 802.11 with 802.11 headers"); |
||
3774 | break; |
||
3775 | |||
3776 | case Q_ADDR4: |
||
3777 | bpf_error("'addr4' is only supported on 802.11 with 802.11 headers"); |
||
3778 | break; |
||
3779 | |||
3780 | case Q_RA: |
||
3781 | bpf_error("'ra' is only supported on 802.11 with 802.11 headers"); |
||
3782 | break; |
||
3783 | |||
3784 | case Q_TA: |
||
3785 | bpf_error("'ta' is only supported on 802.11 with 802.11 headers"); |
||
3786 | break; |
||
3787 | } |
||
3788 | abort(); |
||
3789 | /* NOTREACHED */ |
||
3790 | } |
||
3791 | |||
3792 | /* |
||
3793 | * Like gen_ehostop, but for DLT_FDDI |
||
3794 | */ |
||
3795 | static struct block * |
||
3796 | gen_fhostop(eaddr, dir) |
||
3797 | register const u_char *eaddr; |
||
3798 | register int dir; |
||
3799 | { |
||
3800 | struct block *b0, *b1; |
||
3801 | |||
3802 | switch (dir) { |
||
3803 | case Q_SRC: |
||
3804 | return gen_bcmp(OR_LINKHDR, 6 + 1 + pcap_fddipad, 6, eaddr); |
||
3805 | |||
3806 | case Q_DST: |
||
3807 | return gen_bcmp(OR_LINKHDR, 0 + 1 + pcap_fddipad, 6, eaddr); |
||
3808 | |||
3809 | case Q_AND: |
||
3810 | b0 = gen_fhostop(eaddr, Q_SRC); |
||
3811 | b1 = gen_fhostop(eaddr, Q_DST); |
||
3812 | gen_and(b0, b1); |
||
3813 | return b1; |
||
3814 | |||
3815 | case Q_DEFAULT: |
||
3816 | case Q_OR: |
||
3817 | b0 = gen_fhostop(eaddr, Q_SRC); |
||
3818 | b1 = gen_fhostop(eaddr, Q_DST); |
||
3819 | gen_or(b0, b1); |
||
3820 | return b1; |
||
3821 | |||
3822 | case Q_ADDR1: |
||
3823 | bpf_error("'addr1' is only supported on 802.11"); |
||
3824 | break; |
||
3825 | |||
3826 | case Q_ADDR2: |
||
3827 | bpf_error("'addr2' is only supported on 802.11"); |
||
3828 | break; |
||
3829 | |||
3830 | case Q_ADDR3: |
||
3831 | bpf_error("'addr3' is only supported on 802.11"); |
||
3832 | break; |
||
3833 | |||
3834 | case Q_ADDR4: |
||
3835 | bpf_error("'addr4' is only supported on 802.11"); |
||
3836 | break; |
||
3837 | |||
3838 | case Q_RA: |
||
3839 | bpf_error("'ra' is only supported on 802.11"); |
||
3840 | break; |
||
3841 | |||
3842 | case Q_TA: |
||
3843 | bpf_error("'ta' is only supported on 802.11"); |
||
3844 | break; |
||
3845 | } |
||
3846 | abort(); |
||
3847 | /* NOTREACHED */ |
||
3848 | } |
||
3849 | |||
3850 | /* |
||
3851 | * Like gen_ehostop, but for DLT_IEEE802 (Token Ring) |
||
3852 | */ |
||
3853 | static struct block * |
||
3854 | gen_thostop(eaddr, dir) |
||
3855 | register const u_char *eaddr; |
||
3856 | register int dir; |
||
3857 | { |
||
3858 | register struct block *b0, *b1; |
||
3859 | |||
3860 | switch (dir) { |
||
3861 | case Q_SRC: |
||
3862 | return gen_bcmp(OR_LINKHDR, 8, 6, eaddr); |
||
3863 | |||
3864 | case Q_DST: |
||
3865 | return gen_bcmp(OR_LINKHDR, 2, 6, eaddr); |
||
3866 | |||
3867 | case Q_AND: |
||
3868 | b0 = gen_thostop(eaddr, Q_SRC); |
||
3869 | b1 = gen_thostop(eaddr, Q_DST); |
||
3870 | gen_and(b0, b1); |
||
3871 | return b1; |
||
3872 | |||
3873 | case Q_DEFAULT: |
||
3874 | case Q_OR: |
||
3875 | b0 = gen_thostop(eaddr, Q_SRC); |
||
3876 | b1 = gen_thostop(eaddr, Q_DST); |
||
3877 | gen_or(b0, b1); |
||
3878 | return b1; |
||
3879 | |||
3880 | case Q_ADDR1: |
||
3881 | bpf_error("'addr1' is only supported on 802.11"); |
||
3882 | break; |
||
3883 | |||
3884 | case Q_ADDR2: |
||
3885 | bpf_error("'addr2' is only supported on 802.11"); |
||
3886 | break; |
||
3887 | |||
3888 | case Q_ADDR3: |
||
3889 | bpf_error("'addr3' is only supported on 802.11"); |
||
3890 | break; |
||
3891 | |||
3892 | case Q_ADDR4: |
||
3893 | bpf_error("'addr4' is only supported on 802.11"); |
||
3894 | break; |
||
3895 | |||
3896 | case Q_RA: |
||
3897 | bpf_error("'ra' is only supported on 802.11"); |
||
3898 | break; |
||
3899 | |||
3900 | case Q_TA: |
||
3901 | bpf_error("'ta' is only supported on 802.11"); |
||
3902 | break; |
||
3903 | } |
||
3904 | abort(); |
||
3905 | /* NOTREACHED */ |
||
3906 | } |
||
3907 | |||
3908 | /* |
||
3909 | * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and |
||
3910 | * various 802.11 + radio headers. |
||
3911 | */ |
||
3912 | static struct block * |
||
3913 | gen_wlanhostop(eaddr, dir) |
||
3914 | register const u_char *eaddr; |
||
3915 | register int dir; |
||
3916 | { |
||
3917 | register struct block *b0, *b1, *b2; |
||
3918 | register struct slist *s; |
||
3919 | |||
3920 | #ifdef ENABLE_WLAN_FILTERING_PATCH |
||
3921 | /* |
||
3922 | * TODO GV 20070613 |
||
3923 | * We need to disable the optimizer because the optimizer is buggy |
||
3924 | * and wipes out some LD instructions generated by the below |
||
3925 | * code to validate the Frame Control bits |
||
3926 | */ |
||
3927 | no_optimize = 1; |
||
3928 | #endif /* ENABLE_WLAN_FILTERING_PATCH */ |
||
3929 | |||
3930 | switch (dir) { |
||
3931 | case Q_SRC: |
||
3932 | /* |
||
3933 | * Oh, yuk. |
||
3934 | * |
||
3935 | * For control frames, there is no SA. |
||
3936 | * |
||
3937 | * For management frames, SA is at an |
||
3938 | * offset of 10 from the beginning of |
||
3939 | * the packet. |
||
3940 | * |
||
3941 | * For data frames, SA is at an offset |
||
3942 | * of 10 from the beginning of the packet |
||
3943 | * if From DS is clear, at an offset of |
||
3944 | * 16 from the beginning of the packet |
||
3945 | * if From DS is set and To DS is clear, |
||
3946 | * and an offset of 24 from the beginning |
||
3947 | * of the packet if From DS is set and To DS |
||
3948 | * is set. |
||
3949 | */ |
||
3950 | |||
3951 | /* |
||
3952 | * Generate the tests to be done for data frames |
||
3953 | * with From DS set. |
||
3954 | * |
||
3955 | * First, check for To DS set, i.e. check "link[1] & 0x01". |
||
3956 | */ |
||
3957 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
3958 | b1 = new_block(JMP(BPF_JSET)); |
||
3959 | b1->s.k = 0x01; /* To DS */ |
||
3960 | b1->stmts = s; |
||
3961 | |||
3962 | /* |
||
3963 | * If To DS is set, the SA is at 24. |
||
3964 | */ |
||
3965 | b0 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr); |
||
3966 | gen_and(b1, b0); |
||
3967 | |||
3968 | /* |
||
3969 | * Now, check for To DS not set, i.e. check |
||
3970 | * "!(link[1] & 0x01)". |
||
3971 | */ |
||
3972 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
3973 | b2 = new_block(JMP(BPF_JSET)); |
||
3974 | b2->s.k = 0x01; /* To DS */ |
||
3975 | b2->stmts = s; |
||
3976 | gen_not(b2); |
||
3977 | |||
3978 | /* |
||
3979 | * If To DS is not set, the SA is at 16. |
||
3980 | */ |
||
3981 | b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr); |
||
3982 | gen_and(b2, b1); |
||
3983 | |||
3984 | /* |
||
3985 | * Now OR together the last two checks. That gives |
||
3986 | * the complete set of checks for data frames with |
||
3987 | * From DS set. |
||
3988 | */ |
||
3989 | gen_or(b1, b0); |
||
3990 | |||
3991 | /* |
||
3992 | * Now check for From DS being set, and AND that with |
||
3993 | * the ORed-together checks. |
||
3994 | */ |
||
3995 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
3996 | b1 = new_block(JMP(BPF_JSET)); |
||
3997 | b1->s.k = 0x02; /* From DS */ |
||
3998 | b1->stmts = s; |
||
3999 | gen_and(b1, b0); |
||
4000 | |||
4001 | /* |
||
4002 | * Now check for data frames with From DS not set. |
||
4003 | */ |
||
4004 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
4005 | b2 = new_block(JMP(BPF_JSET)); |
||
4006 | b2->s.k = 0x02; /* From DS */ |
||
4007 | b2->stmts = s; |
||
4008 | gen_not(b2); |
||
4009 | |||
4010 | /* |
||
4011 | * If From DS isn't set, the SA is at 10. |
||
4012 | */ |
||
4013 | b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr); |
||
4014 | gen_and(b2, b1); |
||
4015 | |||
4016 | /* |
||
4017 | * Now OR together the checks for data frames with |
||
4018 | * From DS not set and for data frames with From DS |
||
4019 | * set; that gives the checks done for data frames. |
||
4020 | */ |
||
4021 | gen_or(b1, b0); |
||
4022 | |||
4023 | /* |
||
4024 | * Now check for a data frame. |
||
4025 | * I.e, check "link[0] & 0x08". |
||
4026 | */ |
||
4027 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4028 | b1 = new_block(JMP(BPF_JSET)); |
||
4029 | b1->s.k = 0x08; |
||
4030 | b1->stmts = s; |
||
4031 | |||
4032 | /* |
||
4033 | * AND that with the checks done for data frames. |
||
4034 | */ |
||
4035 | gen_and(b1, b0); |
||
4036 | |||
4037 | /* |
||
4038 | * If the high-order bit of the type value is 0, this |
||
4039 | * is a management frame. |
||
4040 | * I.e, check "!(link[0] & 0x08)". |
||
4041 | */ |
||
4042 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4043 | b2 = new_block(JMP(BPF_JSET)); |
||
4044 | b2->s.k = 0x08; |
||
4045 | b2->stmts = s; |
||
4046 | gen_not(b2); |
||
4047 | |||
4048 | /* |
||
4049 | * For management frames, the SA is at 10. |
||
4050 | */ |
||
4051 | b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr); |
||
4052 | gen_and(b2, b1); |
||
4053 | |||
4054 | /* |
||
4055 | * OR that with the checks done for data frames. |
||
4056 | * That gives the checks done for management and |
||
4057 | * data frames. |
||
4058 | */ |
||
4059 | gen_or(b1, b0); |
||
4060 | |||
4061 | /* |
||
4062 | * If the low-order bit of the type value is 1, |
||
4063 | * this is either a control frame or a frame |
||
4064 | * with a reserved type, and thus not a |
||
4065 | * frame with an SA. |
||
4066 | * |
||
4067 | * I.e., check "!(link[0] & 0x04)". |
||
4068 | */ |
||
4069 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4070 | b1 = new_block(JMP(BPF_JSET)); |
||
4071 | b1->s.k = 0x04; |
||
4072 | b1->stmts = s; |
||
4073 | gen_not(b1); |
||
4074 | |||
4075 | /* |
||
4076 | * AND that with the checks for data and management |
||
4077 | * frames. |
||
4078 | */ |
||
4079 | gen_and(b1, b0); |
||
4080 | return b0; |
||
4081 | |||
4082 | case Q_DST: |
||
4083 | /* |
||
4084 | * Oh, yuk. |
||
4085 | * |
||
4086 | * For control frames, there is no DA. |
||
4087 | * |
||
4088 | * For management frames, DA is at an |
||
4089 | * offset of 4 from the beginning of |
||
4090 | * the packet. |
||
4091 | * |
||
4092 | * For data frames, DA is at an offset |
||
4093 | * of 4 from the beginning of the packet |
||
4094 | * if To DS is clear and at an offset of |
||
4095 | * 16 from the beginning of the packet |
||
4096 | * if To DS is set. |
||
4097 | */ |
||
4098 | |||
4099 | /* |
||
4100 | * Generate the tests to be done for data frames. |
||
4101 | * |
||
4102 | * First, check for To DS set, i.e. "link[1] & 0x01". |
||
4103 | */ |
||
4104 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
4105 | b1 = new_block(JMP(BPF_JSET)); |
||
4106 | b1->s.k = 0x01; /* To DS */ |
||
4107 | b1->stmts = s; |
||
4108 | |||
4109 | /* |
||
4110 | * If To DS is set, the DA is at 16. |
||
4111 | */ |
||
4112 | b0 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr); |
||
4113 | gen_and(b1, b0); |
||
4114 | |||
4115 | /* |
||
4116 | * Now, check for To DS not set, i.e. check |
||
4117 | * "!(link[1] & 0x01)". |
||
4118 | */ |
||
4119 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
4120 | b2 = new_block(JMP(BPF_JSET)); |
||
4121 | b2->s.k = 0x01; /* To DS */ |
||
4122 | b2->stmts = s; |
||
4123 | gen_not(b2); |
||
4124 | |||
4125 | /* |
||
4126 | * If To DS is not set, the DA is at 4. |
||
4127 | */ |
||
4128 | b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr); |
||
4129 | gen_and(b2, b1); |
||
4130 | |||
4131 | /* |
||
4132 | * Now OR together the last two checks. That gives |
||
4133 | * the complete set of checks for data frames. |
||
4134 | */ |
||
4135 | gen_or(b1, b0); |
||
4136 | |||
4137 | /* |
||
4138 | * Now check for a data frame. |
||
4139 | * I.e, check "link[0] & 0x08". |
||
4140 | */ |
||
4141 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4142 | b1 = new_block(JMP(BPF_JSET)); |
||
4143 | b1->s.k = 0x08; |
||
4144 | b1->stmts = s; |
||
4145 | |||
4146 | /* |
||
4147 | * AND that with the checks done for data frames. |
||
4148 | */ |
||
4149 | gen_and(b1, b0); |
||
4150 | |||
4151 | /* |
||
4152 | * If the high-order bit of the type value is 0, this |
||
4153 | * is a management frame. |
||
4154 | * I.e, check "!(link[0] & 0x08)". |
||
4155 | */ |
||
4156 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4157 | b2 = new_block(JMP(BPF_JSET)); |
||
4158 | b2->s.k = 0x08; |
||
4159 | b2->stmts = s; |
||
4160 | gen_not(b2); |
||
4161 | |||
4162 | /* |
||
4163 | * For management frames, the DA is at 4. |
||
4164 | */ |
||
4165 | b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr); |
||
4166 | gen_and(b2, b1); |
||
4167 | |||
4168 | /* |
||
4169 | * OR that with the checks done for data frames. |
||
4170 | * That gives the checks done for management and |
||
4171 | * data frames. |
||
4172 | */ |
||
4173 | gen_or(b1, b0); |
||
4174 | |||
4175 | /* |
||
4176 | * If the low-order bit of the type value is 1, |
||
4177 | * this is either a control frame or a frame |
||
4178 | * with a reserved type, and thus not a |
||
4179 | * frame with an SA. |
||
4180 | * |
||
4181 | * I.e., check "!(link[0] & 0x04)". |
||
4182 | */ |
||
4183 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4184 | b1 = new_block(JMP(BPF_JSET)); |
||
4185 | b1->s.k = 0x04; |
||
4186 | b1->stmts = s; |
||
4187 | gen_not(b1); |
||
4188 | |||
4189 | /* |
||
4190 | * AND that with the checks for data and management |
||
4191 | * frames. |
||
4192 | */ |
||
4193 | gen_and(b1, b0); |
||
4194 | return b0; |
||
4195 | |||
4196 | case Q_RA: |
||
4197 | /* |
||
4198 | * Not present in management frames; addr1 in other |
||
4199 | * frames. |
||
4200 | */ |
||
4201 | |||
4202 | /* |
||
4203 | * If the high-order bit of the type value is 0, this |
||
4204 | * is a management frame. |
||
4205 | * I.e, check "(link[0] & 0x08)". |
||
4206 | */ |
||
4207 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4208 | b1 = new_block(JMP(BPF_JSET)); |
||
4209 | b1->s.k = 0x08; |
||
4210 | b1->stmts = s; |
||
4211 | |||
4212 | /* |
||
4213 | * Check addr1. |
||
4214 | */ |
||
4215 | b0 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr); |
||
4216 | |||
4217 | /* |
||
4218 | * AND that with the check of addr1. |
||
4219 | */ |
||
4220 | gen_and(b1, b0); |
||
4221 | return (b0); |
||
4222 | |||
4223 | case Q_TA: |
||
4224 | /* |
||
4225 | * Not present in management frames; addr2, if present, |
||
4226 | * in other frames. |
||
4227 | */ |
||
4228 | |||
4229 | /* |
||
4230 | * Not present in CTS or ACK control frames. |
||
4231 | */ |
||
4232 | b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, |
||
4233 | IEEE80211_FC0_TYPE_MASK); |
||
4234 | gen_not(b0); |
||
4235 | b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS, |
||
4236 | IEEE80211_FC0_SUBTYPE_MASK); |
||
4237 | gen_not(b1); |
||
4238 | b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK, |
||
4239 | IEEE80211_FC0_SUBTYPE_MASK); |
||
4240 | gen_not(b2); |
||
4241 | gen_and(b1, b2); |
||
4242 | gen_or(b0, b2); |
||
4243 | |||
4244 | /* |
||
4245 | * If the high-order bit of the type value is 0, this |
||
4246 | * is a management frame. |
||
4247 | * I.e, check "(link[0] & 0x08)". |
||
4248 | */ |
||
4249 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
4250 | b1 = new_block(JMP(BPF_JSET)); |
||
4251 | b1->s.k = 0x08; |
||
4252 | b1->stmts = s; |
||
4253 | |||
4254 | /* |
||
4255 | * AND that with the check for frames other than |
||
4256 | * CTS and ACK frames. |
||
4257 | */ |
||
4258 | gen_and(b1, b2); |
||
4259 | |||
4260 | /* |
||
4261 | * Check addr2. |
||
4262 | */ |
||
4263 | b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr); |
||
4264 | gen_and(b2, b1); |
||
4265 | return b1; |
||
4266 | |||
4267 | /* |
||
4268 | * XXX - add BSSID keyword? |
||
4269 | */ |
||
4270 | case Q_ADDR1: |
||
4271 | return (gen_bcmp(OR_LINKHDR, 4, 6, eaddr)); |
||
4272 | |||
4273 | case Q_ADDR2: |
||
4274 | /* |
||
4275 | * Not present in CTS or ACK control frames. |
||
4276 | */ |
||
4277 | b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, |
||
4278 | IEEE80211_FC0_TYPE_MASK); |
||
4279 | gen_not(b0); |
||
4280 | b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS, |
||
4281 | IEEE80211_FC0_SUBTYPE_MASK); |
||
4282 | gen_not(b1); |
||
4283 | b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK, |
||
4284 | IEEE80211_FC0_SUBTYPE_MASK); |
||
4285 | gen_not(b2); |
||
4286 | gen_and(b1, b2); |
||
4287 | gen_or(b0, b2); |
||
4288 | b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr); |
||
4289 | gen_and(b2, b1); |
||
4290 | return b1; |
||
4291 | |||
4292 | case Q_ADDR3: |
||
4293 | /* |
||
4294 | * Not present in control frames. |
||
4295 | */ |
||
4296 | b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, |
||
4297 | IEEE80211_FC0_TYPE_MASK); |
||
4298 | gen_not(b0); |
||
4299 | b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr); |
||
4300 | gen_and(b0, b1); |
||
4301 | return b1; |
||
4302 | |||
4303 | case Q_ADDR4: |
||
4304 | /* |
||
4305 | * Present only if the direction mask has both "From DS" |
||
4306 | * and "To DS" set. Neither control frames nor management |
||
4307 | * frames should have both of those set, so we don't |
||
4308 | * check the frame type. |
||
4309 | */ |
||
4310 | b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B, |
||
4311 | IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK); |
||
4312 | b1 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr); |
||
4313 | gen_and(b0, b1); |
||
4314 | return b1; |
||
4315 | |||
4316 | case Q_AND: |
||
4317 | b0 = gen_wlanhostop(eaddr, Q_SRC); |
||
4318 | b1 = gen_wlanhostop(eaddr, Q_DST); |
||
4319 | gen_and(b0, b1); |
||
4320 | return b1; |
||
4321 | |||
4322 | case Q_DEFAULT: |
||
4323 | case Q_OR: |
||
4324 | b0 = gen_wlanhostop(eaddr, Q_SRC); |
||
4325 | b1 = gen_wlanhostop(eaddr, Q_DST); |
||
4326 | gen_or(b0, b1); |
||
4327 | return b1; |
||
4328 | } |
||
4329 | abort(); |
||
4330 | /* NOTREACHED */ |
||
4331 | } |
||
4332 | |||
4333 | /* |
||
4334 | * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel. |
||
4335 | * (We assume that the addresses are IEEE 48-bit MAC addresses, |
||
4336 | * as the RFC states.) |
||
4337 | */ |
||
4338 | static struct block * |
||
4339 | gen_ipfchostop(eaddr, dir) |
||
4340 | register const u_char *eaddr; |
||
4341 | register int dir; |
||
4342 | { |
||
4343 | register struct block *b0, *b1; |
||
4344 | |||
4345 | switch (dir) { |
||
4346 | case Q_SRC: |
||
4347 | return gen_bcmp(OR_LINKHDR, 10, 6, eaddr); |
||
4348 | |||
4349 | case Q_DST: |
||
4350 | return gen_bcmp(OR_LINKHDR, 2, 6, eaddr); |
||
4351 | |||
4352 | case Q_AND: |
||
4353 | b0 = gen_ipfchostop(eaddr, Q_SRC); |
||
4354 | b1 = gen_ipfchostop(eaddr, Q_DST); |
||
4355 | gen_and(b0, b1); |
||
4356 | return b1; |
||
4357 | |||
4358 | case Q_DEFAULT: |
||
4359 | case Q_OR: |
||
4360 | b0 = gen_ipfchostop(eaddr, Q_SRC); |
||
4361 | b1 = gen_ipfchostop(eaddr, Q_DST); |
||
4362 | gen_or(b0, b1); |
||
4363 | return b1; |
||
4364 | |||
4365 | case Q_ADDR1: |
||
4366 | bpf_error("'addr1' is only supported on 802.11"); |
||
4367 | break; |
||
4368 | |||
4369 | case Q_ADDR2: |
||
4370 | bpf_error("'addr2' is only supported on 802.11"); |
||
4371 | break; |
||
4372 | |||
4373 | case Q_ADDR3: |
||
4374 | bpf_error("'addr3' is only supported on 802.11"); |
||
4375 | break; |
||
4376 | |||
4377 | case Q_ADDR4: |
||
4378 | bpf_error("'addr4' is only supported on 802.11"); |
||
4379 | break; |
||
4380 | |||
4381 | case Q_RA: |
||
4382 | bpf_error("'ra' is only supported on 802.11"); |
||
4383 | break; |
||
4384 | |||
4385 | case Q_TA: |
||
4386 | bpf_error("'ta' is only supported on 802.11"); |
||
4387 | break; |
||
4388 | } |
||
4389 | abort(); |
||
4390 | /* NOTREACHED */ |
||
4391 | } |
||
4392 | |||
4393 | /* |
||
4394 | * This is quite tricky because there may be pad bytes in front of the |
||
4395 | * DECNET header, and then there are two possible data packet formats that |
||
4396 | * carry both src and dst addresses, plus 5 packet types in a format that |
||
4397 | * carries only the src node, plus 2 types that use a different format and |
||
4398 | * also carry just the src node. |
||
4399 | * |
||
4400 | * Yuck. |
||
4401 | * |
||
4402 | * Instead of doing those all right, we just look for data packets with |
||
4403 | * 0 or 1 bytes of padding. If you want to look at other packets, that |
||
4404 | * will require a lot more hacking. |
||
4405 | * |
||
4406 | * To add support for filtering on DECNET "areas" (network numbers) |
||
4407 | * one would want to add a "mask" argument to this routine. That would |
||
4408 | * make the filter even more inefficient, although one could be clever |
||
4409 | * and not generate masking instructions if the mask is 0xFFFF. |
||
4410 | */ |
||
4411 | static struct block * |
||
4412 | gen_dnhostop(addr, dir) |
||
4413 | bpf_u_int32 addr; |
||
4414 | int dir; |
||
4415 | { |
||
4416 | struct block *b0, *b1, *b2, *tmp; |
||
4417 | u_int offset_lh; /* offset if long header is received */ |
||
4418 | u_int offset_sh; /* offset if short header is received */ |
||
4419 | |||
4420 | switch (dir) { |
||
4421 | |||
4422 | case Q_DST: |
||
4423 | offset_sh = 1; /* follows flags */ |
||
4424 | offset_lh = 7; /* flgs,darea,dsubarea,HIORD */ |
||
4425 | break; |
||
4426 | |||
4427 | case Q_SRC: |
||
4428 | offset_sh = 3; /* follows flags, dstnode */ |
||
4429 | offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */ |
||
4430 | break; |
||
4431 | |||
4432 | case Q_AND: |
||
4433 | /* Inefficient because we do our Calvinball dance twice */ |
||
4434 | b0 = gen_dnhostop(addr, Q_SRC); |
||
4435 | b1 = gen_dnhostop(addr, Q_DST); |
||
4436 | gen_and(b0, b1); |
||
4437 | return b1; |
||
4438 | |||
4439 | case Q_OR: |
||
4440 | case Q_DEFAULT: |
||
4441 | /* Inefficient because we do our Calvinball dance twice */ |
||
4442 | b0 = gen_dnhostop(addr, Q_SRC); |
||
4443 | b1 = gen_dnhostop(addr, Q_DST); |
||
4444 | gen_or(b0, b1); |
||
4445 | return b1; |
||
4446 | |||
4447 | case Q_ISO: |
||
4448 | bpf_error("ISO host filtering not implemented"); |
||
4449 | |||
4450 | default: |
||
4451 | abort(); |
||
4452 | } |
||
4453 | b0 = gen_linktype(ETHERTYPE_DN); |
||
4454 | /* Check for pad = 1, long header case */ |
||
4455 | tmp = gen_mcmp(OR_LINKPL, 2, BPF_H, |
||
4456 | (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF)); |
||
4457 | b1 = gen_cmp(OR_LINKPL, 2 + 1 + offset_lh, |
||
4458 | BPF_H, (bpf_int32)ntohs((u_short)addr)); |
||
4459 | gen_and(tmp, b1); |
||
4460 | /* Check for pad = 0, long header case */ |
||
4461 | tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7); |
||
4462 | b2 = gen_cmp(OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr)); |
||
4463 | gen_and(tmp, b2); |
||
4464 | gen_or(b2, b1); |
||
4465 | /* Check for pad = 1, short header case */ |
||
4466 | tmp = gen_mcmp(OR_LINKPL, 2, BPF_H, |
||
4467 | (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF)); |
||
4468 | b2 = gen_cmp(OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr)); |
||
4469 | gen_and(tmp, b2); |
||
4470 | gen_or(b2, b1); |
||
4471 | /* Check for pad = 0, short header case */ |
||
4472 | tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7); |
||
4473 | b2 = gen_cmp(OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr)); |
||
4474 | gen_and(tmp, b2); |
||
4475 | gen_or(b2, b1); |
||
4476 | |||
4477 | /* Combine with test for linktype */ |
||
4478 | gen_and(b0, b1); |
||
4479 | return b1; |
||
4480 | } |
||
4481 | |||
4482 | /* |
||
4483 | * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets; |
||
4484 | * test the bottom-of-stack bit, and then check the version number |
||
4485 | * field in the IP header. |
||
4486 | */ |
||
4487 | static struct block * |
||
4488 | gen_mpls_linktype(proto) |
||
4489 | int proto; |
||
4490 | { |
||
4491 | struct block *b0, *b1; |
||
4492 | |||
4493 | switch (proto) { |
||
4494 | |||
4495 | case Q_IP: |
||
4496 | /* match the bottom-of-stack bit */ |
||
4497 | b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01); |
||
4498 | /* match the IPv4 version number */ |
||
4499 | b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x40, 0xf0); |
||
4500 | gen_and(b0, b1); |
||
4501 | return b1; |
||
4502 | |||
4503 | case Q_IPV6: |
||
4504 | /* match the bottom-of-stack bit */ |
||
4505 | b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01); |
||
4506 | /* match the IPv4 version number */ |
||
4507 | b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x60, 0xf0); |
||
4508 | gen_and(b0, b1); |
||
4509 | return b1; |
||
4510 | |||
4511 | default: |
||
4512 | abort(); |
||
4513 | } |
||
4514 | } |
||
4515 | |||
4516 | static struct block * |
||
4517 | gen_host(addr, mask, proto, dir, type) |
||
4518 | bpf_u_int32 addr; |
||
4519 | bpf_u_int32 mask; |
||
4520 | int proto; |
||
4521 | int dir; |
||
4522 | int type; |
||
4523 | { |
||
4524 | struct block *b0, *b1; |
||
4525 | const char *typestr; |
||
4526 | |||
4527 | if (type == Q_NET) |
||
4528 | typestr = "net"; |
||
4529 | else |
||
4530 | typestr = "host"; |
||
4531 | |||
4532 | switch (proto) { |
||
4533 | |||
4534 | case Q_DEFAULT: |
||
4535 | b0 = gen_host(addr, mask, Q_IP, dir, type); |
||
4536 | /* |
||
4537 | * Only check for non-IPv4 addresses if we're not |
||
4538 | * checking MPLS-encapsulated packets. |
||
4539 | */ |
||
4540 | if (label_stack_depth == 0) { |
||
4541 | b1 = gen_host(addr, mask, Q_ARP, dir, type); |
||
4542 | gen_or(b0, b1); |
||
4543 | b0 = gen_host(addr, mask, Q_RARP, dir, type); |
||
4544 | gen_or(b1, b0); |
||
4545 | } |
||
4546 | return b0; |
||
4547 | |||
4548 | case Q_IP: |
||
4549 | return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16); |
||
4550 | |||
4551 | case Q_RARP: |
||
4552 | return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24); |
||
4553 | |||
4554 | case Q_ARP: |
||
4555 | return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24); |
||
4556 | |||
4557 | case Q_TCP: |
||
4558 | bpf_error("'tcp' modifier applied to %s", typestr); |
||
4559 | |||
4560 | case Q_SCTP: |
||
4561 | bpf_error("'sctp' modifier applied to %s", typestr); |
||
4562 | |||
4563 | case Q_UDP: |
||
4564 | bpf_error("'udp' modifier applied to %s", typestr); |
||
4565 | |||
4566 | case Q_ICMP: |
||
4567 | bpf_error("'icmp' modifier applied to %s", typestr); |
||
4568 | |||
4569 | case Q_IGMP: |
||
4570 | bpf_error("'igmp' modifier applied to %s", typestr); |
||
4571 | |||
4572 | case Q_IGRP: |
||
4573 | bpf_error("'igrp' modifier applied to %s", typestr); |
||
4574 | |||
4575 | case Q_PIM: |
||
4576 | bpf_error("'pim' modifier applied to %s", typestr); |
||
4577 | |||
4578 | case Q_VRRP: |
||
4579 | bpf_error("'vrrp' modifier applied to %s", typestr); |
||
4580 | |||
4581 | case Q_CARP: |
||
4582 | bpf_error("'carp' modifier applied to %s", typestr); |
||
4583 | |||
4584 | case Q_ATALK: |
||
4585 | bpf_error("ATALK host filtering not implemented"); |
||
4586 | |||
4587 | case Q_AARP: |
||
4588 | bpf_error("AARP host filtering not implemented"); |
||
4589 | |||
4590 | case Q_DECNET: |
||
4591 | return gen_dnhostop(addr, dir); |
||
4592 | |||
4593 | case Q_SCA: |
||
4594 | bpf_error("SCA host filtering not implemented"); |
||
4595 | |||
4596 | case Q_LAT: |
||
4597 | bpf_error("LAT host filtering not implemented"); |
||
4598 | |||
4599 | case Q_MOPDL: |
||
4600 | bpf_error("MOPDL host filtering not implemented"); |
||
4601 | |||
4602 | case Q_MOPRC: |
||
4603 | bpf_error("MOPRC host filtering not implemented"); |
||
4604 | |||
4605 | case Q_IPV6: |
||
4606 | bpf_error("'ip6' modifier applied to ip host"); |
||
4607 | |||
4608 | case Q_ICMPV6: |
||
4609 | bpf_error("'icmp6' modifier applied to %s", typestr); |
||
4610 | |||
4611 | case Q_AH: |
||
4612 | bpf_error("'ah' modifier applied to %s", typestr); |
||
4613 | |||
4614 | case Q_ESP: |
||
4615 | bpf_error("'esp' modifier applied to %s", typestr); |
||
4616 | |||
4617 | case Q_ISO: |
||
4618 | bpf_error("ISO host filtering not implemented"); |
||
4619 | |||
4620 | case Q_ESIS: |
||
4621 | bpf_error("'esis' modifier applied to %s", typestr); |
||
4622 | |||
4623 | case Q_ISIS: |
||
4624 | bpf_error("'isis' modifier applied to %s", typestr); |
||
4625 | |||
4626 | case Q_CLNP: |
||
4627 | bpf_error("'clnp' modifier applied to %s", typestr); |
||
4628 | |||
4629 | case Q_STP: |
||
4630 | bpf_error("'stp' modifier applied to %s", typestr); |
||
4631 | |||
4632 | case Q_IPX: |
||
4633 | bpf_error("IPX host filtering not implemented"); |
||
4634 | |||
4635 | case Q_NETBEUI: |
||
4636 | bpf_error("'netbeui' modifier applied to %s", typestr); |
||
4637 | |||
4638 | case Q_RADIO: |
||
4639 | bpf_error("'radio' modifier applied to %s", typestr); |
||
4640 | |||
4641 | default: |
||
4642 | abort(); |
||
4643 | } |
||
4644 | /* NOTREACHED */ |
||
4645 | } |
||
4646 | |||
4647 | #ifdef INET6 |
||
4648 | static struct block * |
||
4649 | gen_host6(addr, mask, proto, dir, type) |
||
4650 | struct in6_addr *addr; |
||
4651 | struct in6_addr *mask; |
||
4652 | int proto; |
||
4653 | int dir; |
||
4654 | int type; |
||
4655 | { |
||
4656 | const char *typestr; |
||
4657 | |||
4658 | if (type == Q_NET) |
||
4659 | typestr = "net"; |
||
4660 | else |
||
4661 | typestr = "host"; |
||
4662 | |||
4663 | switch (proto) { |
||
4664 | |||
4665 | case Q_DEFAULT: |
||
4666 | return gen_host6(addr, mask, Q_IPV6, dir, type); |
||
4667 | |||
4668 | case Q_LINK: |
||
4669 | bpf_error("link-layer modifier applied to ip6 %s", typestr); |
||
4670 | |||
4671 | case Q_IP: |
||
4672 | bpf_error("'ip' modifier applied to ip6 %s", typestr); |
||
4673 | |||
4674 | case Q_RARP: |
||
4675 | bpf_error("'rarp' modifier applied to ip6 %s", typestr); |
||
4676 | |||
4677 | case Q_ARP: |
||
4678 | bpf_error("'arp' modifier applied to ip6 %s", typestr); |
||
4679 | |||
4680 | case Q_SCTP: |
||
4681 | bpf_error("'sctp' modifier applied to %s", typestr); |
||
4682 | |||
4683 | case Q_TCP: |
||
4684 | bpf_error("'tcp' modifier applied to %s", typestr); |
||
4685 | |||
4686 | case Q_UDP: |
||
4687 | bpf_error("'udp' modifier applied to %s", typestr); |
||
4688 | |||
4689 | case Q_ICMP: |
||
4690 | bpf_error("'icmp' modifier applied to %s", typestr); |
||
4691 | |||
4692 | case Q_IGMP: |
||
4693 | bpf_error("'igmp' modifier applied to %s", typestr); |
||
4694 | |||
4695 | case Q_IGRP: |
||
4696 | bpf_error("'igrp' modifier applied to %s", typestr); |
||
4697 | |||
4698 | case Q_PIM: |
||
4699 | bpf_error("'pim' modifier applied to %s", typestr); |
||
4700 | |||
4701 | case Q_VRRP: |
||
4702 | bpf_error("'vrrp' modifier applied to %s", typestr); |
||
4703 | |||
4704 | case Q_CARP: |
||
4705 | bpf_error("'carp' modifier applied to %s", typestr); |
||
4706 | |||
4707 | case Q_ATALK: |
||
4708 | bpf_error("ATALK host filtering not implemented"); |
||
4709 | |||
4710 | case Q_AARP: |
||
4711 | bpf_error("AARP host filtering not implemented"); |
||
4712 | |||
4713 | case Q_DECNET: |
||
4714 | bpf_error("'decnet' modifier applied to ip6 %s", typestr); |
||
4715 | |||
4716 | case Q_SCA: |
||
4717 | bpf_error("SCA host filtering not implemented"); |
||
4718 | |||
4719 | case Q_LAT: |
||
4720 | bpf_error("LAT host filtering not implemented"); |
||
4721 | |||
4722 | case Q_MOPDL: |
||
4723 | bpf_error("MOPDL host filtering not implemented"); |
||
4724 | |||
4725 | case Q_MOPRC: |
||
4726 | bpf_error("MOPRC host filtering not implemented"); |
||
4727 | |||
4728 | case Q_IPV6: |
||
4729 | return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24); |
||
4730 | |||
4731 | case Q_ICMPV6: |
||
4732 | bpf_error("'icmp6' modifier applied to %s", typestr); |
||
4733 | |||
4734 | case Q_AH: |
||
4735 | bpf_error("'ah' modifier applied to %s", typestr); |
||
4736 | |||
4737 | case Q_ESP: |
||
4738 | bpf_error("'esp' modifier applied to %s", typestr); |
||
4739 | |||
4740 | case Q_ISO: |
||
4741 | bpf_error("ISO host filtering not implemented"); |
||
4742 | |||
4743 | case Q_ESIS: |
||
4744 | bpf_error("'esis' modifier applied to %s", typestr); |
||
4745 | |||
4746 | case Q_ISIS: |
||
4747 | bpf_error("'isis' modifier applied to %s", typestr); |
||
4748 | |||
4749 | case Q_CLNP: |
||
4750 | bpf_error("'clnp' modifier applied to %s", typestr); |
||
4751 | |||
4752 | case Q_STP: |
||
4753 | bpf_error("'stp' modifier applied to %s", typestr); |
||
4754 | |||
4755 | case Q_IPX: |
||
4756 | bpf_error("IPX host filtering not implemented"); |
||
4757 | |||
4758 | case Q_NETBEUI: |
||
4759 | bpf_error("'netbeui' modifier applied to %s", typestr); |
||
4760 | |||
4761 | case Q_RADIO: |
||
4762 | bpf_error("'radio' modifier applied to %s", typestr); |
||
4763 | |||
4764 | default: |
||
4765 | abort(); |
||
4766 | } |
||
4767 | /* NOTREACHED */ |
||
4768 | } |
||
4769 | #endif |
||
4770 | |||
4771 | #ifndef INET6 |
||
4772 | static struct block * |
||
4773 | gen_gateway(eaddr, alist, proto, dir) |
||
4774 | const u_char *eaddr; |
||
4775 | bpf_u_int32 **alist; |
||
4776 | int proto; |
||
4777 | int dir; |
||
4778 | { |
||
4779 | struct block *b0, *b1, *tmp; |
||
4780 | |||
4781 | if (dir != 0) |
||
4782 | bpf_error("direction applied to 'gateway'"); |
||
4783 | |||
4784 | switch (proto) { |
||
4785 | case Q_DEFAULT: |
||
4786 | case Q_IP: |
||
4787 | case Q_ARP: |
||
4788 | case Q_RARP: |
||
4789 | switch (linktype) { |
||
4790 | case DLT_EN10MB: |
||
4791 | case DLT_NETANALYZER: |
||
4792 | case DLT_NETANALYZER_TRANSPARENT: |
||
4793 | b1 = gen_prevlinkhdr_check(); |
||
4794 | b0 = gen_ehostop(eaddr, Q_OR); |
||
4795 | if (b1 != NULL) |
||
4796 | gen_and(b1, b0); |
||
4797 | break; |
||
4798 | case DLT_FDDI: |
||
4799 | b0 = gen_fhostop(eaddr, Q_OR); |
||
4800 | break; |
||
4801 | case DLT_IEEE802: |
||
4802 | b0 = gen_thostop(eaddr, Q_OR); |
||
4803 | break; |
||
4804 | case DLT_IEEE802_11: |
||
4805 | case DLT_PRISM_HEADER: |
||
4806 | case DLT_IEEE802_11_RADIO_AVS: |
||
4807 | case DLT_IEEE802_11_RADIO: |
||
4808 | case DLT_PPI: |
||
4809 | b0 = gen_wlanhostop(eaddr, Q_OR); |
||
4810 | break; |
||
4811 | case DLT_SUNATM: |
||
4812 | /* |
||
4813 | * This is LLC-multiplexed traffic; if it were |
||
4814 | * LANE, linktype would have been set to |
||
4815 | * DLT_EN10MB. |
||
4816 | */ |
||
4817 | bpf_error( |
||
4818 | "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel"); |
||
4819 | break; |
||
4820 | case DLT_IP_OVER_FC: |
||
4821 | b0 = gen_ipfchostop(eaddr, Q_OR); |
||
4822 | break; |
||
4823 | default: |
||
4824 | bpf_error( |
||
4825 | "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel"); |
||
4826 | } |
||
4827 | b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST); |
||
4828 | while (*alist) { |
||
4829 | tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR, |
||
4830 | Q_HOST); |
||
4831 | gen_or(b1, tmp); |
||
4832 | b1 = tmp; |
||
4833 | } |
||
4834 | gen_not(b1); |
||
4835 | gen_and(b0, b1); |
||
4836 | return b1; |
||
4837 | } |
||
4838 | bpf_error("illegal modifier of 'gateway'"); |
||
4839 | /* NOTREACHED */ |
||
4840 | } |
||
4841 | #endif |
||
4842 | |||
4843 | struct block * |
||
4844 | gen_proto_abbrev(proto) |
||
4845 | int proto; |
||
4846 | { |
||
4847 | struct block *b0; |
||
4848 | struct block *b1; |
||
4849 | |||
4850 | switch (proto) { |
||
4851 | |||
4852 | case Q_SCTP: |
||
4853 | b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT); |
||
4854 | b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT); |
||
4855 | gen_or(b0, b1); |
||
4856 | break; |
||
4857 | |||
4858 | case Q_TCP: |
||
4859 | b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT); |
||
4860 | b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT); |
||
4861 | gen_or(b0, b1); |
||
4862 | break; |
||
4863 | |||
4864 | case Q_UDP: |
||
4865 | b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT); |
||
4866 | b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT); |
||
4867 | gen_or(b0, b1); |
||
4868 | break; |
||
4869 | |||
4870 | case Q_ICMP: |
||
4871 | b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT); |
||
4872 | break; |
||
4873 | |||
4874 | #ifndef IPPROTO_IGMP |
||
4875 | #define IPPROTO_IGMP 2 |
||
4876 | #endif |
||
4877 | |||
4878 | case Q_IGMP: |
||
4879 | b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT); |
||
4880 | break; |
||
4881 | |||
4882 | #ifndef IPPROTO_IGRP |
||
4883 | #define IPPROTO_IGRP 9 |
||
4884 | #endif |
||
4885 | case Q_IGRP: |
||
4886 | b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT); |
||
4887 | break; |
||
4888 | |||
4889 | #ifndef IPPROTO_PIM |
||
4890 | #define IPPROTO_PIM 103 |
||
4891 | #endif |
||
4892 | |||
4893 | case Q_PIM: |
||
4894 | b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT); |
||
4895 | b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT); |
||
4896 | gen_or(b0, b1); |
||
4897 | break; |
||
4898 | |||
4899 | #ifndef IPPROTO_VRRP |
||
4900 | #define IPPROTO_VRRP 112 |
||
4901 | #endif |
||
4902 | |||
4903 | case Q_VRRP: |
||
4904 | b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT); |
||
4905 | break; |
||
4906 | |||
4907 | #ifndef IPPROTO_CARP |
||
4908 | #define IPPROTO_CARP 112 |
||
4909 | #endif |
||
4910 | |||
4911 | case Q_CARP: |
||
4912 | b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT); |
||
4913 | break; |
||
4914 | |||
4915 | case Q_IP: |
||
4916 | b1 = gen_linktype(ETHERTYPE_IP); |
||
4917 | break; |
||
4918 | |||
4919 | case Q_ARP: |
||
4920 | b1 = gen_linktype(ETHERTYPE_ARP); |
||
4921 | break; |
||
4922 | |||
4923 | case Q_RARP: |
||
4924 | b1 = gen_linktype(ETHERTYPE_REVARP); |
||
4925 | break; |
||
4926 | |||
4927 | case Q_LINK: |
||
4928 | bpf_error("link layer applied in wrong context"); |
||
4929 | |||
4930 | case Q_ATALK: |
||
4931 | b1 = gen_linktype(ETHERTYPE_ATALK); |
||
4932 | break; |
||
4933 | |||
4934 | case Q_AARP: |
||
4935 | b1 = gen_linktype(ETHERTYPE_AARP); |
||
4936 | break; |
||
4937 | |||
4938 | case Q_DECNET: |
||
4939 | b1 = gen_linktype(ETHERTYPE_DN); |
||
4940 | break; |
||
4941 | |||
4942 | case Q_SCA: |
||
4943 | b1 = gen_linktype(ETHERTYPE_SCA); |
||
4944 | break; |
||
4945 | |||
4946 | case Q_LAT: |
||
4947 | b1 = gen_linktype(ETHERTYPE_LAT); |
||
4948 | break; |
||
4949 | |||
4950 | case Q_MOPDL: |
||
4951 | b1 = gen_linktype(ETHERTYPE_MOPDL); |
||
4952 | break; |
||
4953 | |||
4954 | case Q_MOPRC: |
||
4955 | b1 = gen_linktype(ETHERTYPE_MOPRC); |
||
4956 | break; |
||
4957 | |||
4958 | case Q_IPV6: |
||
4959 | b1 = gen_linktype(ETHERTYPE_IPV6); |
||
4960 | break; |
||
4961 | |||
4962 | #ifndef IPPROTO_ICMPV6 |
||
4963 | #define IPPROTO_ICMPV6 58 |
||
4964 | #endif |
||
4965 | case Q_ICMPV6: |
||
4966 | b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT); |
||
4967 | break; |
||
4968 | |||
4969 | #ifndef IPPROTO_AH |
||
4970 | #define IPPROTO_AH 51 |
||
4971 | #endif |
||
4972 | case Q_AH: |
||
4973 | b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT); |
||
4974 | b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT); |
||
4975 | gen_or(b0, b1); |
||
4976 | break; |
||
4977 | |||
4978 | #ifndef IPPROTO_ESP |
||
4979 | #define IPPROTO_ESP 50 |
||
4980 | #endif |
||
4981 | case Q_ESP: |
||
4982 | b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT); |
||
4983 | b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT); |
||
4984 | gen_or(b0, b1); |
||
4985 | break; |
||
4986 | |||
4987 | case Q_ISO: |
||
4988 | b1 = gen_linktype(LLCSAP_ISONS); |
||
4989 | break; |
||
4990 | |||
4991 | case Q_ESIS: |
||
4992 | b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT); |
||
4993 | break; |
||
4994 | |||
4995 | case Q_ISIS: |
||
4996 | b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT); |
||
4997 | break; |
||
4998 | |||
4999 | case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */ |
||
5000 | b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT); |
||
5001 | b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */ |
||
5002 | gen_or(b0, b1); |
||
5003 | b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT); |
||
5004 | gen_or(b0, b1); |
||
5005 | b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); |
||
5006 | gen_or(b0, b1); |
||
5007 | b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); |
||
5008 | gen_or(b0, b1); |
||
5009 | break; |
||
5010 | |||
5011 | case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */ |
||
5012 | b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT); |
||
5013 | b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */ |
||
5014 | gen_or(b0, b1); |
||
5015 | b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT); |
||
5016 | gen_or(b0, b1); |
||
5017 | b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); |
||
5018 | gen_or(b0, b1); |
||
5019 | b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); |
||
5020 | gen_or(b0, b1); |
||
5021 | break; |
||
5022 | |||
5023 | case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */ |
||
5024 | b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT); |
||
5025 | b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT); |
||
5026 | gen_or(b0, b1); |
||
5027 | b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); |
||
5028 | gen_or(b0, b1); |
||
5029 | break; |
||
5030 | |||
5031 | case Q_ISIS_LSP: |
||
5032 | b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT); |
||
5033 | b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT); |
||
5034 | gen_or(b0, b1); |
||
5035 | break; |
||
5036 | |||
5037 | case Q_ISIS_SNP: |
||
5038 | b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); |
||
5039 | b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); |
||
5040 | gen_or(b0, b1); |
||
5041 | b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); |
||
5042 | gen_or(b0, b1); |
||
5043 | b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); |
||
5044 | gen_or(b0, b1); |
||
5045 | break; |
||
5046 | |||
5047 | case Q_ISIS_CSNP: |
||
5048 | b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); |
||
5049 | b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); |
||
5050 | gen_or(b0, b1); |
||
5051 | break; |
||
5052 | |||
5053 | case Q_ISIS_PSNP: |
||
5054 | b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); |
||
5055 | b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); |
||
5056 | gen_or(b0, b1); |
||
5057 | break; |
||
5058 | |||
5059 | case Q_CLNP: |
||
5060 | b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT); |
||
5061 | break; |
||
5062 | |||
5063 | case Q_STP: |
||
5064 | b1 = gen_linktype(LLCSAP_8021D); |
||
5065 | break; |
||
5066 | |||
5067 | case Q_IPX: |
||
5068 | b1 = gen_linktype(LLCSAP_IPX); |
||
5069 | break; |
||
5070 | |||
5071 | case Q_NETBEUI: |
||
5072 | b1 = gen_linktype(LLCSAP_NETBEUI); |
||
5073 | break; |
||
5074 | |||
5075 | case Q_RADIO: |
||
5076 | bpf_error("'radio' is not a valid protocol type"); |
||
5077 | |||
5078 | default: |
||
5079 | abort(); |
||
5080 | } |
||
5081 | return b1; |
||
5082 | } |
||
5083 | |||
5084 | static struct block * |
||
5085 | gen_ipfrag() |
||
5086 | { |
||
5087 | struct slist *s; |
||
5088 | struct block *b; |
||
5089 | |||
5090 | /* not IPv4 frag other than the first frag */ |
||
5091 | s = gen_load_a(OR_LINKPL, 6, BPF_H); |
||
5092 | b = new_block(JMP(BPF_JSET)); |
||
5093 | b->s.k = 0x1fff; |
||
5094 | b->stmts = s; |
||
5095 | gen_not(b); |
||
5096 | |||
5097 | return b; |
||
5098 | } |
||
5099 | |||
5100 | /* |
||
5101 | * Generate a comparison to a port value in the transport-layer header |
||
5102 | * at the specified offset from the beginning of that header. |
||
5103 | * |
||
5104 | * XXX - this handles a variable-length prefix preceding the link-layer |
||
5105 | * header, such as the radiotap or AVS radio prefix, but doesn't handle |
||
5106 | * variable-length link-layer headers (such as Token Ring or 802.11 |
||
5107 | * headers). |
||
5108 | */ |
||
5109 | static struct block * |
||
5110 | gen_portatom(off, v) |
||
5111 | int off; |
||
5112 | bpf_int32 v; |
||
5113 | { |
||
5114 | return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v); |
||
5115 | } |
||
5116 | |||
5117 | static struct block * |
||
5118 | gen_portatom6(off, v) |
||
5119 | int off; |
||
5120 | bpf_int32 v; |
||
5121 | { |
||
5122 | return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v); |
||
5123 | } |
||
5124 | |||
5125 | struct block * |
||
5126 | gen_portop(port, proto, dir) |
||
5127 | int port, proto, dir; |
||
5128 | { |
||
5129 | struct block *b0, *b1, *tmp; |
||
5130 | |||
5131 | /* ip proto 'proto' and not a fragment other than the first fragment */ |
||
5132 | tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto); |
||
5133 | b0 = gen_ipfrag(); |
||
5134 | gen_and(tmp, b0); |
||
5135 | |||
5136 | switch (dir) { |
||
5137 | case Q_SRC: |
||
5138 | b1 = gen_portatom(0, (bpf_int32)port); |
||
5139 | break; |
||
5140 | |||
5141 | case Q_DST: |
||
5142 | b1 = gen_portatom(2, (bpf_int32)port); |
||
5143 | break; |
||
5144 | |||
5145 | case Q_OR: |
||
5146 | case Q_DEFAULT: |
||
5147 | tmp = gen_portatom(0, (bpf_int32)port); |
||
5148 | b1 = gen_portatom(2, (bpf_int32)port); |
||
5149 | gen_or(tmp, b1); |
||
5150 | break; |
||
5151 | |||
5152 | case Q_AND: |
||
5153 | tmp = gen_portatom(0, (bpf_int32)port); |
||
5154 | b1 = gen_portatom(2, (bpf_int32)port); |
||
5155 | gen_and(tmp, b1); |
||
5156 | break; |
||
5157 | |||
5158 | default: |
||
5159 | abort(); |
||
5160 | } |
||
5161 | gen_and(b0, b1); |
||
5162 | |||
5163 | return b1; |
||
5164 | } |
||
5165 | |||
5166 | static struct block * |
||
5167 | gen_port(port, ip_proto, dir) |
||
5168 | int port; |
||
5169 | int ip_proto; |
||
5170 | int dir; |
||
5171 | { |
||
5172 | struct block *b0, *b1, *tmp; |
||
5173 | |||
5174 | /* |
||
5175 | * ether proto ip |
||
5176 | * |
||
5177 | * For FDDI, RFC 1188 says that SNAP encapsulation is used, |
||
5178 | * not LLC encapsulation with LLCSAP_IP. |
||
5179 | * |
||
5180 | * For IEEE 802 networks - which includes 802.5 token ring |
||
5181 | * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042 |
||
5182 | * says that SNAP encapsulation is used, not LLC encapsulation |
||
5183 | * with LLCSAP_IP. |
||
5184 | * |
||
5185 | * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and |
||
5186 | * RFC 2225 say that SNAP encapsulation is used, not LLC |
||
5187 | * encapsulation with LLCSAP_IP. |
||
5188 | * |
||
5189 | * So we always check for ETHERTYPE_IP. |
||
5190 | */ |
||
5191 | b0 = gen_linktype(ETHERTYPE_IP); |
||
5192 | |||
5193 | switch (ip_proto) { |
||
5194 | case IPPROTO_UDP: |
||
5195 | case IPPROTO_TCP: |
||
5196 | case IPPROTO_SCTP: |
||
5197 | b1 = gen_portop(port, ip_proto, dir); |
||
5198 | break; |
||
5199 | |||
5200 | case PROTO_UNDEF: |
||
5201 | tmp = gen_portop(port, IPPROTO_TCP, dir); |
||
5202 | b1 = gen_portop(port, IPPROTO_UDP, dir); |
||
5203 | gen_or(tmp, b1); |
||
5204 | tmp = gen_portop(port, IPPROTO_SCTP, dir); |
||
5205 | gen_or(tmp, b1); |
||
5206 | break; |
||
5207 | |||
5208 | default: |
||
5209 | abort(); |
||
5210 | } |
||
5211 | gen_and(b0, b1); |
||
5212 | return b1; |
||
5213 | } |
||
5214 | |||
5215 | struct block * |
||
5216 | gen_portop6(port, proto, dir) |
||
5217 | int port, proto, dir; |
||
5218 | { |
||
5219 | struct block *b0, *b1, *tmp; |
||
5220 | |||
5221 | /* ip6 proto 'proto' */ |
||
5222 | /* XXX - catch the first fragment of a fragmented packet? */ |
||
5223 | b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto); |
||
5224 | |||
5225 | switch (dir) { |
||
5226 | case Q_SRC: |
||
5227 | b1 = gen_portatom6(0, (bpf_int32)port); |
||
5228 | break; |
||
5229 | |||
5230 | case Q_DST: |
||
5231 | b1 = gen_portatom6(2, (bpf_int32)port); |
||
5232 | break; |
||
5233 | |||
5234 | case Q_OR: |
||
5235 | case Q_DEFAULT: |
||
5236 | tmp = gen_portatom6(0, (bpf_int32)port); |
||
5237 | b1 = gen_portatom6(2, (bpf_int32)port); |
||
5238 | gen_or(tmp, b1); |
||
5239 | break; |
||
5240 | |||
5241 | case Q_AND: |
||
5242 | tmp = gen_portatom6(0, (bpf_int32)port); |
||
5243 | b1 = gen_portatom6(2, (bpf_int32)port); |
||
5244 | gen_and(tmp, b1); |
||
5245 | break; |
||
5246 | |||
5247 | default: |
||
5248 | abort(); |
||
5249 | } |
||
5250 | gen_and(b0, b1); |
||
5251 | |||
5252 | return b1; |
||
5253 | } |
||
5254 | |||
5255 | static struct block * |
||
5256 | gen_port6(port, ip_proto, dir) |
||
5257 | int port; |
||
5258 | int ip_proto; |
||
5259 | int dir; |
||
5260 | { |
||
5261 | struct block *b0, *b1, *tmp; |
||
5262 | |||
5263 | /* link proto ip6 */ |
||
5264 | b0 = gen_linktype(ETHERTYPE_IPV6); |
||
5265 | |||
5266 | switch (ip_proto) { |
||
5267 | case IPPROTO_UDP: |
||
5268 | case IPPROTO_TCP: |
||
5269 | case IPPROTO_SCTP: |
||
5270 | b1 = gen_portop6(port, ip_proto, dir); |
||
5271 | break; |
||
5272 | |||
5273 | case PROTO_UNDEF: |
||
5274 | tmp = gen_portop6(port, IPPROTO_TCP, dir); |
||
5275 | b1 = gen_portop6(port, IPPROTO_UDP, dir); |
||
5276 | gen_or(tmp, b1); |
||
5277 | tmp = gen_portop6(port, IPPROTO_SCTP, dir); |
||
5278 | gen_or(tmp, b1); |
||
5279 | break; |
||
5280 | |||
5281 | default: |
||
5282 | abort(); |
||
5283 | } |
||
5284 | gen_and(b0, b1); |
||
5285 | return b1; |
||
5286 | } |
||
5287 | |||
5288 | /* gen_portrange code */ |
||
5289 | static struct block * |
||
5290 | gen_portrangeatom(off, v1, v2) |
||
5291 | int off; |
||
5292 | bpf_int32 v1, v2; |
||
5293 | { |
||
5294 | struct block *b1, *b2; |
||
5295 | |||
5296 | if (v1 > v2) { |
||
5297 | /* |
||
5298 | * Reverse the order of the ports, so v1 is the lower one. |
||
5299 | */ |
||
5300 | bpf_int32 vtemp; |
||
5301 | |||
5302 | vtemp = v1; |
||
5303 | v1 = v2; |
||
5304 | v2 = vtemp; |
||
5305 | } |
||
5306 | |||
5307 | b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1); |
||
5308 | b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2); |
||
5309 | |||
5310 | gen_and(b1, b2); |
||
5311 | |||
5312 | return b2; |
||
5313 | } |
||
5314 | |||
5315 | struct block * |
||
5316 | gen_portrangeop(port1, port2, proto, dir) |
||
5317 | int port1, port2; |
||
5318 | int proto; |
||
5319 | int dir; |
||
5320 | { |
||
5321 | struct block *b0, *b1, *tmp; |
||
5322 | |||
5323 | /* ip proto 'proto' and not a fragment other than the first fragment */ |
||
5324 | tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto); |
||
5325 | b0 = gen_ipfrag(); |
||
5326 | gen_and(tmp, b0); |
||
5327 | |||
5328 | switch (dir) { |
||
5329 | case Q_SRC: |
||
5330 | b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2); |
||
5331 | break; |
||
5332 | |||
5333 | case Q_DST: |
||
5334 | b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2); |
||
5335 | break; |
||
5336 | |||
5337 | case Q_OR: |
||
5338 | case Q_DEFAULT: |
||
5339 | tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2); |
||
5340 | b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2); |
||
5341 | gen_or(tmp, b1); |
||
5342 | break; |
||
5343 | |||
5344 | case Q_AND: |
||
5345 | tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2); |
||
5346 | b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2); |
||
5347 | gen_and(tmp, b1); |
||
5348 | break; |
||
5349 | |||
5350 | default: |
||
5351 | abort(); |
||
5352 | } |
||
5353 | gen_and(b0, b1); |
||
5354 | |||
5355 | return b1; |
||
5356 | } |
||
5357 | |||
5358 | static struct block * |
||
5359 | gen_portrange(port1, port2, ip_proto, dir) |
||
5360 | int port1, port2; |
||
5361 | int ip_proto; |
||
5362 | int dir; |
||
5363 | { |
||
5364 | struct block *b0, *b1, *tmp; |
||
5365 | |||
5366 | /* link proto ip */ |
||
5367 | b0 = gen_linktype(ETHERTYPE_IP); |
||
5368 | |||
5369 | switch (ip_proto) { |
||
5370 | case IPPROTO_UDP: |
||
5371 | case IPPROTO_TCP: |
||
5372 | case IPPROTO_SCTP: |
||
5373 | b1 = gen_portrangeop(port1, port2, ip_proto, dir); |
||
5374 | break; |
||
5375 | |||
5376 | case PROTO_UNDEF: |
||
5377 | tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir); |
||
5378 | b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir); |
||
5379 | gen_or(tmp, b1); |
||
5380 | tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir); |
||
5381 | gen_or(tmp, b1); |
||
5382 | break; |
||
5383 | |||
5384 | default: |
||
5385 | abort(); |
||
5386 | } |
||
5387 | gen_and(b0, b1); |
||
5388 | return b1; |
||
5389 | } |
||
5390 | |||
5391 | static struct block * |
||
5392 | gen_portrangeatom6(off, v1, v2) |
||
5393 | int off; |
||
5394 | bpf_int32 v1, v2; |
||
5395 | { |
||
5396 | struct block *b1, *b2; |
||
5397 | |||
5398 | if (v1 > v2) { |
||
5399 | /* |
||
5400 | * Reverse the order of the ports, so v1 is the lower one. |
||
5401 | */ |
||
5402 | bpf_int32 vtemp; |
||
5403 | |||
5404 | vtemp = v1; |
||
5405 | v1 = v2; |
||
5406 | v2 = vtemp; |
||
5407 | } |
||
5408 | |||
5409 | b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1); |
||
5410 | b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2); |
||
5411 | |||
5412 | gen_and(b1, b2); |
||
5413 | |||
5414 | return b2; |
||
5415 | } |
||
5416 | |||
5417 | struct block * |
||
5418 | gen_portrangeop6(port1, port2, proto, dir) |
||
5419 | int port1, port2; |
||
5420 | int proto; |
||
5421 | int dir; |
||
5422 | { |
||
5423 | struct block *b0, *b1, *tmp; |
||
5424 | |||
5425 | /* ip6 proto 'proto' */ |
||
5426 | /* XXX - catch the first fragment of a fragmented packet? */ |
||
5427 | b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto); |
||
5428 | |||
5429 | switch (dir) { |
||
5430 | case Q_SRC: |
||
5431 | b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2); |
||
5432 | break; |
||
5433 | |||
5434 | case Q_DST: |
||
5435 | b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2); |
||
5436 | break; |
||
5437 | |||
5438 | case Q_OR: |
||
5439 | case Q_DEFAULT: |
||
5440 | tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2); |
||
5441 | b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2); |
||
5442 | gen_or(tmp, b1); |
||
5443 | break; |
||
5444 | |||
5445 | case Q_AND: |
||
5446 | tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2); |
||
5447 | b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2); |
||
5448 | gen_and(tmp, b1); |
||
5449 | break; |
||
5450 | |||
5451 | default: |
||
5452 | abort(); |
||
5453 | } |
||
5454 | gen_and(b0, b1); |
||
5455 | |||
5456 | return b1; |
||
5457 | } |
||
5458 | |||
5459 | static struct block * |
||
5460 | gen_portrange6(port1, port2, ip_proto, dir) |
||
5461 | int port1, port2; |
||
5462 | int ip_proto; |
||
5463 | int dir; |
||
5464 | { |
||
5465 | struct block *b0, *b1, *tmp; |
||
5466 | |||
5467 | /* link proto ip6 */ |
||
5468 | b0 = gen_linktype(ETHERTYPE_IPV6); |
||
5469 | |||
5470 | switch (ip_proto) { |
||
5471 | case IPPROTO_UDP: |
||
5472 | case IPPROTO_TCP: |
||
5473 | case IPPROTO_SCTP: |
||
5474 | b1 = gen_portrangeop6(port1, port2, ip_proto, dir); |
||
5475 | break; |
||
5476 | |||
5477 | case PROTO_UNDEF: |
||
5478 | tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir); |
||
5479 | b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir); |
||
5480 | gen_or(tmp, b1); |
||
5481 | tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir); |
||
5482 | gen_or(tmp, b1); |
||
5483 | break; |
||
5484 | |||
5485 | default: |
||
5486 | abort(); |
||
5487 | } |
||
5488 | gen_and(b0, b1); |
||
5489 | return b1; |
||
5490 | } |
||
5491 | |||
5492 | static int |
||
5493 | lookup_proto(name, proto) |
||
5494 | register const char *name; |
||
5495 | register int proto; |
||
5496 | { |
||
5497 | register int v; |
||
5498 | |||
5499 | switch (proto) { |
||
5500 | |||
5501 | case Q_DEFAULT: |
||
5502 | case Q_IP: |
||
5503 | case Q_IPV6: |
||
5504 | v = pcap_nametoproto(name); |
||
5505 | if (v == PROTO_UNDEF) |
||
5506 | bpf_error("unknown ip proto '%s'", name); |
||
5507 | break; |
||
5508 | |||
5509 | case Q_LINK: |
||
5510 | /* XXX should look up h/w protocol type based on linktype */ |
||
5511 | v = pcap_nametoeproto(name); |
||
5512 | if (v == PROTO_UNDEF) { |
||
5513 | v = pcap_nametollc(name); |
||
5514 | if (v == PROTO_UNDEF) |
||
5515 | bpf_error("unknown ether proto '%s'", name); |
||
5516 | } |
||
5517 | break; |
||
5518 | |||
5519 | case Q_ISO: |
||
5520 | if (strcmp(name, "esis") == 0) |
||
5521 | v = ISO9542_ESIS; |
||
5522 | else if (strcmp(name, "isis") == 0) |
||
5523 | v = ISO10589_ISIS; |
||
5524 | else if (strcmp(name, "clnp") == 0) |
||
5525 | v = ISO8473_CLNP; |
||
5526 | else |
||
5527 | bpf_error("unknown osi proto '%s'", name); |
||
5528 | break; |
||
5529 | |||
5530 | default: |
||
5531 | v = PROTO_UNDEF; |
||
5532 | break; |
||
5533 | } |
||
5534 | return v; |
||
5535 | } |
||
5536 | |||
5537 | #if 0 |
||
5538 | struct stmt * |
||
5539 | gen_joinsp(s, n) |
||
5540 | struct stmt **s; |
||
5541 | int n; |
||
5542 | { |
||
5543 | return NULL; |
||
5544 | } |
||
5545 | #endif |
||
5546 | |||
5547 | static struct block * |
||
5548 | gen_protochain(v, proto, dir) |
||
5549 | int v; |
||
5550 | int proto; |
||
5551 | int dir; |
||
5552 | { |
||
5553 | #ifdef NO_PROTOCHAIN |
||
5554 | return gen_proto(v, proto, dir); |
||
5555 | #else |
||
5556 | struct block *b0, *b; |
||
5557 | struct slist *s[100]; |
||
5558 | int fix2, fix3, fix4, fix5; |
||
5559 | int ahcheck, again, end; |
||
5560 | int i, max; |
||
5561 | int reg2 = alloc_reg(); |
||
5562 | |||
5563 | memset(s, 0, sizeof(s)); |
||
5564 | fix2 = fix3 = fix4 = fix5 = 0; |
||
5565 | |||
5566 | switch (proto) { |
||
5567 | case Q_IP: |
||
5568 | case Q_IPV6: |
||
5569 | break; |
||
5570 | case Q_DEFAULT: |
||
5571 | b0 = gen_protochain(v, Q_IP, dir); |
||
5572 | b = gen_protochain(v, Q_IPV6, dir); |
||
5573 | gen_or(b0, b); |
||
5574 | return b; |
||
5575 | default: |
||
5576 | bpf_error("bad protocol applied for 'protochain'"); |
||
5577 | /*NOTREACHED*/ |
||
5578 | } |
||
5579 | |||
5580 | /* |
||
5581 | * We don't handle variable-length prefixes before the link-layer |
||
5582 | * header, or variable-length link-layer headers, here yet. |
||
5583 | * We might want to add BPF instructions to do the protochain |
||
5584 | * work, to simplify that and, on platforms that have a BPF |
||
5585 | * interpreter with the new instructions, let the filtering |
||
5586 | * be done in the kernel. (We already require a modified BPF |
||
5587 | * engine to do the protochain stuff, to support backward |
||
5588 | * branches, and backward branch support is unlikely to appear |
||
5589 | * in kernel BPF engines.) |
||
5590 | */ |
||
5591 | if (off_linkpl.is_variable) |
||
5592 | bpf_error("'protochain' not supported with variable length headers"); |
||
5593 | |||
5594 | no_optimize = 1; /*this code is not compatible with optimzer yet */ |
||
5595 | |||
5596 | /* |
||
5597 | * s[0] is a dummy entry to protect other BPF insn from damage |
||
5598 | * by s[fix] = foo with uninitialized variable "fix". It is somewhat |
||
5599 | * hard to find interdependency made by jump table fixup. |
||
5600 | */ |
||
5601 | i = 0; |
||
5602 | s[i] = new_stmt(0); /*dummy*/ |
||
5603 | i++; |
||
5604 | |||
5605 | switch (proto) { |
||
5606 | case Q_IP: |
||
5607 | b0 = gen_linktype(ETHERTYPE_IP); |
||
5608 | |||
5609 | /* A = ip->ip_p */ |
||
5610 | s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B); |
||
5611 | s[i]->s.k = off_linkpl.constant_part + off_nl + 9; |
||
5612 | i++; |
||
5613 | /* X = ip->ip_hl << 2 */ |
||
5614 | s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B); |
||
5615 | s[i]->s.k = off_linkpl.constant_part + off_nl; |
||
5616 | i++; |
||
5617 | break; |
||
5618 | |||
5619 | case Q_IPV6: |
||
5620 | b0 = gen_linktype(ETHERTYPE_IPV6); |
||
5621 | |||
5622 | /* A = ip6->ip_nxt */ |
||
5623 | s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B); |
||
5624 | s[i]->s.k = off_linkpl.constant_part + off_nl + 6; |
||
5625 | i++; |
||
5626 | /* X = sizeof(struct ip6_hdr) */ |
||
5627 | s[i] = new_stmt(BPF_LDX|BPF_IMM); |
||
5628 | s[i]->s.k = 40; |
||
5629 | i++; |
||
5630 | break; |
||
5631 | |||
5632 | default: |
||
5633 | bpf_error("unsupported proto to gen_protochain"); |
||
5634 | /*NOTREACHED*/ |
||
5635 | } |
||
5636 | |||
5637 | /* again: if (A == v) goto end; else fall through; */ |
||
5638 | again = i; |
||
5639 | s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5640 | s[i]->s.k = v; |
||
5641 | s[i]->s.jt = NULL; /*later*/ |
||
5642 | s[i]->s.jf = NULL; /*update in next stmt*/ |
||
5643 | fix5 = i; |
||
5644 | i++; |
||
5645 | |||
5646 | #ifndef IPPROTO_NONE |
||
5647 | #define IPPROTO_NONE 59 |
||
5648 | #endif |
||
5649 | /* if (A == IPPROTO_NONE) goto end */ |
||
5650 | s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5651 | s[i]->s.jt = NULL; /*later*/ |
||
5652 | s[i]->s.jf = NULL; /*update in next stmt*/ |
||
5653 | s[i]->s.k = IPPROTO_NONE; |
||
5654 | s[fix5]->s.jf = s[i]; |
||
5655 | fix2 = i; |
||
5656 | i++; |
||
5657 | |||
5658 | if (proto == Q_IPV6) { |
||
5659 | int v6start, v6end, v6advance, j; |
||
5660 | |||
5661 | v6start = i; |
||
5662 | /* if (A == IPPROTO_HOPOPTS) goto v6advance */ |
||
5663 | s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5664 | s[i]->s.jt = NULL; /*later*/ |
||
5665 | s[i]->s.jf = NULL; /*update in next stmt*/ |
||
5666 | s[i]->s.k = IPPROTO_HOPOPTS; |
||
5667 | s[fix2]->s.jf = s[i]; |
||
5668 | i++; |
||
5669 | /* if (A == IPPROTO_DSTOPTS) goto v6advance */ |
||
5670 | s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5671 | s[i]->s.jt = NULL; /*later*/ |
||
5672 | s[i]->s.jf = NULL; /*update in next stmt*/ |
||
5673 | s[i]->s.k = IPPROTO_DSTOPTS; |
||
5674 | i++; |
||
5675 | /* if (A == IPPROTO_ROUTING) goto v6advance */ |
||
5676 | s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5677 | s[i]->s.jt = NULL; /*later*/ |
||
5678 | s[i]->s.jf = NULL; /*update in next stmt*/ |
||
5679 | s[i]->s.k = IPPROTO_ROUTING; |
||
5680 | i++; |
||
5681 | /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */ |
||
5682 | s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5683 | s[i]->s.jt = NULL; /*later*/ |
||
5684 | s[i]->s.jf = NULL; /*later*/ |
||
5685 | s[i]->s.k = IPPROTO_FRAGMENT; |
||
5686 | fix3 = i; |
||
5687 | v6end = i; |
||
5688 | i++; |
||
5689 | |||
5690 | /* v6advance: */ |
||
5691 | v6advance = i; |
||
5692 | |||
5693 | /* |
||
5694 | * in short, |
||
5695 | * A = P[X + packet head]; |
||
5696 | * X = X + (P[X + packet head + 1] + 1) * 8; |
||
5697 | */ |
||
5698 | /* A = P[X + packet head] */ |
||
5699 | s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
5700 | s[i]->s.k = off_linkpl.constant_part + off_nl; |
||
5701 | i++; |
||
5702 | /* MEM[reg2] = A */ |
||
5703 | s[i] = new_stmt(BPF_ST); |
||
5704 | s[i]->s.k = reg2; |
||
5705 | i++; |
||
5706 | /* A = P[X + packet head + 1]; */ |
||
5707 | s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
5708 | s[i]->s.k = off_linkpl.constant_part + off_nl + 1; |
||
5709 | i++; |
||
5710 | /* A += 1 */ |
||
5711 | s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
5712 | s[i]->s.k = 1; |
||
5713 | i++; |
||
5714 | /* A *= 8 */ |
||
5715 | s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K); |
||
5716 | s[i]->s.k = 8; |
||
5717 | i++; |
||
5718 | /* A += X */ |
||
5719 | s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X); |
||
5720 | s[i]->s.k = 0; |
||
5721 | i++; |
||
5722 | /* X = A; */ |
||
5723 | s[i] = new_stmt(BPF_MISC|BPF_TAX); |
||
5724 | i++; |
||
5725 | /* A = MEM[reg2] */ |
||
5726 | s[i] = new_stmt(BPF_LD|BPF_MEM); |
||
5727 | s[i]->s.k = reg2; |
||
5728 | i++; |
||
5729 | |||
5730 | /* goto again; (must use BPF_JA for backward jump) */ |
||
5731 | s[i] = new_stmt(BPF_JMP|BPF_JA); |
||
5732 | s[i]->s.k = again - i - 1; |
||
5733 | s[i - 1]->s.jf = s[i]; |
||
5734 | i++; |
||
5735 | |||
5736 | /* fixup */ |
||
5737 | for (j = v6start; j <= v6end; j++) |
||
5738 | s[j]->s.jt = s[v6advance]; |
||
5739 | } else { |
||
5740 | /* nop */ |
||
5741 | s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
5742 | s[i]->s.k = 0; |
||
5743 | s[fix2]->s.jf = s[i]; |
||
5744 | i++; |
||
5745 | } |
||
5746 | |||
5747 | /* ahcheck: */ |
||
5748 | ahcheck = i; |
||
5749 | /* if (A == IPPROTO_AH) then fall through; else goto end; */ |
||
5750 | s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K); |
||
5751 | s[i]->s.jt = NULL; /*later*/ |
||
5752 | s[i]->s.jf = NULL; /*later*/ |
||
5753 | s[i]->s.k = IPPROTO_AH; |
||
5754 | if (fix3) |
||
5755 | s[fix3]->s.jf = s[ahcheck]; |
||
5756 | fix4 = i; |
||
5757 | i++; |
||
5758 | |||
5759 | /* |
||
5760 | * in short, |
||
5761 | * A = P[X]; |
||
5762 | * X = X + (P[X + 1] + 2) * 4; |
||
5763 | */ |
||
5764 | /* A = X */ |
||
5765 | s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA); |
||
5766 | i++; |
||
5767 | /* A = P[X + packet head]; */ |
||
5768 | s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
5769 | s[i]->s.k = off_linkpl.constant_part + off_nl; |
||
5770 | i++; |
||
5771 | /* MEM[reg2] = A */ |
||
5772 | s[i] = new_stmt(BPF_ST); |
||
5773 | s[i]->s.k = reg2; |
||
5774 | i++; |
||
5775 | /* A = X */ |
||
5776 | s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA); |
||
5777 | i++; |
||
5778 | /* A += 1 */ |
||
5779 | s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
5780 | s[i]->s.k = 1; |
||
5781 | i++; |
||
5782 | /* X = A */ |
||
5783 | s[i] = new_stmt(BPF_MISC|BPF_TAX); |
||
5784 | i++; |
||
5785 | /* A = P[X + packet head] */ |
||
5786 | s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
5787 | s[i]->s.k = off_linkpl.constant_part + off_nl; |
||
5788 | i++; |
||
5789 | /* A += 2 */ |
||
5790 | s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
5791 | s[i]->s.k = 2; |
||
5792 | i++; |
||
5793 | /* A *= 4 */ |
||
5794 | s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K); |
||
5795 | s[i]->s.k = 4; |
||
5796 | i++; |
||
5797 | /* X = A; */ |
||
5798 | s[i] = new_stmt(BPF_MISC|BPF_TAX); |
||
5799 | i++; |
||
5800 | /* A = MEM[reg2] */ |
||
5801 | s[i] = new_stmt(BPF_LD|BPF_MEM); |
||
5802 | s[i]->s.k = reg2; |
||
5803 | i++; |
||
5804 | |||
5805 | /* goto again; (must use BPF_JA for backward jump) */ |
||
5806 | s[i] = new_stmt(BPF_JMP|BPF_JA); |
||
5807 | s[i]->s.k = again - i - 1; |
||
5808 | i++; |
||
5809 | |||
5810 | /* end: nop */ |
||
5811 | end = i; |
||
5812 | s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
5813 | s[i]->s.k = 0; |
||
5814 | s[fix2]->s.jt = s[end]; |
||
5815 | s[fix4]->s.jf = s[end]; |
||
5816 | s[fix5]->s.jt = s[end]; |
||
5817 | i++; |
||
5818 | |||
5819 | /* |
||
5820 | * make slist chain |
||
5821 | */ |
||
5822 | max = i; |
||
5823 | for (i = 0; i < max - 1; i++) |
||
5824 | s[i]->next = s[i + 1]; |
||
5825 | s[max - 1]->next = NULL; |
||
5826 | |||
5827 | /* |
||
5828 | * emit final check |
||
5829 | */ |
||
5830 | b = new_block(JMP(BPF_JEQ)); |
||
5831 | b->stmts = s[1]; /*remember, s[0] is dummy*/ |
||
5832 | b->s.k = v; |
||
5833 | |||
5834 | free_reg(reg2); |
||
5835 | |||
5836 | gen_and(b0, b); |
||
5837 | return b; |
||
5838 | #endif |
||
5839 | } |
||
5840 | |||
5841 | static struct block * |
||
5842 | gen_check_802_11_data_frame() |
||
5843 | { |
||
5844 | struct slist *s; |
||
5845 | struct block *b0, *b1; |
||
5846 | |||
5847 | /* |
||
5848 | * A data frame has the 0x08 bit (b3) in the frame control field set |
||
5849 | * and the 0x04 bit (b2) clear. |
||
5850 | */ |
||
5851 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
5852 | b0 = new_block(JMP(BPF_JSET)); |
||
5853 | b0->s.k = 0x08; |
||
5854 | b0->stmts = s; |
||
5855 | |||
5856 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
5857 | b1 = new_block(JMP(BPF_JSET)); |
||
5858 | b1->s.k = 0x04; |
||
5859 | b1->stmts = s; |
||
5860 | gen_not(b1); |
||
5861 | |||
5862 | gen_and(b1, b0); |
||
5863 | |||
5864 | return b0; |
||
5865 | } |
||
5866 | |||
5867 | /* |
||
5868 | * Generate code that checks whether the packet is a packet for protocol |
||
5869 | * <proto> and whether the type field in that protocol's header has |
||
5870 | * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an |
||
5871 | * IP packet and checks the protocol number in the IP header against <v>. |
||
5872 | * |
||
5873 | * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks |
||
5874 | * against Q_IP and Q_IPV6. |
||
5875 | */ |
||
5876 | static struct block * |
||
5877 | gen_proto(v, proto, dir) |
||
5878 | int v; |
||
5879 | int proto; |
||
5880 | int dir; |
||
5881 | { |
||
5882 | struct block *b0, *b1; |
||
5883 | #ifndef CHASE_CHAIN |
||
5884 | struct block *b2; |
||
5885 | #endif |
||
5886 | |||
5887 | if (dir != Q_DEFAULT) |
||
5888 | bpf_error("direction applied to 'proto'"); |
||
5889 | |||
5890 | switch (proto) { |
||
5891 | case Q_DEFAULT: |
||
5892 | b0 = gen_proto(v, Q_IP, dir); |
||
5893 | b1 = gen_proto(v, Q_IPV6, dir); |
||
5894 | gen_or(b0, b1); |
||
5895 | return b1; |
||
5896 | |||
5897 | case Q_IP: |
||
5898 | /* |
||
5899 | * For FDDI, RFC 1188 says that SNAP encapsulation is used, |
||
5900 | * not LLC encapsulation with LLCSAP_IP. |
||
5901 | * |
||
5902 | * For IEEE 802 networks - which includes 802.5 token ring |
||
5903 | * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042 |
||
5904 | * says that SNAP encapsulation is used, not LLC encapsulation |
||
5905 | * with LLCSAP_IP. |
||
5906 | * |
||
5907 | * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and |
||
5908 | * RFC 2225 say that SNAP encapsulation is used, not LLC |
||
5909 | * encapsulation with LLCSAP_IP. |
||
5910 | * |
||
5911 | * So we always check for ETHERTYPE_IP. |
||
5912 | */ |
||
5913 | b0 = gen_linktype(ETHERTYPE_IP); |
||
5914 | #ifndef CHASE_CHAIN |
||
5915 | b1 = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)v); |
||
5916 | #else |
||
5917 | b1 = gen_protochain(v, Q_IP); |
||
5918 | #endif |
||
5919 | gen_and(b0, b1); |
||
5920 | return b1; |
||
5921 | |||
5922 | case Q_ISO: |
||
5923 | switch (linktype) { |
||
5924 | |||
5925 | case DLT_FRELAY: |
||
5926 | /* |
||
5927 | * Frame Relay packets typically have an OSI |
||
5928 | * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)" |
||
5929 | * generates code to check for all the OSI |
||
5930 | * NLPIDs, so calling it and then adding a check |
||
5931 | * for the particular NLPID for which we're |
||
5932 | * looking is bogus, as we can just check for |
||
5933 | * the NLPID. |
||
5934 | * |
||
5935 | * What we check for is the NLPID and a frame |
||
5936 | * control field value of UI, i.e. 0x03 followed |
||
5937 | * by the NLPID. |
||
5938 | * |
||
5939 | * XXX - assumes a 2-byte Frame Relay header with |
||
5940 | * DLCI and flags. What if the address is longer? |
||
5941 | * |
||
5942 | * XXX - what about SNAP-encapsulated frames? |
||
5943 | */ |
||
5944 | return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | v); |
||
5945 | /*NOTREACHED*/ |
||
5946 | break; |
||
5947 | |||
5948 | case DLT_C_HDLC: |
||
5949 | /* |
||
5950 | * Cisco uses an Ethertype lookalike - for OSI, |
||
5951 | * it's 0xfefe. |
||
5952 | */ |
||
5953 | b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS); |
||
5954 | /* OSI in C-HDLC is stuffed with a fudge byte */ |
||
5955 | b1 = gen_cmp(OR_LINKPL_NOSNAP, 1, BPF_B, (long)v); |
||
5956 | gen_and(b0, b1); |
||
5957 | return b1; |
||
5958 | |||
5959 | default: |
||
5960 | b0 = gen_linktype(LLCSAP_ISONS); |
||
5961 | b1 = gen_cmp(OR_LINKPL_NOSNAP, 0, BPF_B, (long)v); |
||
5962 | gen_and(b0, b1); |
||
5963 | return b1; |
||
5964 | } |
||
5965 | |||
5966 | case Q_ISIS: |
||
5967 | b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT); |
||
5968 | /* |
||
5969 | * 4 is the offset of the PDU type relative to the IS-IS |
||
5970 | * header. |
||
5971 | */ |
||
5972 | b1 = gen_cmp(OR_LINKPL_NOSNAP, 4, BPF_B, (long)v); |
||
5973 | gen_and(b0, b1); |
||
5974 | return b1; |
||
5975 | |||
5976 | case Q_ARP: |
||
5977 | bpf_error("arp does not encapsulate another protocol"); |
||
5978 | /* NOTREACHED */ |
||
5979 | |||
5980 | case Q_RARP: |
||
5981 | bpf_error("rarp does not encapsulate another protocol"); |
||
5982 | /* NOTREACHED */ |
||
5983 | |||
5984 | case Q_ATALK: |
||
5985 | bpf_error("atalk encapsulation is not specifiable"); |
||
5986 | /* NOTREACHED */ |
||
5987 | |||
5988 | case Q_DECNET: |
||
5989 | bpf_error("decnet encapsulation is not specifiable"); |
||
5990 | /* NOTREACHED */ |
||
5991 | |||
5992 | case Q_SCA: |
||
5993 | bpf_error("sca does not encapsulate another protocol"); |
||
5994 | /* NOTREACHED */ |
||
5995 | |||
5996 | case Q_LAT: |
||
5997 | bpf_error("lat does not encapsulate another protocol"); |
||
5998 | /* NOTREACHED */ |
||
5999 | |||
6000 | case Q_MOPRC: |
||
6001 | bpf_error("moprc does not encapsulate another protocol"); |
||
6002 | /* NOTREACHED */ |
||
6003 | |||
6004 | case Q_MOPDL: |
||
6005 | bpf_error("mopdl does not encapsulate another protocol"); |
||
6006 | /* NOTREACHED */ |
||
6007 | |||
6008 | case Q_LINK: |
||
6009 | return gen_linktype(v); |
||
6010 | |||
6011 | case Q_UDP: |
||
6012 | bpf_error("'udp proto' is bogus"); |
||
6013 | /* NOTREACHED */ |
||
6014 | |||
6015 | case Q_TCP: |
||
6016 | bpf_error("'tcp proto' is bogus"); |
||
6017 | /* NOTREACHED */ |
||
6018 | |||
6019 | case Q_SCTP: |
||
6020 | bpf_error("'sctp proto' is bogus"); |
||
6021 | /* NOTREACHED */ |
||
6022 | |||
6023 | case Q_ICMP: |
||
6024 | bpf_error("'icmp proto' is bogus"); |
||
6025 | /* NOTREACHED */ |
||
6026 | |||
6027 | case Q_IGMP: |
||
6028 | bpf_error("'igmp proto' is bogus"); |
||
6029 | /* NOTREACHED */ |
||
6030 | |||
6031 | case Q_IGRP: |
||
6032 | bpf_error("'igrp proto' is bogus"); |
||
6033 | /* NOTREACHED */ |
||
6034 | |||
6035 | case Q_PIM: |
||
6036 | bpf_error("'pim proto' is bogus"); |
||
6037 | /* NOTREACHED */ |
||
6038 | |||
6039 | case Q_VRRP: |
||
6040 | bpf_error("'vrrp proto' is bogus"); |
||
6041 | /* NOTREACHED */ |
||
6042 | |||
6043 | case Q_CARP: |
||
6044 | bpf_error("'carp proto' is bogus"); |
||
6045 | /* NOTREACHED */ |
||
6046 | |||
6047 | case Q_IPV6: |
||
6048 | b0 = gen_linktype(ETHERTYPE_IPV6); |
||
6049 | #ifndef CHASE_CHAIN |
||
6050 | /* |
||
6051 | * Also check for a fragment header before the final |
||
6052 | * header. |
||
6053 | */ |
||
6054 | b2 = gen_cmp(OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT); |
||
6055 | b1 = gen_cmp(OR_LINKPL, 40, BPF_B, (bpf_int32)v); |
||
6056 | gen_and(b2, b1); |
||
6057 | b2 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)v); |
||
6058 | gen_or(b2, b1); |
||
6059 | #else |
||
6060 | b1 = gen_protochain(v, Q_IPV6); |
||
6061 | #endif |
||
6062 | gen_and(b0, b1); |
||
6063 | return b1; |
||
6064 | |||
6065 | case Q_ICMPV6: |
||
6066 | bpf_error("'icmp6 proto' is bogus"); |
||
6067 | |||
6068 | case Q_AH: |
||
6069 | bpf_error("'ah proto' is bogus"); |
||
6070 | |||
6071 | case Q_ESP: |
||
6072 | bpf_error("'ah proto' is bogus"); |
||
6073 | |||
6074 | case Q_STP: |
||
6075 | bpf_error("'stp proto' is bogus"); |
||
6076 | |||
6077 | case Q_IPX: |
||
6078 | bpf_error("'ipx proto' is bogus"); |
||
6079 | |||
6080 | case Q_NETBEUI: |
||
6081 | bpf_error("'netbeui proto' is bogus"); |
||
6082 | |||
6083 | case Q_RADIO: |
||
6084 | bpf_error("'radio proto' is bogus"); |
||
6085 | |||
6086 | default: |
||
6087 | abort(); |
||
6088 | /* NOTREACHED */ |
||
6089 | } |
||
6090 | /* NOTREACHED */ |
||
6091 | } |
||
6092 | |||
6093 | struct block * |
||
6094 | gen_scode(name, q) |
||
6095 | register const char *name; |
||
6096 | struct qual q; |
||
6097 | { |
||
6098 | int proto = q.proto; |
||
6099 | int dir = q.dir; |
||
6100 | int tproto; |
||
6101 | u_char *eaddr; |
||
6102 | bpf_u_int32 mask, addr; |
||
6103 | #ifndef INET6 |
||
6104 | bpf_u_int32 **alist; |
||
6105 | #else |
||
6106 | int tproto6; |
||
6107 | struct sockaddr_in *sin4; |
||
6108 | struct sockaddr_in6 *sin6; |
||
6109 | struct addrinfo *res, *res0; |
||
6110 | struct in6_addr mask128; |
||
6111 | #endif /*INET6*/ |
||
6112 | struct block *b, *tmp; |
||
6113 | int port, real_proto; |
||
6114 | int port1, port2; |
||
6115 | |||
6116 | switch (q.addr) { |
||
6117 | |||
6118 | case Q_NET: |
||
6119 | addr = pcap_nametonetaddr(name); |
||
6120 | if (addr == 0) |
||
6121 | bpf_error("unknown network '%s'", name); |
||
6122 | /* Left justify network addr and calculate its network mask */ |
||
6123 | mask = 0xffffffff; |
||
6124 | while (addr && (addr & 0xff000000) == 0) { |
||
6125 | addr <<= 8; |
||
6126 | mask <<= 8; |
||
6127 | } |
||
6128 | return gen_host(addr, mask, proto, dir, q.addr); |
||
6129 | |||
6130 | case Q_DEFAULT: |
||
6131 | case Q_HOST: |
||
6132 | if (proto == Q_LINK) { |
||
6133 | switch (linktype) { |
||
6134 | |||
6135 | case DLT_EN10MB: |
||
6136 | case DLT_NETANALYZER: |
||
6137 | case DLT_NETANALYZER_TRANSPARENT: |
||
6138 | eaddr = pcap_ether_hostton(name); |
||
6139 | if (eaddr == NULL) |
||
6140 | bpf_error( |
||
6141 | "unknown ether host '%s'", name); |
||
6142 | tmp = gen_prevlinkhdr_check(); |
||
6143 | b = gen_ehostop(eaddr, dir); |
||
6144 | if (tmp != NULL) |
||
6145 | gen_and(tmp, b); |
||
6146 | free(eaddr); |
||
6147 | return b; |
||
6148 | |||
6149 | case DLT_FDDI: |
||
6150 | eaddr = pcap_ether_hostton(name); |
||
6151 | if (eaddr == NULL) |
||
6152 | bpf_error( |
||
6153 | "unknown FDDI host '%s'", name); |
||
6154 | b = gen_fhostop(eaddr, dir); |
||
6155 | free(eaddr); |
||
6156 | return b; |
||
6157 | |||
6158 | case DLT_IEEE802: |
||
6159 | eaddr = pcap_ether_hostton(name); |
||
6160 | if (eaddr == NULL) |
||
6161 | bpf_error( |
||
6162 | "unknown token ring host '%s'", name); |
||
6163 | b = gen_thostop(eaddr, dir); |
||
6164 | free(eaddr); |
||
6165 | return b; |
||
6166 | |||
6167 | case DLT_IEEE802_11: |
||
6168 | case DLT_PRISM_HEADER: |
||
6169 | case DLT_IEEE802_11_RADIO_AVS: |
||
6170 | case DLT_IEEE802_11_RADIO: |
||
6171 | case DLT_PPI: |
||
6172 | eaddr = pcap_ether_hostton(name); |
||
6173 | if (eaddr == NULL) |
||
6174 | bpf_error( |
||
6175 | "unknown 802.11 host '%s'", name); |
||
6176 | b = gen_wlanhostop(eaddr, dir); |
||
6177 | free(eaddr); |
||
6178 | return b; |
||
6179 | |||
6180 | case DLT_IP_OVER_FC: |
||
6181 | eaddr = pcap_ether_hostton(name); |
||
6182 | if (eaddr == NULL) |
||
6183 | bpf_error( |
||
6184 | "unknown Fibre Channel host '%s'", name); |
||
6185 | b = gen_ipfchostop(eaddr, dir); |
||
6186 | free(eaddr); |
||
6187 | return b; |
||
6188 | } |
||
6189 | |||
6190 | bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name"); |
||
6191 | } else if (proto == Q_DECNET) { |
||
6192 | unsigned short dn_addr = __pcap_nametodnaddr(name); |
||
6193 | /* |
||
6194 | * I don't think DECNET hosts can be multihomed, so |
||
6195 | * there is no need to build up a list of addresses |
||
6196 | */ |
||
6197 | return (gen_host(dn_addr, 0, proto, dir, q.addr)); |
||
6198 | } else { |
||
6199 | #ifndef INET6 |
||
6200 | alist = pcap_nametoaddr(name); |
||
6201 | if (alist == NULL || *alist == NULL) |
||
6202 | bpf_error("unknown host '%s'", name); |
||
6203 | tproto = proto; |
||
6204 | if (off_linktype.constant_part == (u_int)-1 && |
||
6205 | tproto == Q_DEFAULT) |
||
6206 | tproto = Q_IP; |
||
6207 | b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr); |
||
6208 | while (*alist) { |
||
6209 | tmp = gen_host(**alist++, 0xffffffff, |
||
6210 | tproto, dir, q.addr); |
||
6211 | gen_or(b, tmp); |
||
6212 | b = tmp; |
||
6213 | } |
||
6214 | return b; |
||
6215 | #else |
||
6216 | memset(&mask128, 0xff, sizeof(mask128)); |
||
6217 | res0 = res = pcap_nametoaddrinfo(name); |
||
6218 | if (res == NULL) |
||
6219 | bpf_error("unknown host '%s'", name); |
||
6220 | ai = res; |
||
6221 | b = tmp = NULL; |
||
6222 | tproto = tproto6 = proto; |
||
6223 | if (off_linktype.constant_part == -1 && |
||
6224 | tproto == Q_DEFAULT) { |
||
6225 | tproto = Q_IP; |
||
6226 | tproto6 = Q_IPV6; |
||
6227 | } |
||
6228 | for (res = res0; res; res = res->ai_next) { |
||
6229 | switch (res->ai_family) { |
||
6230 | case AF_INET: |
||
6231 | if (tproto == Q_IPV6) |
||
6232 | continue; |
||
6233 | |||
6234 | sin4 = (struct sockaddr_in *) |
||
6235 | res->ai_addr; |
||
6236 | tmp = gen_host(ntohl(sin4->sin_addr.s_addr), |
||
6237 | 0xffffffff, tproto, dir, q.addr); |
||
6238 | break; |
||
6239 | case AF_INET6: |
||
6240 | if (tproto6 == Q_IP) |
||
6241 | continue; |
||
6242 | |||
6243 | sin6 = (struct sockaddr_in6 *) |
||
6244 | res->ai_addr; |
||
6245 | tmp = gen_host6(&sin6->sin6_addr, |
||
6246 | &mask128, tproto6, dir, q.addr); |
||
6247 | break; |
||
6248 | default: |
||
6249 | continue; |
||
6250 | } |
||
6251 | if (b) |
||
6252 | gen_or(b, tmp); |
||
6253 | b = tmp; |
||
6254 | } |
||
6255 | ai = NULL; |
||
6256 | freeaddrinfo(res0); |
||
6257 | if (b == NULL) { |
||
6258 | bpf_error("unknown host '%s'%s", name, |
||
6259 | (proto == Q_DEFAULT) |
||
6260 | ? "" |
||
6261 | : " for specified address family"); |
||
6262 | } |
||
6263 | return b; |
||
6264 | #endif /*INET6*/ |
||
6265 | } |
||
6266 | |||
6267 | case Q_PORT: |
||
6268 | if (proto != Q_DEFAULT && |
||
6269 | proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP) |
||
6270 | bpf_error("illegal qualifier of 'port'"); |
||
6271 | if (pcap_nametoport(name, &port, &real_proto) == 0) |
||
6272 | bpf_error("unknown port '%s'", name); |
||
6273 | if (proto == Q_UDP) { |
||
6274 | if (real_proto == IPPROTO_TCP) |
||
6275 | bpf_error("port '%s' is tcp", name); |
||
6276 | else if (real_proto == IPPROTO_SCTP) |
||
6277 | bpf_error("port '%s' is sctp", name); |
||
6278 | else |
||
6279 | /* override PROTO_UNDEF */ |
||
6280 | real_proto = IPPROTO_UDP; |
||
6281 | } |
||
6282 | if (proto == Q_TCP) { |
||
6283 | if (real_proto == IPPROTO_UDP) |
||
6284 | bpf_error("port '%s' is udp", name); |
||
6285 | |||
6286 | else if (real_proto == IPPROTO_SCTP) |
||
6287 | bpf_error("port '%s' is sctp", name); |
||
6288 | else |
||
6289 | /* override PROTO_UNDEF */ |
||
6290 | real_proto = IPPROTO_TCP; |
||
6291 | } |
||
6292 | if (proto == Q_SCTP) { |
||
6293 | if (real_proto == IPPROTO_UDP) |
||
6294 | bpf_error("port '%s' is udp", name); |
||
6295 | |||
6296 | else if (real_proto == IPPROTO_TCP) |
||
6297 | bpf_error("port '%s' is tcp", name); |
||
6298 | else |
||
6299 | /* override PROTO_UNDEF */ |
||
6300 | real_proto = IPPROTO_SCTP; |
||
6301 | } |
||
6302 | if (port < 0) |
||
6303 | bpf_error("illegal port number %d < 0", port); |
||
6304 | if (port > 65535) |
||
6305 | bpf_error("illegal port number %d > 65535", port); |
||
6306 | b = gen_port(port, real_proto, dir); |
||
6307 | gen_or(gen_port6(port, real_proto, dir), b); |
||
6308 | return b; |
||
6309 | |||
6310 | case Q_PORTRANGE: |
||
6311 | if (proto != Q_DEFAULT && |
||
6312 | proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP) |
||
6313 | bpf_error("illegal qualifier of 'portrange'"); |
||
6314 | if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0) |
||
6315 | bpf_error("unknown port in range '%s'", name); |
||
6316 | if (proto == Q_UDP) { |
||
6317 | if (real_proto == IPPROTO_TCP) |
||
6318 | bpf_error("port in range '%s' is tcp", name); |
||
6319 | else if (real_proto == IPPROTO_SCTP) |
||
6320 | bpf_error("port in range '%s' is sctp", name); |
||
6321 | else |
||
6322 | /* override PROTO_UNDEF */ |
||
6323 | real_proto = IPPROTO_UDP; |
||
6324 | } |
||
6325 | if (proto == Q_TCP) { |
||
6326 | if (real_proto == IPPROTO_UDP) |
||
6327 | bpf_error("port in range '%s' is udp", name); |
||
6328 | else if (real_proto == IPPROTO_SCTP) |
||
6329 | bpf_error("port in range '%s' is sctp", name); |
||
6330 | else |
||
6331 | /* override PROTO_UNDEF */ |
||
6332 | real_proto = IPPROTO_TCP; |
||
6333 | } |
||
6334 | if (proto == Q_SCTP) { |
||
6335 | if (real_proto == IPPROTO_UDP) |
||
6336 | bpf_error("port in range '%s' is udp", name); |
||
6337 | else if (real_proto == IPPROTO_TCP) |
||
6338 | bpf_error("port in range '%s' is tcp", name); |
||
6339 | else |
||
6340 | /* override PROTO_UNDEF */ |
||
6341 | real_proto = IPPROTO_SCTP; |
||
6342 | } |
||
6343 | if (port1 < 0) |
||
6344 | bpf_error("illegal port number %d < 0", port1); |
||
6345 | if (port1 > 65535) |
||
6346 | bpf_error("illegal port number %d > 65535", port1); |
||
6347 | if (port2 < 0) |
||
6348 | bpf_error("illegal port number %d < 0", port2); |
||
6349 | if (port2 > 65535) |
||
6350 | bpf_error("illegal port number %d > 65535", port2); |
||
6351 | |||
6352 | b = gen_portrange(port1, port2, real_proto, dir); |
||
6353 | gen_or(gen_portrange6(port1, port2, real_proto, dir), b); |
||
6354 | return b; |
||
6355 | |||
6356 | case Q_GATEWAY: |
||
6357 | #ifndef INET6 |
||
6358 | eaddr = pcap_ether_hostton(name); |
||
6359 | if (eaddr == NULL) |
||
6360 | bpf_error("unknown ether host: %s", name); |
||
6361 | |||
6362 | alist = pcap_nametoaddr(name); |
||
6363 | if (alist == NULL || *alist == NULL) |
||
6364 | bpf_error("unknown host '%s'", name); |
||
6365 | b = gen_gateway(eaddr, alist, proto, dir); |
||
6366 | free(eaddr); |
||
6367 | return b; |
||
6368 | #else |
||
6369 | bpf_error("'gateway' not supported in this configuration"); |
||
6370 | #endif /*INET6*/ |
||
6371 | |||
6372 | case Q_PROTO: |
||
6373 | real_proto = lookup_proto(name, proto); |
||
6374 | if (real_proto >= 0) |
||
6375 | return gen_proto(real_proto, proto, dir); |
||
6376 | else |
||
6377 | bpf_error("unknown protocol: %s", name); |
||
6378 | |||
6379 | case Q_PROTOCHAIN: |
||
6380 | real_proto = lookup_proto(name, proto); |
||
6381 | if (real_proto >= 0) |
||
6382 | return gen_protochain(real_proto, proto, dir); |
||
6383 | else |
||
6384 | bpf_error("unknown protocol: %s", name); |
||
6385 | |||
6386 | case Q_UNDEF: |
||
6387 | syntax(); |
||
6388 | /* NOTREACHED */ |
||
6389 | } |
||
6390 | abort(); |
||
6391 | /* NOTREACHED */ |
||
6392 | } |
||
6393 | |||
6394 | struct block * |
||
6395 | gen_mcode(s1, s2, masklen, q) |
||
6396 | register const char *s1, *s2; |
||
6397 | register unsigned int masklen; |
||
6398 | struct qual q; |
||
6399 | { |
||
6400 | register int nlen, mlen; |
||
6401 | bpf_u_int32 n, m; |
||
6402 | |||
6403 | nlen = __pcap_atoin(s1, &n); |
||
6404 | /* Promote short ipaddr */ |
||
6405 | n <<= 32 - nlen; |
||
6406 | |||
6407 | if (s2 != NULL) { |
||
6408 | mlen = __pcap_atoin(s2, &m); |
||
6409 | /* Promote short ipaddr */ |
||
6410 | m <<= 32 - mlen; |
||
6411 | if ((n & ~m) != 0) |
||
6412 | bpf_error("non-network bits set in \"%s mask %s\"", |
||
6413 | s1, s2); |
||
6414 | } else { |
||
6415 | /* Convert mask len to mask */ |
||
6416 | if (masklen > 32) |
||
6417 | bpf_error("mask length must be <= 32"); |
||
6418 | if (masklen == 0) { |
||
6419 | /* |
||
6420 | * X << 32 is not guaranteed by C to be 0; it's |
||
6421 | * undefined. |
||
6422 | */ |
||
6423 | m = 0; |
||
6424 | } else |
||
6425 | m = 0xffffffff << (32 - masklen); |
||
6426 | if ((n & ~m) != 0) |
||
6427 | bpf_error("non-network bits set in \"%s/%d\"", |
||
6428 | s1, masklen); |
||
6429 | } |
||
6430 | |||
6431 | switch (q.addr) { |
||
6432 | |||
6433 | case Q_NET: |
||
6434 | return gen_host(n, m, q.proto, q.dir, q.addr); |
||
6435 | |||
6436 | default: |
||
6437 | bpf_error("Mask syntax for networks only"); |
||
6438 | /* NOTREACHED */ |
||
6439 | } |
||
6440 | /* NOTREACHED */ |
||
6441 | return NULL; |
||
6442 | } |
||
6443 | |||
6444 | struct block * |
||
6445 | gen_ncode(s, v, q) |
||
6446 | register const char *s; |
||
6447 | bpf_u_int32 v; |
||
6448 | struct qual q; |
||
6449 | { |
||
6450 | bpf_u_int32 mask; |
||
6451 | int proto = q.proto; |
||
6452 | int dir = q.dir; |
||
6453 | register int vlen; |
||
6454 | |||
6455 | if (s == NULL) |
||
6456 | vlen = 32; |
||
6457 | else if (q.proto == Q_DECNET) |
||
6458 | vlen = __pcap_atodn(s, &v); |
||
6459 | else |
||
6460 | vlen = __pcap_atoin(s, &v); |
||
6461 | |||
6462 | switch (q.addr) { |
||
6463 | |||
6464 | case Q_DEFAULT: |
||
6465 | case Q_HOST: |
||
6466 | case Q_NET: |
||
6467 | if (proto == Q_DECNET) |
||
6468 | return gen_host(v, 0, proto, dir, q.addr); |
||
6469 | else if (proto == Q_LINK) { |
||
6470 | bpf_error("illegal link layer address"); |
||
6471 | } else { |
||
6472 | mask = 0xffffffff; |
||
6473 | if (s == NULL && q.addr == Q_NET) { |
||
6474 | /* Promote short net number */ |
||
6475 | while (v && (v & 0xff000000) == 0) { |
||
6476 | v <<= 8; |
||
6477 | mask <<= 8; |
||
6478 | } |
||
6479 | } else { |
||
6480 | /* Promote short ipaddr */ |
||
6481 | v <<= 32 - vlen; |
||
6482 | mask <<= 32 - vlen; |
||
6483 | } |
||
6484 | return gen_host(v, mask, proto, dir, q.addr); |
||
6485 | } |
||
6486 | |||
6487 | case Q_PORT: |
||
6488 | if (proto == Q_UDP) |
||
6489 | proto = IPPROTO_UDP; |
||
6490 | else if (proto == Q_TCP) |
||
6491 | proto = IPPROTO_TCP; |
||
6492 | else if (proto == Q_SCTP) |
||
6493 | proto = IPPROTO_SCTP; |
||
6494 | else if (proto == Q_DEFAULT) |
||
6495 | proto = PROTO_UNDEF; |
||
6496 | else |
||
6497 | bpf_error("illegal qualifier of 'port'"); |
||
6498 | |||
6499 | if (v > 65535) |
||
6500 | bpf_error("illegal port number %u > 65535", v); |
||
6501 | |||
6502 | { |
||
6503 | struct block *b; |
||
6504 | b = gen_port((int)v, proto, dir); |
||
6505 | gen_or(gen_port6((int)v, proto, dir), b); |
||
6506 | return b; |
||
6507 | } |
||
6508 | |||
6509 | case Q_PORTRANGE: |
||
6510 | if (proto == Q_UDP) |
||
6511 | proto = IPPROTO_UDP; |
||
6512 | else if (proto == Q_TCP) |
||
6513 | proto = IPPROTO_TCP; |
||
6514 | else if (proto == Q_SCTP) |
||
6515 | proto = IPPROTO_SCTP; |
||
6516 | else if (proto == Q_DEFAULT) |
||
6517 | proto = PROTO_UNDEF; |
||
6518 | else |
||
6519 | bpf_error("illegal qualifier of 'portrange'"); |
||
6520 | |||
6521 | if (v > 65535) |
||
6522 | bpf_error("illegal port number %u > 65535", v); |
||
6523 | |||
6524 | { |
||
6525 | struct block *b; |
||
6526 | b = gen_portrange((int)v, (int)v, proto, dir); |
||
6527 | gen_or(gen_portrange6((int)v, (int)v, proto, dir), b); |
||
6528 | return b; |
||
6529 | } |
||
6530 | |||
6531 | case Q_GATEWAY: |
||
6532 | bpf_error("'gateway' requires a name"); |
||
6533 | /* NOTREACHED */ |
||
6534 | |||
6535 | case Q_PROTO: |
||
6536 | return gen_proto((int)v, proto, dir); |
||
6537 | |||
6538 | case Q_PROTOCHAIN: |
||
6539 | return gen_protochain((int)v, proto, dir); |
||
6540 | |||
6541 | case Q_UNDEF: |
||
6542 | syntax(); |
||
6543 | /* NOTREACHED */ |
||
6544 | |||
6545 | default: |
||
6546 | abort(); |
||
6547 | /* NOTREACHED */ |
||
6548 | } |
||
6549 | /* NOTREACHED */ |
||
6550 | } |
||
6551 | |||
6552 | #ifdef INET6 |
||
6553 | struct block * |
||
6554 | gen_mcode6(s1, s2, masklen, q) |
||
6555 | register const char *s1, *s2; |
||
6556 | register unsigned int masklen; |
||
6557 | struct qual q; |
||
6558 | { |
||
6559 | struct addrinfo *res; |
||
6560 | struct in6_addr *addr; |
||
6561 | struct in6_addr mask; |
||
6562 | struct block *b; |
||
6563 | u_int32_t *a, *m; |
||
6564 | |||
6565 | if (s2) |
||
6566 | bpf_error("no mask %s supported", s2); |
||
6567 | |||
6568 | res = pcap_nametoaddrinfo(s1); |
||
6569 | if (!res) |
||
6570 | bpf_error("invalid ip6 address %s", s1); |
||
6571 | ai = res; |
||
6572 | if (res->ai_next) |
||
6573 | bpf_error("%s resolved to multiple address", s1); |
||
6574 | addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr; |
||
6575 | |||
6576 | if (sizeof(mask) * 8 < masklen) |
||
6577 | bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8)); |
||
6578 | memset(&mask, 0, sizeof(mask)); |
||
6579 | memset(&mask, 0xff, masklen / 8); |
||
6580 | if (masklen % 8) { |
||
6581 | mask.s6_addr[masklen / 8] = |
||
6582 | (0xff << (8 - masklen % 8)) & 0xff; |
||
6583 | } |
||
6584 | |||
6585 | a = (u_int32_t *)addr; |
||
6586 | m = (u_int32_t *)&mask; |
||
6587 | if ((a[0] & ~m[0]) || (a[1] & ~m[1]) |
||
6588 | || (a[2] & ~m[2]) || (a[3] & ~m[3])) { |
||
6589 | bpf_error("non-network bits set in \"%s/%d\"", s1, masklen); |
||
6590 | } |
||
6591 | |||
6592 | switch (q.addr) { |
||
6593 | |||
6594 | case Q_DEFAULT: |
||
6595 | case Q_HOST: |
||
6596 | if (masklen != 128) |
||
6597 | bpf_error("Mask syntax for networks only"); |
||
6598 | /* FALLTHROUGH */ |
||
6599 | |||
6600 | case Q_NET: |
||
6601 | b = gen_host6(addr, &mask, q.proto, q.dir, q.addr); |
||
6602 | ai = NULL; |
||
6603 | freeaddrinfo(res); |
||
6604 | return b; |
||
6605 | |||
6606 | default: |
||
6607 | bpf_error("invalid qualifier against IPv6 address"); |
||
6608 | /* NOTREACHED */ |
||
6609 | } |
||
6610 | return NULL; |
||
6611 | } |
||
6612 | #endif /*INET6*/ |
||
6613 | |||
6614 | struct block * |
||
6615 | gen_ecode(eaddr, q) |
||
6616 | register const u_char *eaddr; |
||
6617 | struct qual q; |
||
6618 | { |
||
6619 | struct block *b, *tmp; |
||
6620 | |||
6621 | if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) { |
||
6622 | switch (linktype) { |
||
6623 | case DLT_EN10MB: |
||
6624 | case DLT_NETANALYZER: |
||
6625 | case DLT_NETANALYZER_TRANSPARENT: |
||
6626 | tmp = gen_prevlinkhdr_check(); |
||
6627 | b = gen_ehostop(eaddr, (int)q.dir); |
||
6628 | if (tmp != NULL) |
||
6629 | gen_and(tmp, b); |
||
6630 | return b; |
||
6631 | case DLT_FDDI: |
||
6632 | return gen_fhostop(eaddr, (int)q.dir); |
||
6633 | case DLT_IEEE802: |
||
6634 | return gen_thostop(eaddr, (int)q.dir); |
||
6635 | case DLT_IEEE802_11: |
||
6636 | case DLT_PRISM_HEADER: |
||
6637 | case DLT_IEEE802_11_RADIO_AVS: |
||
6638 | case DLT_IEEE802_11_RADIO: |
||
6639 | case DLT_PPI: |
||
6640 | return gen_wlanhostop(eaddr, (int)q.dir); |
||
6641 | case DLT_IP_OVER_FC: |
||
6642 | return gen_ipfchostop(eaddr, (int)q.dir); |
||
6643 | default: |
||
6644 | bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel"); |
||
6645 | break; |
||
6646 | } |
||
6647 | } |
||
6648 | bpf_error("ethernet address used in non-ether expression"); |
||
6649 | /* NOTREACHED */ |
||
6650 | return NULL; |
||
6651 | } |
||
6652 | |||
6653 | void |
||
6654 | sappend(s0, s1) |
||
6655 | struct slist *s0, *s1; |
||
6656 | { |
||
6657 | /* |
||
6658 | * This is definitely not the best way to do this, but the |
||
6659 | * lists will rarely get long. |
||
6660 | */ |
||
6661 | while (s0->next) |
||
6662 | s0 = s0->next; |
||
6663 | s0->next = s1; |
||
6664 | } |
||
6665 | |||
6666 | static struct slist * |
||
6667 | xfer_to_x(a) |
||
6668 | struct arth *a; |
||
6669 | { |
||
6670 | struct slist *s; |
||
6671 | |||
6672 | s = new_stmt(BPF_LDX|BPF_MEM); |
||
6673 | s->s.k = a->regno; |
||
6674 | return s; |
||
6675 | } |
||
6676 | |||
6677 | static struct slist * |
||
6678 | xfer_to_a(a) |
||
6679 | struct arth *a; |
||
6680 | { |
||
6681 | struct slist *s; |
||
6682 | |||
6683 | s = new_stmt(BPF_LD|BPF_MEM); |
||
6684 | s->s.k = a->regno; |
||
6685 | return s; |
||
6686 | } |
||
6687 | |||
6688 | /* |
||
6689 | * Modify "index" to use the value stored into its register as an |
||
6690 | * offset relative to the beginning of the header for the protocol |
||
6691 | * "proto", and allocate a register and put an item "size" bytes long |
||
6692 | * (1, 2, or 4) at that offset into that register, making it the register |
||
6693 | * for "index". |
||
6694 | */ |
||
6695 | struct arth * |
||
6696 | gen_load(proto, inst, size) |
||
6697 | int proto; |
||
6698 | struct arth *inst; |
||
6699 | int size; |
||
6700 | { |
||
6701 | struct slist *s, *tmp; |
||
6702 | struct block *b; |
||
6703 | int regno = alloc_reg(); |
||
6704 | |||
6705 | free_reg(inst->regno); |
||
6706 | switch (size) { |
||
6707 | |||
6708 | default: |
||
6709 | bpf_error("data size must be 1, 2, or 4"); |
||
6710 | |||
6711 | case 1: |
||
6712 | size = BPF_B; |
||
6713 | break; |
||
6714 | |||
6715 | case 2: |
||
6716 | size = BPF_H; |
||
6717 | break; |
||
6718 | |||
6719 | case 4: |
||
6720 | size = BPF_W; |
||
6721 | break; |
||
6722 | } |
||
6723 | switch (proto) { |
||
6724 | default: |
||
6725 | bpf_error("unsupported index operation"); |
||
6726 | |||
6727 | case Q_RADIO: |
||
6728 | /* |
||
6729 | * The offset is relative to the beginning of the packet |
||
6730 | * data, if we have a radio header. (If we don't, this |
||
6731 | * is an error.) |
||
6732 | */ |
||
6733 | if (linktype != DLT_IEEE802_11_RADIO_AVS && |
||
6734 | linktype != DLT_IEEE802_11_RADIO && |
||
6735 | linktype != DLT_PRISM_HEADER) |
||
6736 | bpf_error("radio information not present in capture"); |
||
6737 | |||
6738 | /* |
||
6739 | * Load into the X register the offset computed into the |
||
6740 | * register specified by "index". |
||
6741 | */ |
||
6742 | s = xfer_to_x(inst); |
||
6743 | |||
6744 | /* |
||
6745 | * Load the item at that offset. |
||
6746 | */ |
||
6747 | tmp = new_stmt(BPF_LD|BPF_IND|size); |
||
6748 | sappend(s, tmp); |
||
6749 | sappend(inst->s, s); |
||
6750 | break; |
||
6751 | |||
6752 | case Q_LINK: |
||
6753 | /* |
||
6754 | * The offset is relative to the beginning of |
||
6755 | * the link-layer header. |
||
6756 | * |
||
6757 | * XXX - what about ATM LANE? Should the index be |
||
6758 | * relative to the beginning of the AAL5 frame, so |
||
6759 | * that 0 refers to the beginning of the LE Control |
||
6760 | * field, or relative to the beginning of the LAN |
||
6761 | * frame, so that 0 refers, for Ethernet LANE, to |
||
6762 | * the beginning of the destination address? |
||
6763 | */ |
||
6764 | s = gen_abs_offset_varpart(&off_linkhdr); |
||
6765 | |||
6766 | /* |
||
6767 | * If "s" is non-null, it has code to arrange that the |
||
6768 | * X register contains the length of the prefix preceding |
||
6769 | * the link-layer header. Add to it the offset computed |
||
6770 | * into the register specified by "index", and move that |
||
6771 | * into the X register. Otherwise, just load into the X |
||
6772 | * register the offset computed into the register specified |
||
6773 | * by "index". |
||
6774 | */ |
||
6775 | if (s != NULL) { |
||
6776 | sappend(s, xfer_to_a(inst)); |
||
6777 | sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X)); |
||
6778 | sappend(s, new_stmt(BPF_MISC|BPF_TAX)); |
||
6779 | } else |
||
6780 | s = xfer_to_x(inst); |
||
6781 | |||
6782 | /* |
||
6783 | * Load the item at the sum of the offset we've put in the |
||
6784 | * X register and the offset of the start of the link |
||
6785 | * layer header (which is 0 if the radio header is |
||
6786 | * variable-length; that header length is what we put |
||
6787 | * into the X register and then added to the index). |
||
6788 | */ |
||
6789 | tmp = new_stmt(BPF_LD|BPF_IND|size); |
||
6790 | tmp->s.k = off_linkhdr.constant_part; |
||
6791 | sappend(s, tmp); |
||
6792 | sappend(inst->s, s); |
||
6793 | break; |
||
6794 | |||
6795 | case Q_IP: |
||
6796 | case Q_ARP: |
||
6797 | case Q_RARP: |
||
6798 | case Q_ATALK: |
||
6799 | case Q_DECNET: |
||
6800 | case Q_SCA: |
||
6801 | case Q_LAT: |
||
6802 | case Q_MOPRC: |
||
6803 | case Q_MOPDL: |
||
6804 | case Q_IPV6: |
||
6805 | /* |
||
6806 | * The offset is relative to the beginning of |
||
6807 | * the network-layer header. |
||
6808 | * XXX - are there any cases where we want |
||
6809 | * off_nl_nosnap? |
||
6810 | */ |
||
6811 | s = gen_abs_offset_varpart(&off_linkpl); |
||
6812 | |||
6813 | /* |
||
6814 | * If "s" is non-null, it has code to arrange that the |
||
6815 | * X register contains the variable part of the offset |
||
6816 | * of the link-layer payload. Add to it the offset |
||
6817 | * computed into the register specified by "index", |
||
6818 | * and move that into the X register. Otherwise, just |
||
6819 | * load into the X register the offset computed into |
||
6820 | * the register specified by "index". |
||
6821 | */ |
||
6822 | if (s != NULL) { |
||
6823 | sappend(s, xfer_to_a(inst)); |
||
6824 | sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X)); |
||
6825 | sappend(s, new_stmt(BPF_MISC|BPF_TAX)); |
||
6826 | } else |
||
6827 | s = xfer_to_x(inst); |
||
6828 | |||
6829 | /* |
||
6830 | * Load the item at the sum of the offset we've put in the |
||
6831 | * X register, the offset of the start of the network |
||
6832 | * layer header from the beginning of the link-layer |
||
6833 | * payload, and the constant part of the offset of the |
||
6834 | * start of the link-layer payload. |
||
6835 | */ |
||
6836 | tmp = new_stmt(BPF_LD|BPF_IND|size); |
||
6837 | tmp->s.k = off_linkpl.constant_part + off_nl; |
||
6838 | sappend(s, tmp); |
||
6839 | sappend(inst->s, s); |
||
6840 | |||
6841 | /* |
||
6842 | * Do the computation only if the packet contains |
||
6843 | * the protocol in question. |
||
6844 | */ |
||
6845 | b = gen_proto_abbrev(proto); |
||
6846 | if (inst->b) |
||
6847 | gen_and(inst->b, b); |
||
6848 | inst->b = b; |
||
6849 | break; |
||
6850 | |||
6851 | case Q_SCTP: |
||
6852 | case Q_TCP: |
||
6853 | case Q_UDP: |
||
6854 | case Q_ICMP: |
||
6855 | case Q_IGMP: |
||
6856 | case Q_IGRP: |
||
6857 | case Q_PIM: |
||
6858 | case Q_VRRP: |
||
6859 | case Q_CARP: |
||
6860 | /* |
||
6861 | * The offset is relative to the beginning of |
||
6862 | * the transport-layer header. |
||
6863 | * |
||
6864 | * Load the X register with the length of the IPv4 header |
||
6865 | * (plus the offset of the link-layer header, if it's |
||
6866 | * a variable-length header), in bytes. |
||
6867 | * |
||
6868 | * XXX - are there any cases where we want |
||
6869 | * off_nl_nosnap? |
||
6870 | * XXX - we should, if we're built with |
||
6871 | * IPv6 support, generate code to load either |
||
6872 | * IPv4, IPv6, or both, as appropriate. |
||
6873 | */ |
||
6874 | s = gen_loadx_iphdrlen(); |
||
6875 | |||
6876 | /* |
||
6877 | * The X register now contains the sum of the variable |
||
6878 | * part of the offset of the link-layer payload and the |
||
6879 | * length of the network-layer header. |
||
6880 | * |
||
6881 | * Load into the A register the offset relative to |
||
6882 | * the beginning of the transport layer header, |
||
6883 | * add the X register to that, move that to the |
||
6884 | * X register, and load with an offset from the |
||
6885 | * X register equal to the sum of the constant part of |
||
6886 | * the offset of the link-layer payload and the offset, |
||
6887 | * relative to the beginning of the link-layer payload, |
||
6888 | * of the network-layer header. |
||
6889 | */ |
||
6890 | sappend(s, xfer_to_a(inst)); |
||
6891 | sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X)); |
||
6892 | sappend(s, new_stmt(BPF_MISC|BPF_TAX)); |
||
6893 | sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size)); |
||
6894 | tmp->s.k = off_linkpl.constant_part + off_nl; |
||
6895 | sappend(inst->s, s); |
||
6896 | |||
6897 | /* |
||
6898 | * Do the computation only if the packet contains |
||
6899 | * the protocol in question - which is true only |
||
6900 | * if this is an IP datagram and is the first or |
||
6901 | * only fragment of that datagram. |
||
6902 | */ |
||
6903 | gen_and(gen_proto_abbrev(proto), b = gen_ipfrag()); |
||
6904 | if (inst->b) |
||
6905 | gen_and(inst->b, b); |
||
6906 | gen_and(gen_proto_abbrev(Q_IP), b); |
||
6907 | inst->b = b; |
||
6908 | break; |
||
6909 | case Q_ICMPV6: |
||
6910 | bpf_error("IPv6 upper-layer protocol is not supported by proto[x]"); |
||
6911 | /*NOTREACHED*/ |
||
6912 | } |
||
6913 | inst->regno = regno; |
||
6914 | s = new_stmt(BPF_ST); |
||
6915 | s->s.k = regno; |
||
6916 | sappend(inst->s, s); |
||
6917 | |||
6918 | return inst; |
||
6919 | } |
||
6920 | |||
6921 | struct block * |
||
6922 | gen_relation(code, a0, a1, reversed) |
||
6923 | int code; |
||
6924 | struct arth *a0, *a1; |
||
6925 | int reversed; |
||
6926 | { |
||
6927 | struct slist *s0, *s1, *s2; |
||
6928 | struct block *b, *tmp; |
||
6929 | |||
6930 | s0 = xfer_to_x(a1); |
||
6931 | s1 = xfer_to_a(a0); |
||
6932 | if (code == BPF_JEQ) { |
||
6933 | s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X); |
||
6934 | b = new_block(JMP(code)); |
||
6935 | sappend(s1, s2); |
||
6936 | } |
||
6937 | else |
||
6938 | b = new_block(BPF_JMP|code|BPF_X); |
||
6939 | if (reversed) |
||
6940 | gen_not(b); |
||
6941 | |||
6942 | sappend(s0, s1); |
||
6943 | sappend(a1->s, s0); |
||
6944 | sappend(a0->s, a1->s); |
||
6945 | |||
6946 | b->stmts = a0->s; |
||
6947 | |||
6948 | free_reg(a0->regno); |
||
6949 | free_reg(a1->regno); |
||
6950 | |||
6951 | /* 'and' together protocol checks */ |
||
6952 | if (a0->b) { |
||
6953 | if (a1->b) { |
||
6954 | gen_and(a0->b, tmp = a1->b); |
||
6955 | } |
||
6956 | else |
||
6957 | tmp = a0->b; |
||
6958 | } else |
||
6959 | tmp = a1->b; |
||
6960 | |||
6961 | if (tmp) |
||
6962 | gen_and(tmp, b); |
||
6963 | |||
6964 | return b; |
||
6965 | } |
||
6966 | |||
6967 | struct arth * |
||
6968 | gen_loadlen() |
||
6969 | { |
||
6970 | int regno = alloc_reg(); |
||
6971 | struct arth *a = (struct arth *)newchunk(sizeof(*a)); |
||
6972 | struct slist *s; |
||
6973 | |||
6974 | s = new_stmt(BPF_LD|BPF_LEN); |
||
6975 | s->next = new_stmt(BPF_ST); |
||
6976 | s->next->s.k = regno; |
||
6977 | a->s = s; |
||
6978 | a->regno = regno; |
||
6979 | |||
6980 | return a; |
||
6981 | } |
||
6982 | |||
6983 | struct arth * |
||
6984 | gen_loadi(val) |
||
6985 | int val; |
||
6986 | { |
||
6987 | struct arth *a; |
||
6988 | struct slist *s; |
||
6989 | int reg; |
||
6990 | |||
6991 | a = (struct arth *)newchunk(sizeof(*a)); |
||
6992 | |||
6993 | reg = alloc_reg(); |
||
6994 | |||
6995 | s = new_stmt(BPF_LD|BPF_IMM); |
||
6996 | s->s.k = val; |
||
6997 | s->next = new_stmt(BPF_ST); |
||
6998 | s->next->s.k = reg; |
||
6999 | a->s = s; |
||
7000 | a->regno = reg; |
||
7001 | |||
7002 | return a; |
||
7003 | } |
||
7004 | |||
7005 | struct arth * |
||
7006 | gen_neg(a) |
||
7007 | struct arth *a; |
||
7008 | { |
||
7009 | struct slist *s; |
||
7010 | |||
7011 | s = xfer_to_a(a); |
||
7012 | sappend(a->s, s); |
||
7013 | s = new_stmt(BPF_ALU|BPF_NEG); |
||
7014 | s->s.k = 0; |
||
7015 | sappend(a->s, s); |
||
7016 | s = new_stmt(BPF_ST); |
||
7017 | s->s.k = a->regno; |
||
7018 | sappend(a->s, s); |
||
7019 | |||
7020 | return a; |
||
7021 | } |
||
7022 | |||
7023 | struct arth * |
||
7024 | gen_arth(code, a0, a1) |
||
7025 | int code; |
||
7026 | struct arth *a0, *a1; |
||
7027 | { |
||
7028 | struct slist *s0, *s1, *s2; |
||
7029 | |||
7030 | s0 = xfer_to_x(a1); |
||
7031 | s1 = xfer_to_a(a0); |
||
7032 | s2 = new_stmt(BPF_ALU|BPF_X|code); |
||
7033 | |||
7034 | sappend(s1, s2); |
||
7035 | sappend(s0, s1); |
||
7036 | sappend(a1->s, s0); |
||
7037 | sappend(a0->s, a1->s); |
||
7038 | |||
7039 | free_reg(a0->regno); |
||
7040 | free_reg(a1->regno); |
||
7041 | |||
7042 | s0 = new_stmt(BPF_ST); |
||
7043 | a0->regno = s0->s.k = alloc_reg(); |
||
7044 | sappend(a0->s, s0); |
||
7045 | |||
7046 | return a0; |
||
7047 | } |
||
7048 | |||
7049 | /* |
||
7050 | * Here we handle simple allocation of the scratch registers. |
||
7051 | * If too many registers are alloc'd, the allocator punts. |
||
7052 | */ |
||
7053 | static int regused[BPF_MEMWORDS]; |
||
7054 | static int curreg; |
||
7055 | |||
7056 | /* |
||
7057 | * Initialize the table of used registers and the current register. |
||
7058 | */ |
||
7059 | static void |
||
7060 | init_regs() |
||
7061 | { |
||
7062 | curreg = 0; |
||
7063 | memset(regused, 0, sizeof regused); |
||
7064 | } |
||
7065 | |||
7066 | /* |
||
7067 | * Return the next free register. |
||
7068 | */ |
||
7069 | static int |
||
7070 | alloc_reg() |
||
7071 | { |
||
7072 | int n = BPF_MEMWORDS; |
||
7073 | |||
7074 | while (--n >= 0) { |
||
7075 | if (regused[curreg]) |
||
7076 | curreg = (curreg + 1) % BPF_MEMWORDS; |
||
7077 | else { |
||
7078 | regused[curreg] = 1; |
||
7079 | return curreg; |
||
7080 | } |
||
7081 | } |
||
7082 | bpf_error("too many registers needed to evaluate expression"); |
||
7083 | /* NOTREACHED */ |
||
7084 | return 0; |
||
7085 | } |
||
7086 | |||
7087 | /* |
||
7088 | * Return a register to the table so it can |
||
7089 | * be used later. |
||
7090 | */ |
||
7091 | static void |
||
7092 | free_reg(n) |
||
7093 | int n; |
||
7094 | { |
||
7095 | regused[n] = 0; |
||
7096 | } |
||
7097 | |||
7098 | static struct block * |
||
7099 | gen_len(jmp, n) |
||
7100 | int jmp, n; |
||
7101 | { |
||
7102 | struct slist *s; |
||
7103 | struct block *b; |
||
7104 | |||
7105 | s = new_stmt(BPF_LD|BPF_LEN); |
||
7106 | b = new_block(JMP(jmp)); |
||
7107 | b->stmts = s; |
||
7108 | b->s.k = n; |
||
7109 | |||
7110 | return b; |
||
7111 | } |
||
7112 | |||
7113 | struct block * |
||
7114 | gen_greater(n) |
||
7115 | int n; |
||
7116 | { |
||
7117 | return gen_len(BPF_JGE, n); |
||
7118 | } |
||
7119 | |||
7120 | /* |
||
7121 | * Actually, this is less than or equal. |
||
7122 | */ |
||
7123 | struct block * |
||
7124 | gen_less(n) |
||
7125 | int n; |
||
7126 | { |
||
7127 | struct block *b; |
||
7128 | |||
7129 | b = gen_len(BPF_JGT, n); |
||
7130 | gen_not(b); |
||
7131 | |||
7132 | return b; |
||
7133 | } |
||
7134 | |||
7135 | /* |
||
7136 | * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to |
||
7137 | * the beginning of the link-layer header. |
||
7138 | * XXX - that means you can't test values in the radiotap header, but |
||
7139 | * as that header is difficult if not impossible to parse generally |
||
7140 | * without a loop, that might not be a severe problem. A new keyword |
||
7141 | * "radio" could be added for that, although what you'd really want |
||
7142 | * would be a way of testing particular radio header values, which |
||
7143 | * would generate code appropriate to the radio header in question. |
||
7144 | */ |
||
7145 | struct block * |
||
7146 | gen_byteop(op, idx, val) |
||
7147 | int op, idx, val; |
||
7148 | { |
||
7149 | struct block *b; |
||
7150 | struct slist *s; |
||
7151 | |||
7152 | switch (op) { |
||
7153 | default: |
||
7154 | abort(); |
||
7155 | |||
7156 | case '=': |
||
7157 | return gen_cmp(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); |
||
7158 | |||
7159 | case '<': |
||
7160 | b = gen_cmp_lt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); |
||
7161 | return b; |
||
7162 | |||
7163 | case '>': |
||
7164 | b = gen_cmp_gt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); |
||
7165 | return b; |
||
7166 | |||
7167 | case '|': |
||
7168 | s = new_stmt(BPF_ALU|BPF_OR|BPF_K); |
||
7169 | break; |
||
7170 | |||
7171 | case '&': |
||
7172 | s = new_stmt(BPF_ALU|BPF_AND|BPF_K); |
||
7173 | break; |
||
7174 | } |
||
7175 | s->s.k = val; |
||
7176 | b = new_block(JMP(BPF_JEQ)); |
||
7177 | b->stmts = s; |
||
7178 | gen_not(b); |
||
7179 | |||
7180 | return b; |
||
7181 | } |
||
7182 | |||
7183 | static u_char abroadcast[] = { 0x0 }; |
||
7184 | |||
7185 | struct block * |
||
7186 | gen_broadcast(proto) |
||
7187 | int proto; |
||
7188 | { |
||
7189 | bpf_u_int32 hostmask; |
||
7190 | struct block *b0, *b1, *b2; |
||
7191 | static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
||
7192 | |||
7193 | switch (proto) { |
||
7194 | |||
7195 | case Q_DEFAULT: |
||
7196 | case Q_LINK: |
||
7197 | switch (linktype) { |
||
7198 | case DLT_ARCNET: |
||
7199 | case DLT_ARCNET_LINUX: |
||
7200 | return gen_ahostop(abroadcast, Q_DST); |
||
7201 | case DLT_EN10MB: |
||
7202 | case DLT_NETANALYZER: |
||
7203 | case DLT_NETANALYZER_TRANSPARENT: |
||
7204 | b1 = gen_prevlinkhdr_check(); |
||
7205 | b0 = gen_ehostop(ebroadcast, Q_DST); |
||
7206 | if (b1 != NULL) |
||
7207 | gen_and(b1, b0); |
||
7208 | return b0; |
||
7209 | case DLT_FDDI: |
||
7210 | return gen_fhostop(ebroadcast, Q_DST); |
||
7211 | case DLT_IEEE802: |
||
7212 | return gen_thostop(ebroadcast, Q_DST); |
||
7213 | case DLT_IEEE802_11: |
||
7214 | case DLT_PRISM_HEADER: |
||
7215 | case DLT_IEEE802_11_RADIO_AVS: |
||
7216 | case DLT_IEEE802_11_RADIO: |
||
7217 | case DLT_PPI: |
||
7218 | return gen_wlanhostop(ebroadcast, Q_DST); |
||
7219 | case DLT_IP_OVER_FC: |
||
7220 | return gen_ipfchostop(ebroadcast, Q_DST); |
||
7221 | default: |
||
7222 | bpf_error("not a broadcast link"); |
||
7223 | } |
||
7224 | break; |
||
7225 | |||
7226 | case Q_IP: |
||
7227 | /* |
||
7228 | * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff) |
||
7229 | * as an indication that we don't know the netmask, and fail |
||
7230 | * in that case. |
||
7231 | */ |
||
7232 | if (netmask == PCAP_NETMASK_UNKNOWN) |
||
7233 | bpf_error("netmask not known, so 'ip broadcast' not supported"); |
||
7234 | b0 = gen_linktype(ETHERTYPE_IP); |
||
7235 | hostmask = ~netmask; |
||
7236 | b1 = gen_mcmp(OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask); |
||
7237 | b2 = gen_mcmp(OR_LINKPL, 16, BPF_W, |
||
7238 | (bpf_int32)(~0 & hostmask), hostmask); |
||
7239 | gen_or(b1, b2); |
||
7240 | gen_and(b0, b2); |
||
7241 | return b2; |
||
7242 | } |
||
7243 | bpf_error("only link-layer/IP broadcast filters supported"); |
||
7244 | /* NOTREACHED */ |
||
7245 | return NULL; |
||
7246 | } |
||
7247 | |||
7248 | /* |
||
7249 | * Generate code to test the low-order bit of a MAC address (that's |
||
7250 | * the bottom bit of the *first* byte). |
||
7251 | */ |
||
7252 | static struct block * |
||
7253 | gen_mac_multicast(offset) |
||
7254 | int offset; |
||
7255 | { |
||
7256 | register struct block *b0; |
||
7257 | register struct slist *s; |
||
7258 | |||
7259 | /* link[offset] & 1 != 0 */ |
||
7260 | s = gen_load_a(OR_LINKHDR, offset, BPF_B); |
||
7261 | b0 = new_block(JMP(BPF_JSET)); |
||
7262 | b0->s.k = 1; |
||
7263 | b0->stmts = s; |
||
7264 | return b0; |
||
7265 | } |
||
7266 | |||
7267 | struct block * |
||
7268 | gen_multicast(proto) |
||
7269 | int proto; |
||
7270 | { |
||
7271 | register struct block *b0, *b1, *b2; |
||
7272 | register struct slist *s; |
||
7273 | |||
7274 | switch (proto) { |
||
7275 | |||
7276 | case Q_DEFAULT: |
||
7277 | case Q_LINK: |
||
7278 | switch (linktype) { |
||
7279 | case DLT_ARCNET: |
||
7280 | case DLT_ARCNET_LINUX: |
||
7281 | /* all ARCnet multicasts use the same address */ |
||
7282 | return gen_ahostop(abroadcast, Q_DST); |
||
7283 | case DLT_EN10MB: |
||
7284 | case DLT_NETANALYZER: |
||
7285 | case DLT_NETANALYZER_TRANSPARENT: |
||
7286 | b1 = gen_prevlinkhdr_check(); |
||
7287 | /* ether[0] & 1 != 0 */ |
||
7288 | b0 = gen_mac_multicast(0); |
||
7289 | if (b1 != NULL) |
||
7290 | gen_and(b1, b0); |
||
7291 | return b0; |
||
7292 | case DLT_FDDI: |
||
7293 | /* |
||
7294 | * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX |
||
7295 | * |
||
7296 | * XXX - was that referring to bit-order issues? |
||
7297 | */ |
||
7298 | /* fddi[1] & 1 != 0 */ |
||
7299 | return gen_mac_multicast(1); |
||
7300 | case DLT_IEEE802: |
||
7301 | /* tr[2] & 1 != 0 */ |
||
7302 | return gen_mac_multicast(2); |
||
7303 | case DLT_IEEE802_11: |
||
7304 | case DLT_PRISM_HEADER: |
||
7305 | case DLT_IEEE802_11_RADIO_AVS: |
||
7306 | case DLT_IEEE802_11_RADIO: |
||
7307 | case DLT_PPI: |
||
7308 | /* |
||
7309 | * Oh, yuk. |
||
7310 | * |
||
7311 | * For control frames, there is no DA. |
||
7312 | * |
||
7313 | * For management frames, DA is at an |
||
7314 | * offset of 4 from the beginning of |
||
7315 | * the packet. |
||
7316 | * |
||
7317 | * For data frames, DA is at an offset |
||
7318 | * of 4 from the beginning of the packet |
||
7319 | * if To DS is clear and at an offset of |
||
7320 | * 16 from the beginning of the packet |
||
7321 | * if To DS is set. |
||
7322 | */ |
||
7323 | |||
7324 | /* |
||
7325 | * Generate the tests to be done for data frames. |
||
7326 | * |
||
7327 | * First, check for To DS set, i.e. "link[1] & 0x01". |
||
7328 | */ |
||
7329 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
7330 | b1 = new_block(JMP(BPF_JSET)); |
||
7331 | b1->s.k = 0x01; /* To DS */ |
||
7332 | b1->stmts = s; |
||
7333 | |||
7334 | /* |
||
7335 | * If To DS is set, the DA is at 16. |
||
7336 | */ |
||
7337 | b0 = gen_mac_multicast(16); |
||
7338 | gen_and(b1, b0); |
||
7339 | |||
7340 | /* |
||
7341 | * Now, check for To DS not set, i.e. check |
||
7342 | * "!(link[1] & 0x01)". |
||
7343 | */ |
||
7344 | s = gen_load_a(OR_LINKHDR, 1, BPF_B); |
||
7345 | b2 = new_block(JMP(BPF_JSET)); |
||
7346 | b2->s.k = 0x01; /* To DS */ |
||
7347 | b2->stmts = s; |
||
7348 | gen_not(b2); |
||
7349 | |||
7350 | /* |
||
7351 | * If To DS is not set, the DA is at 4. |
||
7352 | */ |
||
7353 | b1 = gen_mac_multicast(4); |
||
7354 | gen_and(b2, b1); |
||
7355 | |||
7356 | /* |
||
7357 | * Now OR together the last two checks. That gives |
||
7358 | * the complete set of checks for data frames. |
||
7359 | */ |
||
7360 | gen_or(b1, b0); |
||
7361 | |||
7362 | /* |
||
7363 | * Now check for a data frame. |
||
7364 | * I.e, check "link[0] & 0x08". |
||
7365 | */ |
||
7366 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
7367 | b1 = new_block(JMP(BPF_JSET)); |
||
7368 | b1->s.k = 0x08; |
||
7369 | b1->stmts = s; |
||
7370 | |||
7371 | /* |
||
7372 | * AND that with the checks done for data frames. |
||
7373 | */ |
||
7374 | gen_and(b1, b0); |
||
7375 | |||
7376 | /* |
||
7377 | * If the high-order bit of the type value is 0, this |
||
7378 | * is a management frame. |
||
7379 | * I.e, check "!(link[0] & 0x08)". |
||
7380 | */ |
||
7381 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
7382 | b2 = new_block(JMP(BPF_JSET)); |
||
7383 | b2->s.k = 0x08; |
||
7384 | b2->stmts = s; |
||
7385 | gen_not(b2); |
||
7386 | |||
7387 | /* |
||
7388 | * For management frames, the DA is at 4. |
||
7389 | */ |
||
7390 | b1 = gen_mac_multicast(4); |
||
7391 | gen_and(b2, b1); |
||
7392 | |||
7393 | /* |
||
7394 | * OR that with the checks done for data frames. |
||
7395 | * That gives the checks done for management and |
||
7396 | * data frames. |
||
7397 | */ |
||
7398 | gen_or(b1, b0); |
||
7399 | |||
7400 | /* |
||
7401 | * If the low-order bit of the type value is 1, |
||
7402 | * this is either a control frame or a frame |
||
7403 | * with a reserved type, and thus not a |
||
7404 | * frame with an SA. |
||
7405 | * |
||
7406 | * I.e., check "!(link[0] & 0x04)". |
||
7407 | */ |
||
7408 | s = gen_load_a(OR_LINKHDR, 0, BPF_B); |
||
7409 | b1 = new_block(JMP(BPF_JSET)); |
||
7410 | b1->s.k = 0x04; |
||
7411 | b1->stmts = s; |
||
7412 | gen_not(b1); |
||
7413 | |||
7414 | /* |
||
7415 | * AND that with the checks for data and management |
||
7416 | * frames. |
||
7417 | */ |
||
7418 | gen_and(b1, b0); |
||
7419 | return b0; |
||
7420 | case DLT_IP_OVER_FC: |
||
7421 | b0 = gen_mac_multicast(2); |
||
7422 | return b0; |
||
7423 | default: |
||
7424 | break; |
||
7425 | } |
||
7426 | /* Link not known to support multicasts */ |
||
7427 | break; |
||
7428 | |||
7429 | case Q_IP: |
||
7430 | b0 = gen_linktype(ETHERTYPE_IP); |
||
7431 | b1 = gen_cmp_ge(OR_LINKPL, 16, BPF_B, (bpf_int32)224); |
||
7432 | gen_and(b0, b1); |
||
7433 | return b1; |
||
7434 | |||
7435 | case Q_IPV6: |
||
7436 | b0 = gen_linktype(ETHERTYPE_IPV6); |
||
7437 | b1 = gen_cmp(OR_LINKPL, 24, BPF_B, (bpf_int32)255); |
||
7438 | gen_and(b0, b1); |
||
7439 | return b1; |
||
7440 | } |
||
7441 | bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel"); |
||
7442 | /* NOTREACHED */ |
||
7443 | return NULL; |
||
7444 | } |
||
7445 | |||
7446 | /* |
||
7447 | * Filter on inbound (dir == 0) or outbound (dir == 1) traffic. |
||
7448 | * Outbound traffic is sent by this machine, while inbound traffic is |
||
7449 | * sent by a remote machine (and may include packets destined for a |
||
7450 | * unicast or multicast link-layer address we are not subscribing to). |
||
7451 | * These are the same definitions implemented by pcap_setdirection(). |
||
7452 | * Capturing only unicast traffic destined for this host is probably |
||
7453 | * better accomplished using a higher-layer filter. |
||
7454 | */ |
||
7455 | struct block * |
||
7456 | gen_inbound(dir) |
||
7457 | int dir; |
||
7458 | { |
||
7459 | register struct block *b0; |
||
7460 | |||
7461 | /* |
||
7462 | * Only some data link types support inbound/outbound qualifiers. |
||
7463 | */ |
||
7464 | switch (linktype) { |
||
7465 | case DLT_SLIP: |
||
7466 | b0 = gen_relation(BPF_JEQ, |
||
7467 | gen_load(Q_LINK, gen_loadi(0), 1), |
||
7468 | gen_loadi(0), |
||
7469 | dir); |
||
7470 | break; |
||
7471 | |||
7472 | case DLT_IPNET: |
||
7473 | if (dir) { |
||
7474 | /* match outgoing packets */ |
||
7475 | b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND); |
||
7476 | } else { |
||
7477 | /* match incoming packets */ |
||
7478 | b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_INBOUND); |
||
7479 | } |
||
7480 | break; |
||
7481 | |||
7482 | case DLT_LINUX_SLL: |
||
7483 | /* match outgoing packets */ |
||
7484 | b0 = gen_cmp(OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING); |
||
7485 | if (!dir) { |
||
7486 | /* to filter on inbound traffic, invert the match */ |
||
7487 | gen_not(b0); |
||
7488 | } |
||
7489 | break; |
||
7490 | |||
7491 | #ifdef HAVE_NET_PFVAR_H |
||
7492 | case DLT_PFLOG: |
||
7493 | b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B, |
||
7494 | (bpf_int32)((dir == 0) ? PF_IN : PF_OUT)); |
||
7495 | break; |
||
7496 | #endif |
||
7497 | |||
7498 | case DLT_PPP_PPPD: |
||
7499 | if (dir) { |
||
7500 | /* match outgoing packets */ |
||
7501 | b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT); |
||
7502 | } else { |
||
7503 | /* match incoming packets */ |
||
7504 | b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN); |
||
7505 | } |
||
7506 | break; |
||
7507 | |||
7508 | case DLT_JUNIPER_MFR: |
||
7509 | case DLT_JUNIPER_MLFR: |
||
7510 | case DLT_JUNIPER_MLPPP: |
||
7511 | case DLT_JUNIPER_ATM1: |
||
7512 | case DLT_JUNIPER_ATM2: |
||
7513 | case DLT_JUNIPER_PPPOE: |
||
7514 | case DLT_JUNIPER_PPPOE_ATM: |
||
7515 | case DLT_JUNIPER_GGSN: |
||
7516 | case DLT_JUNIPER_ES: |
||
7517 | case DLT_JUNIPER_MONITOR: |
||
7518 | case DLT_JUNIPER_SERVICES: |
||
7519 | case DLT_JUNIPER_ETHER: |
||
7520 | case DLT_JUNIPER_PPP: |
||
7521 | case DLT_JUNIPER_FRELAY: |
||
7522 | case DLT_JUNIPER_CHDLC: |
||
7523 | case DLT_JUNIPER_VP: |
||
7524 | case DLT_JUNIPER_ST: |
||
7525 | case DLT_JUNIPER_ISM: |
||
7526 | case DLT_JUNIPER_VS: |
||
7527 | case DLT_JUNIPER_SRX_E2E: |
||
7528 | case DLT_JUNIPER_FIBRECHANNEL: |
||
7529 | case DLT_JUNIPER_ATM_CEMIC: |
||
7530 | |||
7531 | /* juniper flags (including direction) are stored |
||
7532 | * the byte after the 3-byte magic number */ |
||
7533 | if (dir) { |
||
7534 | /* match outgoing packets */ |
||
7535 | b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 0, 0x01); |
||
7536 | } else { |
||
7537 | /* match incoming packets */ |
||
7538 | b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 1, 0x01); |
||
7539 | } |
||
7540 | break; |
||
7541 | |||
7542 | default: |
||
7543 | /* |
||
7544 | * If we have packet meta-data indicating a direction, |
||
7545 | * check it, otherwise give up as this link-layer type |
||
7546 | * has nothing in the packet data. |
||
7547 | */ |
||
7548 | #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) |
||
7549 | /* |
||
7550 | * This is Linux with PF_PACKET support. |
||
7551 | * If this is a *live* capture, we can look at |
||
7552 | * special meta-data in the filter expression; |
||
7553 | * if it's a savefile, we can't. |
||
7554 | */ |
||
7555 | if (bpf_pcap->rfile != NULL) { |
||
7556 | /* We have a FILE *, so this is a savefile */ |
||
7557 | bpf_error("inbound/outbound not supported on linktype %d when reading savefiles", |
||
7558 | linktype); |
||
7559 | b0 = NULL; |
||
7560 | /* NOTREACHED */ |
||
7561 | } |
||
7562 | /* match outgoing packets */ |
||
7563 | b0 = gen_cmp(OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H, |
||
7564 | PACKET_OUTGOING); |
||
7565 | if (!dir) { |
||
7566 | /* to filter on inbound traffic, invert the match */ |
||
7567 | gen_not(b0); |
||
7568 | } |
||
7569 | #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */ |
||
7570 | bpf_error("inbound/outbound not supported on linktype %d", |
||
7571 | linktype); |
||
7572 | b0 = NULL; |
||
7573 | /* NOTREACHED */ |
||
7574 | #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */ |
||
7575 | } |
||
7576 | return (b0); |
||
7577 | } |
||
7578 | |||
7579 | #ifdef HAVE_NET_PFVAR_H |
||
7580 | /* PF firewall log matched interface */ |
||
7581 | struct block * |
||
7582 | gen_pf_ifname(const char *ifname) |
||
7583 | { |
||
7584 | struct block *b0; |
||
7585 | u_int len, off; |
||
7586 | |||
7587 | if (linktype != DLT_PFLOG) { |
||
7588 | bpf_error("ifname supported only on PF linktype"); |
||
7589 | /* NOTREACHED */ |
||
7590 | } |
||
7591 | len = sizeof(((struct pfloghdr *)0)->ifname); |
||
7592 | off = offsetof(struct pfloghdr, ifname); |
||
7593 | if (strlen(ifname) >= len) { |
||
7594 | bpf_error("ifname interface names can only be %d characters", |
||
7595 | len-1); |
||
7596 | /* NOTREACHED */ |
||
7597 | } |
||
7598 | b0 = gen_bcmp(OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname); |
||
7599 | return (b0); |
||
7600 | } |
||
7601 | |||
7602 | /* PF firewall log ruleset name */ |
||
7603 | struct block * |
||
7604 | gen_pf_ruleset(char *ruleset) |
||
7605 | { |
||
7606 | struct block *b0; |
||
7607 | |||
7608 | if (linktype != DLT_PFLOG) { |
||
7609 | bpf_error("ruleset supported only on PF linktype"); |
||
7610 | /* NOTREACHED */ |
||
7611 | } |
||
7612 | |||
7613 | if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) { |
||
7614 | bpf_error("ruleset names can only be %ld characters", |
||
7615 | (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1)); |
||
7616 | /* NOTREACHED */ |
||
7617 | } |
||
7618 | |||
7619 | b0 = gen_bcmp(OR_LINKHDR, offsetof(struct pfloghdr, ruleset), |
||
7620 | strlen(ruleset), (const u_char *)ruleset); |
||
7621 | return (b0); |
||
7622 | } |
||
7623 | |||
7624 | /* PF firewall log rule number */ |
||
7625 | struct block * |
||
7626 | gen_pf_rnr(int rnr) |
||
7627 | { |
||
7628 | struct block *b0; |
||
7629 | |||
7630 | if (linktype != DLT_PFLOG) { |
||
7631 | bpf_error("rnr supported only on PF linktype"); |
||
7632 | /* NOTREACHED */ |
||
7633 | } |
||
7634 | |||
7635 | b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W, |
||
7636 | (bpf_int32)rnr); |
||
7637 | return (b0); |
||
7638 | } |
||
7639 | |||
7640 | /* PF firewall log sub-rule number */ |
||
7641 | struct block * |
||
7642 | gen_pf_srnr(int srnr) |
||
7643 | { |
||
7644 | struct block *b0; |
||
7645 | |||
7646 | if (linktype != DLT_PFLOG) { |
||
7647 | bpf_error("srnr supported only on PF linktype"); |
||
7648 | /* NOTREACHED */ |
||
7649 | } |
||
7650 | |||
7651 | b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W, |
||
7652 | (bpf_int32)srnr); |
||
7653 | return (b0); |
||
7654 | } |
||
7655 | |||
7656 | /* PF firewall log reason code */ |
||
7657 | struct block * |
||
7658 | gen_pf_reason(int reason) |
||
7659 | { |
||
7660 | struct block *b0; |
||
7661 | |||
7662 | if (linktype != DLT_PFLOG) { |
||
7663 | bpf_error("reason supported only on PF linktype"); |
||
7664 | /* NOTREACHED */ |
||
7665 | } |
||
7666 | |||
7667 | b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B, |
||
7668 | (bpf_int32)reason); |
||
7669 | return (b0); |
||
7670 | } |
||
7671 | |||
7672 | /* PF firewall log action */ |
||
7673 | struct block * |
||
7674 | gen_pf_action(int action) |
||
7675 | { |
||
7676 | struct block *b0; |
||
7677 | |||
7678 | if (linktype != DLT_PFLOG) { |
||
7679 | bpf_error("action supported only on PF linktype"); |
||
7680 | /* NOTREACHED */ |
||
7681 | } |
||
7682 | |||
7683 | b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B, |
||
7684 | (bpf_int32)action); |
||
7685 | return (b0); |
||
7686 | } |
||
7687 | #else /* !HAVE_NET_PFVAR_H */ |
||
7688 | struct block * |
||
7689 | gen_pf_ifname(const char *ifname) |
||
7690 | { |
||
7691 | bpf_error("libpcap was compiled without pf support"); |
||
7692 | /* NOTREACHED */ |
||
7693 | return (NULL); |
||
7694 | } |
||
7695 | |||
7696 | struct block * |
||
7697 | gen_pf_ruleset(char *ruleset) |
||
7698 | { |
||
7699 | bpf_error("libpcap was compiled on a machine without pf support"); |
||
7700 | /* NOTREACHED */ |
||
7701 | return (NULL); |
||
7702 | } |
||
7703 | |||
7704 | struct block * |
||
7705 | gen_pf_rnr(int rnr) |
||
7706 | { |
||
7707 | bpf_error("libpcap was compiled on a machine without pf support"); |
||
7708 | /* NOTREACHED */ |
||
7709 | return (NULL); |
||
7710 | } |
||
7711 | |||
7712 | struct block * |
||
7713 | gen_pf_srnr(int srnr) |
||
7714 | { |
||
7715 | bpf_error("libpcap was compiled on a machine without pf support"); |
||
7716 | /* NOTREACHED */ |
||
7717 | return (NULL); |
||
7718 | } |
||
7719 | |||
7720 | struct block * |
||
7721 | gen_pf_reason(int reason) |
||
7722 | { |
||
7723 | bpf_error("libpcap was compiled on a machine without pf support"); |
||
7724 | /* NOTREACHED */ |
||
7725 | return (NULL); |
||
7726 | } |
||
7727 | |||
7728 | struct block * |
||
7729 | gen_pf_action(int action) |
||
7730 | { |
||
7731 | bpf_error("libpcap was compiled on a machine without pf support"); |
||
7732 | /* NOTREACHED */ |
||
7733 | return (NULL); |
||
7734 | } |
||
7735 | #endif /* HAVE_NET_PFVAR_H */ |
||
7736 | |||
7737 | /* IEEE 802.11 wireless header */ |
||
7738 | struct block * |
||
7739 | gen_p80211_type(int type, int mask) |
||
7740 | { |
||
7741 | struct block *b0; |
||
7742 | |||
7743 | switch (linktype) { |
||
7744 | |||
7745 | case DLT_IEEE802_11: |
||
7746 | case DLT_PRISM_HEADER: |
||
7747 | case DLT_IEEE802_11_RADIO_AVS: |
||
7748 | case DLT_IEEE802_11_RADIO: |
||
7749 | b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, (bpf_int32)type, |
||
7750 | (bpf_int32)mask); |
||
7751 | break; |
||
7752 | |||
7753 | default: |
||
7754 | bpf_error("802.11 link-layer types supported only on 802.11"); |
||
7755 | /* NOTREACHED */ |
||
7756 | } |
||
7757 | |||
7758 | return (b0); |
||
7759 | } |
||
7760 | |||
7761 | struct block * |
||
7762 | gen_p80211_fcdir(int fcdir) |
||
7763 | { |
||
7764 | struct block *b0; |
||
7765 | |||
7766 | switch (linktype) { |
||
7767 | |||
7768 | case DLT_IEEE802_11: |
||
7769 | case DLT_PRISM_HEADER: |
||
7770 | case DLT_IEEE802_11_RADIO_AVS: |
||
7771 | case DLT_IEEE802_11_RADIO: |
||
7772 | break; |
||
7773 | |||
7774 | default: |
||
7775 | bpf_error("frame direction supported only with 802.11 headers"); |
||
7776 | /* NOTREACHED */ |
||
7777 | } |
||
7778 | |||
7779 | b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir, |
||
7780 | (bpf_u_int32)IEEE80211_FC1_DIR_MASK); |
||
7781 | |||
7782 | return (b0); |
||
7783 | } |
||
7784 | |||
7785 | struct block * |
||
7786 | gen_acode(eaddr, q) |
||
7787 | register const u_char *eaddr; |
||
7788 | struct qual q; |
||
7789 | { |
||
7790 | switch (linktype) { |
||
7791 | |||
7792 | case DLT_ARCNET: |
||
7793 | case DLT_ARCNET_LINUX: |
||
7794 | if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && |
||
7795 | q.proto == Q_LINK) |
||
7796 | return (gen_ahostop(eaddr, (int)q.dir)); |
||
7797 | else { |
||
7798 | bpf_error("ARCnet address used in non-arc expression"); |
||
7799 | /* NOTREACHED */ |
||
7800 | } |
||
7801 | break; |
||
7802 | |||
7803 | default: |
||
7804 | bpf_error("aid supported only on ARCnet"); |
||
7805 | /* NOTREACHED */ |
||
7806 | } |
||
7807 | bpf_error("ARCnet address used in non-arc expression"); |
||
7808 | /* NOTREACHED */ |
||
7809 | return NULL; |
||
7810 | } |
||
7811 | |||
7812 | static struct block * |
||
7813 | gen_ahostop(eaddr, dir) |
||
7814 | register const u_char *eaddr; |
||
7815 | register int dir; |
||
7816 | { |
||
7817 | register struct block *b0, *b1; |
||
7818 | |||
7819 | switch (dir) { |
||
7820 | /* src comes first, different from Ethernet */ |
||
7821 | case Q_SRC: |
||
7822 | return gen_bcmp(OR_LINKHDR, 0, 1, eaddr); |
||
7823 | |||
7824 | case Q_DST: |
||
7825 | return gen_bcmp(OR_LINKHDR, 1, 1, eaddr); |
||
7826 | |||
7827 | case Q_AND: |
||
7828 | b0 = gen_ahostop(eaddr, Q_SRC); |
||
7829 | b1 = gen_ahostop(eaddr, Q_DST); |
||
7830 | gen_and(b0, b1); |
||
7831 | return b1; |
||
7832 | |||
7833 | case Q_DEFAULT: |
||
7834 | case Q_OR: |
||
7835 | b0 = gen_ahostop(eaddr, Q_SRC); |
||
7836 | b1 = gen_ahostop(eaddr, Q_DST); |
||
7837 | gen_or(b0, b1); |
||
7838 | return b1; |
||
7839 | |||
7840 | case Q_ADDR1: |
||
7841 | bpf_error("'addr1' is only supported on 802.11"); |
||
7842 | break; |
||
7843 | |||
7844 | case Q_ADDR2: |
||
7845 | bpf_error("'addr2' is only supported on 802.11"); |
||
7846 | break; |
||
7847 | |||
7848 | case Q_ADDR3: |
||
7849 | bpf_error("'addr3' is only supported on 802.11"); |
||
7850 | break; |
||
7851 | |||
7852 | case Q_ADDR4: |
||
7853 | bpf_error("'addr4' is only supported on 802.11"); |
||
7854 | break; |
||
7855 | |||
7856 | case Q_RA: |
||
7857 | bpf_error("'ra' is only supported on 802.11"); |
||
7858 | break; |
||
7859 | |||
7860 | case Q_TA: |
||
7861 | bpf_error("'ta' is only supported on 802.11"); |
||
7862 | break; |
||
7863 | } |
||
7864 | abort(); |
||
7865 | /* NOTREACHED */ |
||
7866 | } |
||
7867 | |||
7868 | #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT) |
||
7869 | static struct block * |
||
7870 | gen_vlan_bpf_extensions(int vlan_num) |
||
7871 | { |
||
7872 | struct block *b0, *b1; |
||
7873 | struct slist *s; |
||
7874 | |||
7875 | /* generate new filter code based on extracting packet |
||
7876 | * metadata */ |
||
7877 | s = new_stmt(BPF_LD|BPF_B|BPF_ABS); |
||
7878 | s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT; |
||
7879 | |||
7880 | b0 = new_block(JMP(BPF_JEQ)); |
||
7881 | b0->stmts = s; |
||
7882 | b0->s.k = 1; |
||
7883 | |||
7884 | if (vlan_num >= 0) { |
||
7885 | s = new_stmt(BPF_LD|BPF_B|BPF_ABS); |
||
7886 | s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG; |
||
7887 | |||
7888 | b1 = new_block(JMP(BPF_JEQ)); |
||
7889 | b1->stmts = s; |
||
7890 | b1->s.k = (bpf_int32) vlan_num; |
||
7891 | |||
7892 | gen_and(b0,b1); |
||
7893 | b0 = b1; |
||
7894 | } |
||
7895 | |||
7896 | return b0; |
||
7897 | } |
||
7898 | #endif |
||
7899 | |||
7900 | static struct block * |
||
7901 | gen_vlan_no_bpf_extensions(int vlan_num) |
||
7902 | { |
||
7903 | struct block *b0, *b1; |
||
7904 | |||
7905 | /* check for VLAN, including QinQ */ |
||
7906 | b0 = gen_linktype(ETHERTYPE_8021Q); |
||
7907 | b1 = gen_linktype(ETHERTYPE_8021QINQ); |
||
7908 | gen_or(b0,b1); |
||
7909 | b0 = b1; |
||
7910 | |||
7911 | /* If a specific VLAN is requested, check VLAN id */ |
||
7912 | if (vlan_num >= 0) { |
||
7913 | b1 = gen_mcmp(OR_LINKPL, 0, BPF_H, |
||
7914 | (bpf_int32)vlan_num, 0x0fff); |
||
7915 | gen_and(b0, b1); |
||
7916 | b0 = b1; |
||
7917 | } |
||
7918 | |||
7919 | /* |
||
7920 | * The payload follows the full header, including the |
||
7921 | * VLAN tags, so skip past this VLAN tag. |
||
7922 | */ |
||
7923 | off_linkpl.constant_part += 4; |
||
7924 | |||
7925 | /* |
||
7926 | * The link-layer type information follows the VLAN tags, so |
||
7927 | * skip past this VLAN tag. |
||
7928 | */ |
||
7929 | off_linktype.constant_part += 4; |
||
7930 | |||
7931 | return b0; |
||
7932 | } |
||
7933 | |||
7934 | /* |
||
7935 | * support IEEE 802.1Q VLAN trunk over ethernet |
||
7936 | */ |
||
7937 | struct block * |
||
7938 | gen_vlan(vlan_num) |
||
7939 | int vlan_num; |
||
7940 | { |
||
7941 | struct block *b0; |
||
7942 | |||
7943 | /* can't check for VLAN-encapsulated packets inside MPLS */ |
||
7944 | if (label_stack_depth > 0) |
||
7945 | bpf_error("no VLAN match after MPLS"); |
||
7946 | |||
7947 | /* |
||
7948 | * Check for a VLAN packet, and then change the offsets to point |
||
7949 | * to the type and data fields within the VLAN packet. Just |
||
7950 | * increment the offsets, so that we can support a hierarchy, e.g. |
||
7951 | * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within |
||
7952 | * VLAN 100. |
||
7953 | * |
||
7954 | * XXX - this is a bit of a kludge. If we were to split the |
||
7955 | * compiler into a parser that parses an expression and |
||
7956 | * generates an expression tree, and a code generator that |
||
7957 | * takes an expression tree (which could come from our |
||
7958 | * parser or from some other parser) and generates BPF code, |
||
7959 | * we could perhaps make the offsets parameters of routines |
||
7960 | * and, in the handler for an "AND" node, pass to subnodes |
||
7961 | * other than the VLAN node the adjusted offsets. |
||
7962 | * |
||
7963 | * This would mean that "vlan" would, instead of changing the |
||
7964 | * behavior of *all* tests after it, change only the behavior |
||
7965 | * of tests ANDed with it. That would change the documented |
||
7966 | * semantics of "vlan", which might break some expressions. |
||
7967 | * However, it would mean that "(vlan and ip) or ip" would check |
||
7968 | * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than |
||
7969 | * checking only for VLAN-encapsulated IP, so that could still |
||
7970 | * be considered worth doing; it wouldn't break expressions |
||
7971 | * that are of the form "vlan and ..." or "vlan N and ...", |
||
7972 | * which I suspect are the most common expressions involving |
||
7973 | * "vlan". "vlan or ..." doesn't necessarily do what the user |
||
7974 | * would really want, now, as all the "or ..." tests would |
||
7975 | * be done assuming a VLAN, even though the "or" could be viewed |
||
7976 | * as meaning "or, if this isn't a VLAN packet...". |
||
7977 | */ |
||
7978 | switch (linktype) { |
||
7979 | |||
7980 | case DLT_EN10MB: |
||
7981 | case DLT_NETANALYZER: |
||
7982 | case DLT_NETANALYZER_TRANSPARENT: |
||
7983 | #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT) |
||
7984 | /* Verify that this is the outer part of the packet and |
||
7985 | * not encapsulated somehow. */ |
||
7986 | if (vlan_stack_depth == 0 && !off_linkhdr.is_variable && |
||
7987 | off_linkhdr.constant_part == |
||
7988 | off_outermostlinkhdr.constant_part) { |
||
7989 | /* |
||
7990 | * Do we need special VLAN handling? |
||
7991 | */ |
||
7992 | if (bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING) |
||
7993 | b0 = gen_vlan_bpf_extensions(vlan_num); |
||
7994 | else |
||
7995 | b0 = gen_vlan_no_bpf_extensions(vlan_num); |
||
7996 | } else |
||
7997 | #endif |
||
7998 | b0 = gen_vlan_no_bpf_extensions(vlan_num); |
||
7999 | break; |
||
8000 | |||
8001 | case DLT_IEEE802_11: |
||
8002 | case DLT_PRISM_HEADER: |
||
8003 | case DLT_IEEE802_11_RADIO_AVS: |
||
8004 | case DLT_IEEE802_11_RADIO: |
||
8005 | b0 = gen_vlan_no_bpf_extensions(vlan_num); |
||
8006 | break; |
||
8007 | |||
8008 | default: |
||
8009 | bpf_error("no VLAN support for data link type %d", |
||
8010 | linktype); |
||
8011 | /*NOTREACHED*/ |
||
8012 | } |
||
8013 | |||
8014 | vlan_stack_depth++; |
||
8015 | |||
8016 | return (b0); |
||
8017 | } |
||
8018 | |||
8019 | /* |
||
8020 | * support for MPLS |
||
8021 | */ |
||
8022 | struct block * |
||
8023 | gen_mpls(label_num) |
||
8024 | int label_num; |
||
8025 | { |
||
8026 | struct block *b0, *b1; |
||
8027 | |||
8028 | if (label_stack_depth > 0) { |
||
8029 | /* just match the bottom-of-stack bit clear */ |
||
8030 | b0 = gen_mcmp(OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01); |
||
8031 | } else { |
||
8032 | /* |
||
8033 | * We're not in an MPLS stack yet, so check the link-layer |
||
8034 | * type against MPLS. |
||
8035 | */ |
||
8036 | switch (linktype) { |
||
8037 | |||
8038 | case DLT_C_HDLC: /* fall through */ |
||
8039 | case DLT_EN10MB: |
||
8040 | case DLT_NETANALYZER: |
||
8041 | case DLT_NETANALYZER_TRANSPARENT: |
||
8042 | b0 = gen_linktype(ETHERTYPE_MPLS); |
||
8043 | break; |
||
8044 | |||
8045 | case DLT_PPP: |
||
8046 | b0 = gen_linktype(PPP_MPLS_UCAST); |
||
8047 | break; |
||
8048 | |||
8049 | /* FIXME add other DLT_s ... |
||
8050 | * for Frame-Relay/and ATM this may get messy due to SNAP headers |
||
8051 | * leave it for now */ |
||
8052 | |||
8053 | default: |
||
8054 | bpf_error("no MPLS support for data link type %d", |
||
8055 | linktype); |
||
8056 | b0 = NULL; |
||
8057 | /*NOTREACHED*/ |
||
8058 | break; |
||
8059 | } |
||
8060 | } |
||
8061 | |||
8062 | /* If a specific MPLS label is requested, check it */ |
||
8063 | if (label_num >= 0) { |
||
8064 | label_num = label_num << 12; /* label is shifted 12 bits on the wire */ |
||
8065 | b1 = gen_mcmp(OR_LINKPL, 0, BPF_W, (bpf_int32)label_num, |
||
8066 | 0xfffff000); /* only compare the first 20 bits */ |
||
8067 | gen_and(b0, b1); |
||
8068 | b0 = b1; |
||
8069 | } |
||
8070 | |||
8071 | /* |
||
8072 | * Change the offsets to point to the type and data fields within |
||
8073 | * the MPLS packet. Just increment the offsets, so that we |
||
8074 | * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to |
||
8075 | * capture packets with an outer label of 100000 and an inner |
||
8076 | * label of 1024. |
||
8077 | * |
||
8078 | * Increment the MPLS stack depth as well; this indicates that |
||
8079 | * we're checking MPLS-encapsulated headers, to make sure higher |
||
8080 | * level code generators don't try to match against IP-related |
||
8081 | * protocols such as Q_ARP, Q_RARP etc. |
||
8082 | * |
||
8083 | * XXX - this is a bit of a kludge. See comments in gen_vlan(). |
||
8084 | */ |
||
8085 | off_nl_nosnap += 4; |
||
8086 | off_nl += 4; |
||
8087 | label_stack_depth++; |
||
8088 | return (b0); |
||
8089 | } |
||
8090 | |||
8091 | /* |
||
8092 | * Support PPPOE discovery and session. |
||
8093 | */ |
||
8094 | struct block * |
||
8095 | gen_pppoed() |
||
8096 | { |
||
8097 | /* check for PPPoE discovery */ |
||
8098 | return gen_linktype((bpf_int32)ETHERTYPE_PPPOED); |
||
8099 | } |
||
8100 | |||
8101 | struct block * |
||
8102 | gen_pppoes(sess_num) |
||
8103 | int sess_num; |
||
8104 | { |
||
8105 | struct block *b0, *b1; |
||
8106 | |||
8107 | /* |
||
8108 | * Test against the PPPoE session link-layer type. |
||
8109 | */ |
||
8110 | b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES); |
||
8111 | |||
8112 | /* If a specific session is requested, check PPPoE session id */ |
||
8113 | if (sess_num >= 0) { |
||
8114 | b1 = gen_mcmp(OR_LINKPL, 0, BPF_W, |
||
8115 | (bpf_int32)sess_num, 0x0000ffff); |
||
8116 | gen_and(b0, b1); |
||
8117 | b0 = b1; |
||
8118 | } |
||
8119 | |||
8120 | /* |
||
8121 | * Change the offsets to point to the type and data fields within |
||
8122 | * the PPP packet, and note that this is PPPoE rather than |
||
8123 | * raw PPP. |
||
8124 | * |
||
8125 | * XXX - this is a bit of a kludge. If we were to split the |
||
8126 | * compiler into a parser that parses an expression and |
||
8127 | * generates an expression tree, and a code generator that |
||
8128 | * takes an expression tree (which could come from our |
||
8129 | * parser or from some other parser) and generates BPF code, |
||
8130 | * we could perhaps make the offsets parameters of routines |
||
8131 | * and, in the handler for an "AND" node, pass to subnodes |
||
8132 | * other than the PPPoE node the adjusted offsets. |
||
8133 | * |
||
8134 | * This would mean that "pppoes" would, instead of changing the |
||
8135 | * behavior of *all* tests after it, change only the behavior |
||
8136 | * of tests ANDed with it. That would change the documented |
||
8137 | * semantics of "pppoes", which might break some expressions. |
||
8138 | * However, it would mean that "(pppoes and ip) or ip" would check |
||
8139 | * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than |
||
8140 | * checking only for VLAN-encapsulated IP, so that could still |
||
8141 | * be considered worth doing; it wouldn't break expressions |
||
8142 | * that are of the form "pppoes and ..." which I suspect are the |
||
8143 | * most common expressions involving "pppoes". "pppoes or ..." |
||
8144 | * doesn't necessarily do what the user would really want, now, |
||
8145 | * as all the "or ..." tests would be done assuming PPPoE, even |
||
8146 | * though the "or" could be viewed as meaning "or, if this isn't |
||
8147 | * a PPPoE packet...". |
||
8148 | * |
||
8149 | * The "network-layer" protocol is PPPoE, which has a 6-byte |
||
8150 | * PPPoE header, followed by a PPP packet. |
||
8151 | * |
||
8152 | * There is no HDLC encapsulation for the PPP packet (it's |
||
8153 | * encapsulated in PPPoES instead), so the link-layer type |
||
8154 | * starts at the first byte of the PPP packet. For PPPoE, |
||
8155 | * that offset is relative to the beginning of the total |
||
8156 | * link-layer payload, including any 802.2 LLC header, so |
||
8157 | * it's 6 bytes past off_nl. |
||
8158 | */ |
||
8159 | PUSH_LINKHDR(DLT_PPP, off_linkpl.is_variable, |
||
8160 | off_linkpl.constant_part + off_nl + 6, /* 6 bytes past the PPPoE header */ |
||
8161 | off_linkpl.reg); |
||
8162 | |||
8163 | off_linktype = off_linkhdr; |
||
8164 | off_linkpl.constant_part = off_linkhdr.constant_part + 2; |
||
8165 | |||
8166 | off_nl = 0; |
||
8167 | off_nl_nosnap = 0; /* no 802.2 LLC */ |
||
8168 | |||
8169 | return b0; |
||
8170 | } |
||
8171 | |||
8172 | /* Check that this is Geneve and the VNI is correct if |
||
8173 | * specified. Parameterized to handle both IPv4 and IPv6. */ |
||
8174 | static struct block * |
||
8175 | gen_geneve_check(struct block *(*gen_portfn)(int, int, int), |
||
8176 | enum e_offrel offrel, int vni) |
||
8177 | { |
||
8178 | struct block *b0, *b1; |
||
8179 | |||
8180 | b0 = gen_portfn(GENEVE_PORT, IPPROTO_UDP, Q_DST); |
||
8181 | |||
8182 | /* Check that we are operating on version 0. Otherwise, we |
||
8183 | * can't decode the rest of the fields. The version is 2 bits |
||
8184 | * in the first byte of the Geneve header. */ |
||
8185 | b1 = gen_mcmp(offrel, 8, BPF_B, (bpf_int32)0, 0xc0); |
||
8186 | gen_and(b0, b1); |
||
8187 | b0 = b1; |
||
8188 | |||
8189 | if (vni >= 0) { |
||
8190 | vni <<= 8; /* VNI is in the upper 3 bytes */ |
||
8191 | b1 = gen_mcmp(offrel, 12, BPF_W, (bpf_int32)vni, |
||
8192 | 0xffffff00); |
||
8193 | gen_and(b0, b1); |
||
8194 | b0 = b1; |
||
8195 | } |
||
8196 | |||
8197 | return b0; |
||
8198 | } |
||
8199 | |||
8200 | /* The IPv4 and IPv6 Geneve checks need to do two things: |
||
8201 | * - Verify that this actually is Geneve with the right VNI. |
||
8202 | * - Place the IP header length (plus variable link prefix if |
||
8203 | * needed) into register A to be used later to compute |
||
8204 | * the inner packet offsets. */ |
||
8205 | static struct block * |
||
8206 | gen_geneve4(int vni) |
||
8207 | { |
||
8208 | struct block *b0, *b1; |
||
8209 | struct slist *s, *s1; |
||
8210 | |||
8211 | b0 = gen_geneve_check(gen_port, OR_TRAN_IPV4, vni); |
||
8212 | |||
8213 | /* Load the IP header length into A. */ |
||
8214 | s = gen_loadx_iphdrlen(); |
||
8215 | |||
8216 | s1 = new_stmt(BPF_MISC|BPF_TXA); |
||
8217 | sappend(s, s1); |
||
8218 | |||
8219 | /* Forcibly append these statements to the true condition |
||
8220 | * of the protocol check by creating a new block that is |
||
8221 | * always true and ANDing them. */ |
||
8222 | b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X); |
||
8223 | b1->stmts = s; |
||
8224 | b1->s.k = 0; |
||
8225 | |||
8226 | gen_and(b0, b1); |
||
8227 | |||
8228 | return b1; |
||
8229 | } |
||
8230 | |||
8231 | static struct block * |
||
8232 | gen_geneve6(int vni) |
||
8233 | { |
||
8234 | struct block *b0, *b1; |
||
8235 | struct slist *s, *s1; |
||
8236 | |||
8237 | b0 = gen_geneve_check(gen_port6, OR_TRAN_IPV6, vni); |
||
8238 | |||
8239 | /* Load the IP header length. We need to account for a |
||
8240 | * variable length link prefix if there is one. */ |
||
8241 | s = gen_abs_offset_varpart(&off_linkpl); |
||
8242 | if (s) { |
||
8243 | s1 = new_stmt(BPF_LD|BPF_IMM); |
||
8244 | s1->s.k = 40; |
||
8245 | sappend(s, s1); |
||
8246 | |||
8247 | s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X); |
||
8248 | s1->s.k = 0; |
||
8249 | sappend(s, s1); |
||
8250 | } else { |
||
8251 | s = new_stmt(BPF_LD|BPF_IMM); |
||
8252 | s->s.k = 40;; |
||
8253 | } |
||
8254 | |||
8255 | /* Forcibly append these statements to the true condition |
||
8256 | * of the protocol check by creating a new block that is |
||
8257 | * always true and ANDing them. */ |
||
8258 | s1 = new_stmt(BPF_MISC|BPF_TAX); |
||
8259 | sappend(s, s1); |
||
8260 | |||
8261 | b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X); |
||
8262 | b1->stmts = s; |
||
8263 | b1->s.k = 0; |
||
8264 | |||
8265 | gen_and(b0, b1); |
||
8266 | |||
8267 | return b1; |
||
8268 | } |
||
8269 | |||
8270 | /* We need to store three values based on the Geneve header:: |
||
8271 | * - The offset of the linktype. |
||
8272 | * - The offset of the end of the Geneve header. |
||
8273 | * - The offset of the end of the encapsulated MAC header. */ |
||
8274 | static struct slist * |
||
8275 | gen_geneve_offsets(void) |
||
8276 | { |
||
8277 | struct slist *s, *s1, *s_proto; |
||
8278 | |||
8279 | /* First we need to calculate the offset of the Geneve header |
||
8280 | * itself. This is composed of the IP header previously calculated |
||
8281 | * (include any variable link prefix) and stored in A plus the |
||
8282 | * fixed sized headers (fixed link prefix, MAC length, and UDP |
||
8283 | * header). */ |
||
8284 | s = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
8285 | s->s.k = off_linkpl.constant_part + off_nl + 8; |
||
8286 | |||
8287 | /* Stash this in X since we'll need it later. */ |
||
8288 | s1 = new_stmt(BPF_MISC|BPF_TAX); |
||
8289 | sappend(s, s1); |
||
8290 | |||
8291 | /* The EtherType in Geneve is 2 bytes in. Calculate this and |
||
8292 | * store it. */ |
||
8293 | s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
8294 | s1->s.k = 2; |
||
8295 | sappend(s, s1); |
||
8296 | |||
8297 | off_linktype.reg = alloc_reg(); |
||
8298 | off_linktype.is_variable = 1; |
||
8299 | off_linktype.constant_part = 0; |
||
8300 | |||
8301 | s1 = new_stmt(BPF_ST); |
||
8302 | s1->s.k = off_linktype.reg; |
||
8303 | sappend(s, s1); |
||
8304 | |||
8305 | /* Load the Geneve option length and mask and shift to get the |
||
8306 | * number of bytes. It is stored in the first byte of the Geneve |
||
8307 | * header. */ |
||
8308 | s1 = new_stmt(BPF_LD|BPF_IND|BPF_B); |
||
8309 | s1->s.k = 0; |
||
8310 | sappend(s, s1); |
||
8311 | |||
8312 | s1 = new_stmt(BPF_ALU|BPF_AND|BPF_K); |
||
8313 | s1->s.k = 0x3f; |
||
8314 | sappend(s, s1); |
||
8315 | |||
8316 | s1 = new_stmt(BPF_ALU|BPF_MUL|BPF_K); |
||
8317 | s1->s.k = 4; |
||
8318 | sappend(s, s1); |
||
8319 | |||
8320 | /* Add in the rest of the Geneve base header. */ |
||
8321 | s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
8322 | s1->s.k = 8; |
||
8323 | sappend(s, s1); |
||
8324 | |||
8325 | /* Add the Geneve header length to its offset and store. */ |
||
8326 | s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X); |
||
8327 | s1->s.k = 0; |
||
8328 | sappend(s, s1); |
||
8329 | |||
8330 | /* Set the encapsulated type as Ethernet. Even though we may |
||
8331 | * not actually have Ethernet inside there are two reasons this |
||
8332 | * is useful: |
||
8333 | * - The linktype field is always in EtherType format regardless |
||
8334 | * of whether it is in Geneve or an inner Ethernet frame. |
||
8335 | * - The only link layer that we have specific support for is |
||
8336 | * Ethernet. We will confirm that the packet actually is |
||
8337 | * Ethernet at runtime before executing these checks. */ |
||
8338 | PUSH_LINKHDR(DLT_EN10MB, 1, 0, alloc_reg()); |
||
8339 | |||
8340 | s1 = new_stmt(BPF_ST); |
||
8341 | s1->s.k = off_linkhdr.reg; |
||
8342 | sappend(s, s1); |
||
8343 | |||
8344 | /* Calculate whether we have an Ethernet header or just raw IP/ |
||
8345 | * MPLS/etc. If we have Ethernet, advance the end of the MAC offset |
||
8346 | * and linktype by 14 bytes so that the network header can be found |
||
8347 | * seamlessly. Otherwise, keep what we've calculated already. */ |
||
8348 | |||
8349 | /* We have a bare jmp so we can't use the optimizer. */ |
||
8350 | no_optimize = 1; |
||
8351 | |||
8352 | /* Load the EtherType in the Geneve header, 2 bytes in. */ |
||
8353 | s1 = new_stmt(BPF_LD|BPF_IND|BPF_H); |
||
8354 | s1->s.k = 2; |
||
8355 | sappend(s, s1); |
||
8356 | |||
8357 | /* Load X with the end of the Geneve header. */ |
||
8358 | s1 = new_stmt(BPF_LDX|BPF_MEM); |
||
8359 | s1->s.k = off_linkhdr.reg; |
||
8360 | sappend(s, s1); |
||
8361 | |||
8362 | /* Check if the EtherType is Transparent Ethernet Bridging. At the |
||
8363 | * end of this check, we should have the total length in X. In |
||
8364 | * the non-Ethernet case, it's already there. */ |
||
8365 | s_proto = new_stmt(JMP(BPF_JEQ)); |
||
8366 | s_proto->s.k = ETHERTYPE_TEB; |
||
8367 | sappend(s, s_proto); |
||
8368 | |||
8369 | s1 = new_stmt(BPF_MISC|BPF_TXA); |
||
8370 | sappend(s, s1); |
||
8371 | s_proto->s.jt = s1; |
||
8372 | |||
8373 | /* Since this is Ethernet, use the EtherType of the payload |
||
8374 | * directly as the linktype. Overwrite what we already have. */ |
||
8375 | s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
8376 | s1->s.k = 12; |
||
8377 | sappend(s, s1); |
||
8378 | |||
8379 | s1 = new_stmt(BPF_ST); |
||
8380 | s1->s.k = off_linktype.reg; |
||
8381 | sappend(s, s1); |
||
8382 | |||
8383 | /* Advance two bytes further to get the end of the Ethernet |
||
8384 | * header. */ |
||
8385 | s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K); |
||
8386 | s1->s.k = 2; |
||
8387 | sappend(s, s1); |
||
8388 | |||
8389 | /* Move the result to X. */ |
||
8390 | s1 = new_stmt(BPF_MISC|BPF_TAX); |
||
8391 | sappend(s, s1); |
||
8392 | |||
8393 | /* Store the final result of our linkpl calculation. */ |
||
8394 | off_linkpl.reg = alloc_reg(); |
||
8395 | off_linkpl.is_variable = 1; |
||
8396 | off_linkpl.constant_part = 0; |
||
8397 | |||
8398 | s1 = new_stmt(BPF_STX); |
||
8399 | s1->s.k = off_linkpl.reg; |
||
8400 | sappend(s, s1); |
||
8401 | s_proto->s.jf = s1; |
||
8402 | |||
8403 | off_nl = 0; |
||
8404 | |||
8405 | return s; |
||
8406 | } |
||
8407 | |||
8408 | /* Check to see if this is a Geneve packet. */ |
||
8409 | struct block * |
||
8410 | gen_geneve(int vni) |
||
8411 | { |
||
8412 | struct block *b0, *b1; |
||
8413 | struct slist *s; |
||
8414 | |||
8415 | b0 = gen_geneve4(vni); |
||
8416 | b1 = gen_geneve6(vni); |
||
8417 | |||
8418 | gen_or(b0, b1); |
||
8419 | b0 = b1; |
||
8420 | |||
8421 | /* Later filters should act on the payload of the Geneve frame, |
||
8422 | * update all of the header pointers. Attach this code so that |
||
8423 | * it gets executed in the event that the Geneve filter matches. */ |
||
8424 | s = gen_geneve_offsets(); |
||
8425 | |||
8426 | b1 = gen_true(); |
||
8427 | sappend(s, b1->stmts); |
||
8428 | b1->stmts = s; |
||
8429 | |||
8430 | gen_and(b0, b1); |
||
8431 | |||
8432 | is_geneve = 1; |
||
8433 | |||
8434 | return b1; |
||
8435 | } |
||
8436 | |||
8437 | /* Check that the encapsulated frame has a link layer header |
||
8438 | * for Ethernet filters. */ |
||
8439 | static struct block * |
||
8440 | gen_geneve_ll_check() |
||
8441 | { |
||
8442 | struct block *b0; |
||
8443 | struct slist *s, *s1; |
||
8444 | |||
8445 | /* The easiest way to see if there is a link layer present |
||
8446 | * is to check if the link layer header and payload are not |
||
8447 | * the same. */ |
||
8448 | |||
8449 | /* Geneve always generates pure variable offsets so we can |
||
8450 | * compare only the registers. */ |
||
8451 | s = new_stmt(BPF_LD|BPF_MEM); |
||
8452 | s->s.k = off_linkhdr.reg; |
||
8453 | |||
8454 | s1 = new_stmt(BPF_LDX|BPF_MEM); |
||
8455 | s1->s.k = off_linkpl.reg; |
||
8456 | sappend(s, s1); |
||
8457 | |||
8458 | b0 = new_block(BPF_JMP|BPF_JEQ|BPF_X); |
||
8459 | b0->stmts = s; |
||
8460 | b0->s.k = 0; |
||
8461 | gen_not(b0); |
||
8462 | |||
8463 | return b0; |
||
8464 | } |
||
8465 | |||
8466 | struct block * |
||
8467 | gen_atmfield_code(atmfield, jvalue, jtype, reverse) |
||
8468 | int atmfield; |
||
8469 | bpf_int32 jvalue; |
||
8470 | bpf_u_int32 jtype; |
||
8471 | int reverse; |
||
8472 | { |
||
8473 | struct block *b0; |
||
8474 | |||
8475 | switch (atmfield) { |
||
8476 | |||
8477 | case A_VPI: |
||
8478 | if (!is_atm) |
||
8479 | bpf_error("'vpi' supported only on raw ATM"); |
||
8480 | if (off_vpi == (u_int)-1) |
||
8481 | abort(); |
||
8482 | b0 = gen_ncmp(OR_LINKHDR, off_vpi, BPF_B, 0xffffffff, jtype, |
||
8483 | reverse, jvalue); |
||
8484 | break; |
||
8485 | |||
8486 | case A_VCI: |
||
8487 | if (!is_atm) |
||
8488 | bpf_error("'vci' supported only on raw ATM"); |
||
8489 | if (off_vci == (u_int)-1) |
||
8490 | abort(); |
||
8491 | b0 = gen_ncmp(OR_LINKHDR, off_vci, BPF_H, 0xffffffff, jtype, |
||
8492 | reverse, jvalue); |
||
8493 | break; |
||
8494 | |||
8495 | case A_PROTOTYPE: |
||
8496 | if (off_proto == (u_int)-1) |
||
8497 | abort(); /* XXX - this isn't on FreeBSD */ |
||
8498 | b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0x0f, jtype, |
||
8499 | reverse, jvalue); |
||
8500 | break; |
||
8501 | |||
8502 | case A_MSGTYPE: |
||
8503 | if (off_payload == (u_int)-1) |
||
8504 | abort(); |
||
8505 | b0 = gen_ncmp(OR_LINKHDR, off_payload + MSG_TYPE_POS, BPF_B, |
||
8506 | 0xffffffff, jtype, reverse, jvalue); |
||
8507 | break; |
||
8508 | |||
8509 | case A_CALLREFTYPE: |
||
8510 | if (!is_atm) |
||
8511 | bpf_error("'callref' supported only on raw ATM"); |
||
8512 | if (off_proto == (u_int)-1) |
||
8513 | abort(); |
||
8514 | b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0xffffffff, |
||
8515 | jtype, reverse, jvalue); |
||
8516 | break; |
||
8517 | |||
8518 | default: |
||
8519 | abort(); |
||
8520 | } |
||
8521 | return b0; |
||
8522 | } |
||
8523 | |||
8524 | struct block * |
||
8525 | gen_atmtype_abbrev(type) |
||
8526 | int type; |
||
8527 | { |
||
8528 | struct block *b0, *b1; |
||
8529 | |||
8530 | switch (type) { |
||
8531 | |||
8532 | case A_METAC: |
||
8533 | /* Get all packets in Meta signalling Circuit */ |
||
8534 | if (!is_atm) |
||
8535 | bpf_error("'metac' supported only on raw ATM"); |
||
8536 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8537 | b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0); |
||
8538 | gen_and(b0, b1); |
||
8539 | break; |
||
8540 | |||
8541 | case A_BCC: |
||
8542 | /* Get all packets in Broadcast Circuit*/ |
||
8543 | if (!is_atm) |
||
8544 | bpf_error("'bcc' supported only on raw ATM"); |
||
8545 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8546 | b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0); |
||
8547 | gen_and(b0, b1); |
||
8548 | break; |
||
8549 | |||
8550 | case A_OAMF4SC: |
||
8551 | /* Get all cells in Segment OAM F4 circuit*/ |
||
8552 | if (!is_atm) |
||
8553 | bpf_error("'oam4sc' supported only on raw ATM"); |
||
8554 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8555 | b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0); |
||
8556 | gen_and(b0, b1); |
||
8557 | break; |
||
8558 | |||
8559 | case A_OAMF4EC: |
||
8560 | /* Get all cells in End-to-End OAM F4 Circuit*/ |
||
8561 | if (!is_atm) |
||
8562 | bpf_error("'oam4ec' supported only on raw ATM"); |
||
8563 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8564 | b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0); |
||
8565 | gen_and(b0, b1); |
||
8566 | break; |
||
8567 | |||
8568 | case A_SC: |
||
8569 | /* Get all packets in connection Signalling Circuit */ |
||
8570 | if (!is_atm) |
||
8571 | bpf_error("'sc' supported only on raw ATM"); |
||
8572 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8573 | b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0); |
||
8574 | gen_and(b0, b1); |
||
8575 | break; |
||
8576 | |||
8577 | case A_ILMIC: |
||
8578 | /* Get all packets in ILMI Circuit */ |
||
8579 | if (!is_atm) |
||
8580 | bpf_error("'ilmic' supported only on raw ATM"); |
||
8581 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8582 | b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0); |
||
8583 | gen_and(b0, b1); |
||
8584 | break; |
||
8585 | |||
8586 | case A_LANE: |
||
8587 | /* Get all LANE packets */ |
||
8588 | if (!is_atm) |
||
8589 | bpf_error("'lane' supported only on raw ATM"); |
||
8590 | b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0); |
||
8591 | |||
8592 | /* |
||
8593 | * Arrange that all subsequent tests assume LANE |
||
8594 | * rather than LLC-encapsulated packets, and set |
||
8595 | * the offsets appropriately for LANE-encapsulated |
||
8596 | * Ethernet. |
||
8597 | * |
||
8598 | * We assume LANE means Ethernet, not Token Ring. |
||
8599 | */ |
||
8600 | PUSH_LINKHDR(DLT_EN10MB, 0, |
||
8601 | off_payload + 2, /* Ethernet header */ |
||
8602 | -1); |
||
8603 | off_linktype.constant_part = off_linkhdr.constant_part + 12; |
||
8604 | off_linkpl.constant_part = off_linkhdr.constant_part + 14; /* Ethernet */ |
||
8605 | off_nl = 0; /* Ethernet II */ |
||
8606 | off_nl_nosnap = 3; /* 802.3+802.2 */ |
||
8607 | break; |
||
8608 | |||
8609 | case A_LLC: |
||
8610 | /* Get all LLC-encapsulated packets */ |
||
8611 | if (!is_atm) |
||
8612 | bpf_error("'llc' supported only on raw ATM"); |
||
8613 | b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0); |
||
8614 | linktype = prevlinktype; |
||
8615 | break; |
||
8616 | |||
8617 | default: |
||
8618 | abort(); |
||
8619 | } |
||
8620 | return b1; |
||
8621 | } |
||
8622 | |||
8623 | /* |
||
8624 | * Filtering for MTP2 messages based on li value |
||
8625 | * FISU, length is null |
||
8626 | * LSSU, length is 1 or 2 |
||
8627 | * MSU, length is 3 or more |
||
8628 | * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits |
||
8629 | */ |
||
8630 | struct block * |
||
8631 | gen_mtp2type_abbrev(type) |
||
8632 | int type; |
||
8633 | { |
||
8634 | struct block *b0, *b1; |
||
8635 | |||
8636 | switch (type) { |
||
8637 | |||
8638 | case M_FISU: |
||
8639 | if ( (linktype != DLT_MTP2) && |
||
8640 | (linktype != DLT_ERF) && |
||
8641 | (linktype != DLT_MTP2_WITH_PHDR) ) |
||
8642 | bpf_error("'fisu' supported only on MTP2"); |
||
8643 | /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */ |
||
8644 | b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0); |
||
8645 | break; |
||
8646 | |||
8647 | case M_LSSU: |
||
8648 | if ( (linktype != DLT_MTP2) && |
||
8649 | (linktype != DLT_ERF) && |
||
8650 | (linktype != DLT_MTP2_WITH_PHDR) ) |
||
8651 | bpf_error("'lssu' supported only on MTP2"); |
||
8652 | b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2); |
||
8653 | b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0); |
||
8654 | gen_and(b1, b0); |
||
8655 | break; |
||
8656 | |||
8657 | case M_MSU: |
||
8658 | if ( (linktype != DLT_MTP2) && |
||
8659 | (linktype != DLT_ERF) && |
||
8660 | (linktype != DLT_MTP2_WITH_PHDR) ) |
||
8661 | bpf_error("'msu' supported only on MTP2"); |
||
8662 | b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2); |
||
8663 | break; |
||
8664 | |||
8665 | case MH_FISU: |
||
8666 | if ( (linktype != DLT_MTP2) && |
||
8667 | (linktype != DLT_ERF) && |
||
8668 | (linktype != DLT_MTP2_WITH_PHDR) ) |
||
8669 | bpf_error("'hfisu' supported only on MTP2_HSL"); |
||
8670 | /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */ |
||
8671 | b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0); |
||
8672 | break; |
||
8673 | |||
8674 | case MH_LSSU: |
||
8675 | if ( (linktype != DLT_MTP2) && |
||
8676 | (linktype != DLT_ERF) && |
||
8677 | (linktype != DLT_MTP2_WITH_PHDR) ) |
||
8678 | bpf_error("'hlssu' supported only on MTP2_HSL"); |
||
8679 | b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100); |
||
8680 | b1 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0); |
||
8681 | gen_and(b1, b0); |
||
8682 | break; |
||
8683 | |||
8684 | case MH_MSU: |
||
8685 | if ( (linktype != DLT_MTP2) && |
||
8686 | (linktype != DLT_ERF) && |
||
8687 | (linktype != DLT_MTP2_WITH_PHDR) ) |
||
8688 | bpf_error("'hmsu' supported only on MTP2_HSL"); |
||
8689 | b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100); |
||
8690 | break; |
||
8691 | |||
8692 | default: |
||
8693 | abort(); |
||
8694 | } |
||
8695 | return b0; |
||
8696 | } |
||
8697 | |||
8698 | struct block * |
||
8699 | gen_mtp3field_code(mtp3field, jvalue, jtype, reverse) |
||
8700 | int mtp3field; |
||
8701 | bpf_u_int32 jvalue; |
||
8702 | bpf_u_int32 jtype; |
||
8703 | int reverse; |
||
8704 | { |
||
8705 | struct block *b0; |
||
8706 | bpf_u_int32 val1 , val2 , val3; |
||
8707 | u_int newoff_sio=off_sio; |
||
8708 | u_int newoff_opc=off_opc; |
||
8709 | u_int newoff_dpc=off_dpc; |
||
8710 | u_int newoff_sls=off_sls; |
||
8711 | |||
8712 | switch (mtp3field) { |
||
8713 | |||
8714 | case MH_SIO: |
||
8715 | newoff_sio += 3; /* offset for MTP2_HSL */ |
||
8716 | /* FALLTHROUGH */ |
||
8717 | |||
8718 | case M_SIO: |
||
8719 | if (off_sio == (u_int)-1) |
||
8720 | bpf_error("'sio' supported only on SS7"); |
||
8721 | /* sio coded on 1 byte so max value 255 */ |
||
8722 | if(jvalue > 255) |
||
8723 | bpf_error("sio value %u too big; max value = 255", |
||
8724 | jvalue); |
||
8725 | b0 = gen_ncmp(OR_PACKET, newoff_sio, BPF_B, 0xffffffff, |
||
8726 | (u_int)jtype, reverse, (u_int)jvalue); |
||
8727 | break; |
||
8728 | |||
8729 | case MH_OPC: |
||
8730 | newoff_opc+=3; |
||
8731 | case M_OPC: |
||
8732 | if (off_opc == (u_int)-1) |
||
8733 | bpf_error("'opc' supported only on SS7"); |
||
8734 | /* opc coded on 14 bits so max value 16383 */ |
||
8735 | if (jvalue > 16383) |
||
8736 | bpf_error("opc value %u too big; max value = 16383", |
||
8737 | jvalue); |
||
8738 | /* the following instructions are made to convert jvalue |
||
8739 | * to the form used to write opc in an ss7 message*/ |
||
8740 | val1 = jvalue & 0x00003c00; |
||
8741 | val1 = val1 >>10; |
||
8742 | val2 = jvalue & 0x000003fc; |
||
8743 | val2 = val2 <<6; |
||
8744 | val3 = jvalue & 0x00000003; |
||
8745 | val3 = val3 <<22; |
||
8746 | jvalue = val1 + val2 + val3; |
||
8747 | b0 = gen_ncmp(OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f, |
||
8748 | (u_int)jtype, reverse, (u_int)jvalue); |
||
8749 | break; |
||
8750 | |||
8751 | case MH_DPC: |
||
8752 | newoff_dpc += 3; |
||
8753 | /* FALLTHROUGH */ |
||
8754 | |||
8755 | case M_DPC: |
||
8756 | if (off_dpc == (u_int)-1) |
||
8757 | bpf_error("'dpc' supported only on SS7"); |
||
8758 | /* dpc coded on 14 bits so max value 16383 */ |
||
8759 | if (jvalue > 16383) |
||
8760 | bpf_error("dpc value %u too big; max value = 16383", |
||
8761 | jvalue); |
||
8762 | /* the following instructions are made to convert jvalue |
||
8763 | * to the forme used to write dpc in an ss7 message*/ |
||
8764 | val1 = jvalue & 0x000000ff; |
||
8765 | val1 = val1 << 24; |
||
8766 | val2 = jvalue & 0x00003f00; |
||
8767 | val2 = val2 << 8; |
||
8768 | jvalue = val1 + val2; |
||
8769 | b0 = gen_ncmp(OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000, |
||
8770 | (u_int)jtype, reverse, (u_int)jvalue); |
||
8771 | break; |
||
8772 | |||
8773 | case MH_SLS: |
||
8774 | newoff_sls+=3; |
||
8775 | case M_SLS: |
||
8776 | if (off_sls == (u_int)-1) |
||
8777 | bpf_error("'sls' supported only on SS7"); |
||
8778 | /* sls coded on 4 bits so max value 15 */ |
||
8779 | if (jvalue > 15) |
||
8780 | bpf_error("sls value %u too big; max value = 15", |
||
8781 | jvalue); |
||
8782 | /* the following instruction is made to convert jvalue |
||
8783 | * to the forme used to write sls in an ss7 message*/ |
||
8784 | jvalue = jvalue << 4; |
||
8785 | b0 = gen_ncmp(OR_PACKET, newoff_sls, BPF_B, 0xf0, |
||
8786 | (u_int)jtype,reverse, (u_int)jvalue); |
||
8787 | break; |
||
8788 | |||
8789 | default: |
||
8790 | abort(); |
||
8791 | } |
||
8792 | return b0; |
||
8793 | } |
||
8794 | |||
8795 | static struct block * |
||
8796 | gen_msg_abbrev(type) |
||
8797 | int type; |
||
8798 | { |
||
8799 | struct block *b1; |
||
8800 | |||
8801 | /* |
||
8802 | * Q.2931 signalling protocol messages for handling virtual circuits |
||
8803 | * establishment and teardown |
||
8804 | */ |
||
8805 | switch (type) { |
||
8806 | |||
8807 | case A_SETUP: |
||
8808 | b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0); |
||
8809 | break; |
||
8810 | |||
8811 | case A_CALLPROCEED: |
||
8812 | b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0); |
||
8813 | break; |
||
8814 | |||
8815 | case A_CONNECT: |
||
8816 | b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0); |
||
8817 | break; |
||
8818 | |||
8819 | case A_CONNECTACK: |
||
8820 | b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0); |
||
8821 | break; |
||
8822 | |||
8823 | case A_RELEASE: |
||
8824 | b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0); |
||
8825 | break; |
||
8826 | |||
8827 | case A_RELEASE_DONE: |
||
8828 | b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0); |
||
8829 | break; |
||
8830 | |||
8831 | default: |
||
8832 | abort(); |
||
8833 | } |
||
8834 | return b1; |
||
8835 | } |
||
8836 | |||
8837 | struct block * |
||
8838 | gen_atmmulti_abbrev(type) |
||
8839 | int type; |
||
8840 | { |
||
8841 | struct block *b0, *b1; |
||
8842 | |||
8843 | switch (type) { |
||
8844 | |||
8845 | case A_OAM: |
||
8846 | if (!is_atm) |
||
8847 | bpf_error("'oam' supported only on raw ATM"); |
||
8848 | b1 = gen_atmmulti_abbrev(A_OAMF4); |
||
8849 | break; |
||
8850 | |||
8851 | case A_OAMF4: |
||
8852 | if (!is_atm) |
||
8853 | bpf_error("'oamf4' supported only on raw ATM"); |
||
8854 | /* OAM F4 type */ |
||
8855 | b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0); |
||
8856 | b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0); |
||
8857 | gen_or(b0, b1); |
||
8858 | b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0); |
||
8859 | gen_and(b0, b1); |
||
8860 | break; |
||
8861 | |||
8862 | case A_CONNECTMSG: |
||
8863 | /* |
||
8864 | * Get Q.2931 signalling messages for switched |
||
8865 | * virtual connection |
||
8866 | */ |
||
8867 | if (!is_atm) |
||
8868 | bpf_error("'connectmsg' supported only on raw ATM"); |
||
8869 | b0 = gen_msg_abbrev(A_SETUP); |
||
8870 | b1 = gen_msg_abbrev(A_CALLPROCEED); |
||
8871 | gen_or(b0, b1); |
||
8872 | b0 = gen_msg_abbrev(A_CONNECT); |
||
8873 | gen_or(b0, b1); |
||
8874 | b0 = gen_msg_abbrev(A_CONNECTACK); |
||
8875 | gen_or(b0, b1); |
||
8876 | b0 = gen_msg_abbrev(A_RELEASE); |
||
8877 | gen_or(b0, b1); |
||
8878 | b0 = gen_msg_abbrev(A_RELEASE_DONE); |
||
8879 | gen_or(b0, b1); |
||
8880 | b0 = gen_atmtype_abbrev(A_SC); |
||
8881 | gen_and(b0, b1); |
||
8882 | break; |
||
8883 | |||
8884 | case A_METACONNECT: |
||
8885 | if (!is_atm) |
||
8886 | bpf_error("'metaconnect' supported only on raw ATM"); |
||
8887 | b0 = gen_msg_abbrev(A_SETUP); |
||
8888 | b1 = gen_msg_abbrev(A_CALLPROCEED); |
||
8889 | gen_or(b0, b1); |
||
8890 | b0 = gen_msg_abbrev(A_CONNECT); |
||
8891 | gen_or(b0, b1); |
||
8892 | b0 = gen_msg_abbrev(A_RELEASE); |
||
8893 | gen_or(b0, b1); |
||
8894 | b0 = gen_msg_abbrev(A_RELEASE_DONE); |
||
8895 | gen_or(b0, b1); |
||
8896 | b0 = gen_atmtype_abbrev(A_METAC); |
||
8897 | gen_and(b0, b1); |
||
8898 | break; |
||
8899 | |||
8900 | default: |
||
8901 | abort(); |
||
8902 | } |
||
8903 | return b1; |
||
8904 | } |