nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* GLIB - Library of useful routines for C programming |
2 | * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald |
||
3 | * |
||
4 | * This library is free software; you can redistribute it and/or |
||
5 | * modify it under the terms of the GNU Lesser General Public |
||
6 | * License as published by the Free Software Foundation; either |
||
7 | * version 2 of the License, or (at your option) any later version. |
||
8 | * |
||
9 | * This library is distributed in the hope that it will be useful, |
||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||
12 | * Lesser General Public License for more details. |
||
13 | * |
||
14 | * You should have received a copy of the GNU Lesser General Public |
||
15 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
||
16 | */ |
||
17 | |||
18 | /* Originally developed and coded by Makoto Matsumoto and Takuji |
||
19 | * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using |
||
20 | * code from this file in your own programs or libraries. |
||
21 | * Further information on the Mersenne Twister can be found at |
||
22 | * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
||
23 | * This code was adapted to glib by Sebastian Wilhelmi. |
||
24 | */ |
||
25 | |||
26 | /* |
||
27 | * Modified by the GLib Team and others 1997-2000. See the AUTHORS |
||
28 | * file for a list of people on the GLib Team. See the ChangeLog |
||
29 | * files for a list of changes. These files are distributed with |
||
30 | * GLib at ftp://ftp.gtk.org/pub/gtk/. |
||
31 | */ |
||
32 | |||
33 | /* |
||
34 | * MT safe |
||
35 | */ |
||
36 | |||
37 | #include "config.h" |
||
38 | #define _CRT_RAND_S |
||
39 | |||
40 | #include <math.h> |
||
41 | #include <errno.h> |
||
42 | #include <stdio.h> |
||
43 | #include <string.h> |
||
44 | #include <sys/types.h> |
||
45 | #include "grand.h" |
||
46 | |||
47 | #include "genviron.h" |
||
48 | #include "gmain.h" |
||
49 | #include "gmem.h" |
||
50 | #include "gtestutils.h" |
||
51 | #include "gthread.h" |
||
52 | |||
53 | #ifdef G_OS_UNIX |
||
54 | #include <unistd.h> |
||
55 | #endif |
||
56 | |||
57 | #ifdef G_OS_WIN32 |
||
58 | #include <stdlib.h> |
||
59 | #include <process.h> /* For getpid() */ |
||
60 | #endif |
||
61 | |||
62 | /** |
||
63 | * SECTION:random_numbers |
||
64 | * @title: Random Numbers |
||
65 | * @short_description: pseudo-random number generator |
||
66 | * |
||
67 | * The following functions allow you to use a portable, fast and good |
||
68 | * pseudo-random number generator (PRNG). |
||
69 | * |
||
70 | * Do not use this API for cryptographic purposes such as key |
||
71 | * generation, nonces, salts or one-time pads. |
||
72 | * |
||
73 | * This PRNG is suitable for non-cryptographic use such as in games |
||
74 | * (shuffling a card deck, generating levels), generating data for |
||
75 | * a test suite, etc. If you need random data for cryptographic |
||
76 | * purposes, it is recommended to use platform-specific APIs such |
||
77 | * as `/dev/random` on UNIX, or CryptGenRandom() on Windows. |
||
78 | * |
||
79 | * GRand uses the Mersenne Twister PRNG, which was originally |
||
80 | * developed by Makoto Matsumoto and Takuji Nishimura. Further |
||
81 | * information can be found at |
||
82 | * [this page](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). |
||
83 | * |
||
84 | * If you just need a random number, you simply call the g_random_* |
||
85 | * functions, which will create a globally used #GRand and use the |
||
86 | * according g_rand_* functions internally. Whenever you need a |
||
87 | * stream of reproducible random numbers, you better create a |
||
88 | * #GRand yourself and use the g_rand_* functions directly, which |
||
89 | * will also be slightly faster. Initializing a #GRand with a |
||
90 | * certain seed will produce exactly the same series of random |
||
91 | * numbers on all platforms. This can thus be used as a seed for |
||
92 | * e.g. games. |
||
93 | * |
||
94 | * The g_rand*_range functions will return high quality equally |
||
95 | * distributed random numbers, whereas for example the |
||
96 | * `(g_random_int()%max)` approach often |
||
97 | * doesn't yield equally distributed numbers. |
||
98 | * |
||
99 | * GLib changed the seeding algorithm for the pseudo-random number |
||
100 | * generator Mersenne Twister, as used by #GRand. This was necessary, |
||
101 | * because some seeds would yield very bad pseudo-random streams. |
||
102 | * Also the pseudo-random integers generated by g_rand*_int_range() |
||
103 | * will have a slightly better equal distribution with the new |
||
104 | * version of GLib. |
||
105 | * |
||
106 | * The original seeding and generation algorithms, as found in |
||
107 | * GLib 2.0.x, can be used instead of the new ones by setting the |
||
108 | * environment variable `G_RANDOM_VERSION` to the value of '2.0'. |
||
109 | * Use the GLib-2.0 algorithms only if you have sequences of numbers |
||
110 | * generated with Glib-2.0 that you need to reproduce exactly. |
||
111 | */ |
||
112 | |||
113 | /** |
||
114 | * GRand: |
||
115 | * |
||
116 | * The GRand struct is an opaque data structure. It should only be |
||
117 | * accessed through the g_rand_* functions. |
||
118 | **/ |
||
119 | |||
120 | G_LOCK_DEFINE_STATIC (global_random); |
||
121 | |||
122 | /* Period parameters */ |
||
123 | #define N 624 |
||
124 | #define M 397 |
||
125 | #define MATRIX_A 0x9908b0df /* constant vector a */ |
||
126 | #define UPPER_MASK 0x80000000 /* most significant w-r bits */ |
||
127 | #define LOWER_MASK 0x7fffffff /* least significant r bits */ |
||
128 | |||
129 | /* Tempering parameters */ |
||
130 | #define TEMPERING_MASK_B 0x9d2c5680 |
||
131 | #define TEMPERING_MASK_C 0xefc60000 |
||
132 | #define TEMPERING_SHIFT_U(y) (y >> 11) |
||
133 | #define TEMPERING_SHIFT_S(y) (y << 7) |
||
134 | #define TEMPERING_SHIFT_T(y) (y << 15) |
||
135 | #define TEMPERING_SHIFT_L(y) (y >> 18) |
||
136 | |||
137 | static guint |
||
138 | get_random_version (void) |
||
139 | { |
||
140 | static gsize initialized = FALSE; |
||
141 | static guint random_version; |
||
142 | |||
143 | if (g_once_init_enter (&initialized)) |
||
144 | { |
||
145 | const gchar *version_string = g_getenv ("G_RANDOM_VERSION"); |
||
146 | if (!version_string || version_string[0] == '\000' || |
||
147 | strcmp (version_string, "2.2") == 0) |
||
148 | random_version = 22; |
||
149 | else if (strcmp (version_string, "2.0") == 0) |
||
150 | random_version = 20; |
||
151 | else |
||
152 | { |
||
153 | g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.", |
||
154 | version_string); |
||
155 | random_version = 22; |
||
156 | } |
||
157 | g_once_init_leave (&initialized, TRUE); |
||
158 | } |
||
159 | |||
160 | return random_version; |
||
161 | } |
||
162 | |||
163 | struct _GRand |
||
164 | { |
||
165 | guint32 mt[N]; /* the array for the state vector */ |
||
166 | guint mti; |
||
167 | }; |
||
168 | |||
169 | /** |
||
170 | * g_rand_new_with_seed: |
||
171 | * @seed: a value to initialize the random number generator |
||
172 | * |
||
173 | * Creates a new random number generator initialized with @seed. |
||
174 | * |
||
175 | * Returns: the new #GRand |
||
176 | **/ |
||
177 | GRand* |
||
178 | g_rand_new_with_seed (guint32 seed) |
||
179 | { |
||
180 | GRand *rand = g_new0 (GRand, 1); |
||
181 | g_rand_set_seed (rand, seed); |
||
182 | return rand; |
||
183 | } |
||
184 | |||
185 | /** |
||
186 | * g_rand_new_with_seed_array: |
||
187 | * @seed: an array of seeds to initialize the random number generator |
||
188 | * @seed_length: an array of seeds to initialize the random number |
||
189 | * generator |
||
190 | * |
||
191 | * Creates a new random number generator initialized with @seed. |
||
192 | * |
||
193 | * Returns: the new #GRand |
||
194 | * |
||
195 | * Since: 2.4 |
||
196 | */ |
||
197 | GRand* |
||
198 | g_rand_new_with_seed_array (const guint32 *seed, |
||
199 | guint seed_length) |
||
200 | { |
||
201 | GRand *rand = g_new0 (GRand, 1); |
||
202 | g_rand_set_seed_array (rand, seed, seed_length); |
||
203 | return rand; |
||
204 | } |
||
205 | |||
206 | /** |
||
207 | * g_rand_new: |
||
208 | * |
||
209 | * Creates a new random number generator initialized with a seed taken |
||
210 | * either from `/dev/urandom` (if existing) or from the current time |
||
211 | * (as a fallback). |
||
212 | * |
||
213 | * On Windows, the seed is taken from rand_s(). |
||
214 | * |
||
215 | * Returns: the new #GRand |
||
216 | */ |
||
217 | GRand* |
||
218 | g_rand_new (void) |
||
219 | { |
||
220 | guint32 seed[4]; |
||
221 | #ifdef G_OS_UNIX |
||
222 | static gboolean dev_urandom_exists = TRUE; |
||
223 | GTimeVal now; |
||
224 | |||
225 | if (dev_urandom_exists) |
||
226 | { |
||
227 | FILE* dev_urandom; |
||
228 | |||
229 | do |
||
230 | { |
||
231 | dev_urandom = fopen("/dev/urandom", "rb"); |
||
232 | } |
||
233 | while G_UNLIKELY (dev_urandom == NULL && errno == EINTR); |
||
234 | |||
235 | if (dev_urandom) |
||
236 | { |
||
237 | int r; |
||
238 | |||
239 | setvbuf (dev_urandom, NULL, _IONBF, 0); |
||
240 | do |
||
241 | { |
||
242 | errno = 0; |
||
243 | r = fread (seed, sizeof (seed), 1, dev_urandom); |
||
244 | } |
||
245 | while G_UNLIKELY (errno == EINTR); |
||
246 | |||
247 | if (r != 1) |
||
248 | dev_urandom_exists = FALSE; |
||
249 | |||
250 | fclose (dev_urandom); |
||
251 | } |
||
252 | else |
||
253 | dev_urandom_exists = FALSE; |
||
254 | } |
||
255 | |||
256 | if (!dev_urandom_exists) |
||
257 | { |
||
258 | g_get_current_time (&now); |
||
259 | seed[0] = now.tv_sec; |
||
260 | seed[1] = now.tv_usec; |
||
261 | seed[2] = getpid (); |
||
262 | seed[3] = getppid (); |
||
263 | } |
||
264 | #else /* G_OS_WIN32 */ |
||
265 | /* rand_s() is only available since Visual Studio 2005 and |
||
266 | * MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt |
||
267 | */ |
||
268 | #if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR) |
||
269 | gint i; |
||
270 | |||
271 | for (i = 0; i < G_N_ELEMENTS (seed); i++) |
||
272 | rand_s (&seed[i]); |
||
273 | #else |
||
274 | #warning Using insecure seed for random number generation because of missing rand_s() in Windows XP |
||
275 | GTimeVal now; |
||
276 | |||
277 | g_get_current_time (&now); |
||
278 | seed[0] = now.tv_sec; |
||
279 | seed[1] = now.tv_usec; |
||
280 | seed[2] = getpid (); |
||
281 | seed[3] = 0; |
||
282 | #endif |
||
283 | |||
284 | #endif |
||
285 | |||
286 | return g_rand_new_with_seed_array (seed, 4); |
||
287 | } |
||
288 | |||
289 | /** |
||
290 | * g_rand_free: |
||
291 | * @rand_: a #GRand |
||
292 | * |
||
293 | * Frees the memory allocated for the #GRand. |
||
294 | */ |
||
295 | void |
||
296 | g_rand_free (GRand *rand) |
||
297 | { |
||
298 | g_return_if_fail (rand != NULL); |
||
299 | |||
300 | g_free (rand); |
||
301 | } |
||
302 | |||
303 | /** |
||
304 | * g_rand_copy: |
||
305 | * @rand_: a #GRand |
||
306 | * |
||
307 | * Copies a #GRand into a new one with the same exact state as before. |
||
308 | * This way you can take a snapshot of the random number generator for |
||
309 | * replaying later. |
||
310 | * |
||
311 | * Returns: the new #GRand |
||
312 | * |
||
313 | * Since: 2.4 |
||
314 | */ |
||
315 | GRand* |
||
316 | g_rand_copy (GRand *rand) |
||
317 | { |
||
318 | GRand* new_rand; |
||
319 | |||
320 | g_return_val_if_fail (rand != NULL, NULL); |
||
321 | |||
322 | new_rand = g_new0 (GRand, 1); |
||
323 | memcpy (new_rand, rand, sizeof (GRand)); |
||
324 | |||
325 | return new_rand; |
||
326 | } |
||
327 | |||
328 | /** |
||
329 | * g_rand_set_seed: |
||
330 | * @rand_: a #GRand |
||
331 | * @seed: a value to reinitialize the random number generator |
||
332 | * |
||
333 | * Sets the seed for the random number generator #GRand to @seed. |
||
334 | */ |
||
335 | void |
||
336 | g_rand_set_seed (GRand *rand, |
||
337 | guint32 seed) |
||
338 | { |
||
339 | g_return_if_fail (rand != NULL); |
||
340 | |||
341 | switch (get_random_version ()) |
||
342 | { |
||
343 | case 20: |
||
344 | /* setting initial seeds to mt[N] using */ |
||
345 | /* the generator Line 25 of Table 1 in */ |
||
346 | /* [KNUTH 1981, The Art of Computer Programming */ |
||
347 | /* Vol. 2 (2nd Ed.), pp102] */ |
||
348 | |||
349 | if (seed == 0) /* This would make the PRNG produce only zeros */ |
||
350 | seed = 0x6b842128; /* Just set it to another number */ |
||
351 | |||
352 | rand->mt[0]= seed; |
||
353 | for (rand->mti=1; rand->mti<N; rand->mti++) |
||
354 | rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]); |
||
355 | |||
356 | break; |
||
357 | case 22: |
||
358 | /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
||
359 | /* In the previous version (see above), MSBs of the */ |
||
360 | /* seed affect only MSBs of the array mt[]. */ |
||
361 | |||
362 | rand->mt[0]= seed; |
||
363 | for (rand->mti=1; rand->mti<N; rand->mti++) |
||
364 | rand->mt[rand->mti] = 1812433253UL * |
||
365 | (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti; |
||
366 | break; |
||
367 | default: |
||
368 | g_assert_not_reached (); |
||
369 | } |
||
370 | } |
||
371 | |||
372 | /** |
||
373 | * g_rand_set_seed_array: |
||
374 | * @rand_: a #GRand |
||
375 | * @seed: array to initialize with |
||
376 | * @seed_length: length of array |
||
377 | * |
||
378 | * Initializes the random number generator by an array of longs. |
||
379 | * Array can be of arbitrary size, though only the first 624 values |
||
380 | * are taken. This function is useful if you have many low entropy |
||
381 | * seeds, or if you require more then 32 bits of actual entropy for |
||
382 | * your application. |
||
383 | * |
||
384 | * Since: 2.4 |
||
385 | */ |
||
386 | void |
||
387 | g_rand_set_seed_array (GRand *rand, |
||
388 | const guint32 *seed, |
||
389 | guint seed_length) |
||
390 | { |
||
391 | int i, j, k; |
||
392 | |||
393 | g_return_if_fail (rand != NULL); |
||
394 | g_return_if_fail (seed_length >= 1); |
||
395 | |||
396 | g_rand_set_seed (rand, 19650218UL); |
||
397 | |||
398 | i=1; j=0; |
||
399 | k = (N>seed_length ? N : seed_length); |
||
400 | for (; k; k--) |
||
401 | { |
||
402 | rand->mt[i] = (rand->mt[i] ^ |
||
403 | ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL)) |
||
404 | + seed[j] + j; /* non linear */ |
||
405 | rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
||
406 | i++; j++; |
||
407 | if (i>=N) |
||
408 | { |
||
409 | rand->mt[0] = rand->mt[N-1]; |
||
410 | i=1; |
||
411 | } |
||
412 | if (j>=seed_length) |
||
413 | j=0; |
||
414 | } |
||
415 | for (k=N-1; k; k--) |
||
416 | { |
||
417 | rand->mt[i] = (rand->mt[i] ^ |
||
418 | ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL)) |
||
419 | - i; /* non linear */ |
||
420 | rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
||
421 | i++; |
||
422 | if (i>=N) |
||
423 | { |
||
424 | rand->mt[0] = rand->mt[N-1]; |
||
425 | i=1; |
||
426 | } |
||
427 | } |
||
428 | |||
429 | rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ |
||
430 | } |
||
431 | |||
432 | /** |
||
433 | * g_rand_boolean: |
||
434 | * @rand_: a #GRand |
||
435 | * |
||
436 | * Returns a random #gboolean from @rand_. |
||
437 | * This corresponds to a unbiased coin toss. |
||
438 | * |
||
439 | * Returns: a random #gboolean |
||
440 | */ |
||
441 | /** |
||
442 | * g_rand_int: |
||
443 | * @rand_: a #GRand |
||
444 | * |
||
445 | * Returns the next random #guint32 from @rand_ equally distributed over |
||
446 | * the range [0..2^32-1]. |
||
447 | * |
||
448 | * Returns: a random number |
||
449 | */ |
||
450 | guint32 |
||
451 | g_rand_int (GRand *rand) |
||
452 | { |
||
453 | guint32 y; |
||
454 | static const guint32 mag01[2]={0x0, MATRIX_A}; |
||
455 | /* mag01[x] = x * MATRIX_A for x=0,1 */ |
||
456 | |||
457 | g_return_val_if_fail (rand != NULL, 0); |
||
458 | |||
459 | if (rand->mti >= N) { /* generate N words at one time */ |
||
460 | int kk; |
||
461 | |||
462 | for (kk = 0; kk < N - M; kk++) { |
||
463 | y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
||
464 | rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]; |
||
465 | } |
||
466 | for (; kk < N - 1; kk++) { |
||
467 | y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
||
468 | rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]; |
||
469 | } |
||
470 | y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK); |
||
471 | rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]; |
||
472 | |||
473 | rand->mti = 0; |
||
474 | } |
||
475 | |||
476 | y = rand->mt[rand->mti++]; |
||
477 | y ^= TEMPERING_SHIFT_U(y); |
||
478 | y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; |
||
479 | y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; |
||
480 | y ^= TEMPERING_SHIFT_L(y); |
||
481 | |||
482 | return y; |
||
483 | } |
||
484 | |||
485 | /* transform [0..2^32] -> [0..1] */ |
||
486 | #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10 |
||
487 | |||
488 | /** |
||
489 | * g_rand_int_range: |
||
490 | * @rand_: a #GRand |
||
491 | * @begin: lower closed bound of the interval |
||
492 | * @end: upper open bound of the interval |
||
493 | * |
||
494 | * Returns the next random #gint32 from @rand_ equally distributed over |
||
495 | * the range [@begin..@end-1]. |
||
496 | * |
||
497 | * Returns: a random number |
||
498 | */ |
||
499 | gint32 |
||
500 | g_rand_int_range (GRand *rand, |
||
501 | gint32 begin, |
||
502 | gint32 end) |
||
503 | { |
||
504 | guint32 dist = end - begin; |
||
505 | guint32 random; |
||
506 | |||
507 | g_return_val_if_fail (rand != NULL, begin); |
||
508 | g_return_val_if_fail (end > begin, begin); |
||
509 | |||
510 | switch (get_random_version ()) |
||
511 | { |
||
512 | case 20: |
||
513 | if (dist <= 0x10000L) /* 2^16 */ |
||
514 | { |
||
515 | /* This method, which only calls g_rand_int once is only good |
||
516 | * for (end - begin) <= 2^16, because we only have 32 bits set |
||
517 | * from the one call to g_rand_int (). |
||
518 | * |
||
519 | * We are using (trans + trans * trans), because g_rand_int only |
||
520 | * covers [0..2^32-1] and thus g_rand_int * trans only covers |
||
521 | * [0..1-2^-32], but the biggest double < 1 is 1-2^-52. |
||
522 | */ |
||
523 | |||
524 | gdouble double_rand = g_rand_int (rand) * |
||
525 | (G_RAND_DOUBLE_TRANSFORM + |
||
526 | G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM); |
||
527 | |||
528 | random = (gint32) (double_rand * dist); |
||
529 | } |
||
530 | else |
||
531 | { |
||
532 | /* Now we use g_rand_double_range (), which will set 52 bits |
||
533 | * for us, so that it is safe to round and still get a decent |
||
534 | * distribution |
||
535 | */ |
||
536 | random = (gint32) g_rand_double_range (rand, 0, dist); |
||
537 | } |
||
538 | break; |
||
539 | case 22: |
||
540 | if (dist == 0) |
||
541 | random = 0; |
||
542 | else |
||
543 | { |
||
544 | /* maxvalue is set to the predecessor of the greatest |
||
545 | * multiple of dist less or equal 2^32. |
||
546 | */ |
||
547 | guint32 maxvalue; |
||
548 | if (dist <= 0x80000000u) /* 2^31 */ |
||
549 | { |
||
550 | /* maxvalue = 2^32 - 1 - (2^32 % dist) */ |
||
551 | guint32 leftover = (0x80000000u % dist) * 2; |
||
552 | if (leftover >= dist) leftover -= dist; |
||
553 | maxvalue = 0xffffffffu - leftover; |
||
554 | } |
||
555 | else |
||
556 | maxvalue = dist - 1; |
||
557 | |||
558 | do |
||
559 | random = g_rand_int (rand); |
||
560 | while (random > maxvalue); |
||
561 | |||
562 | random %= dist; |
||
563 | } |
||
564 | break; |
||
565 | default: |
||
566 | random = 0; /* Quiet GCC */ |
||
567 | g_assert_not_reached (); |
||
568 | } |
||
569 | |||
570 | return begin + random; |
||
571 | } |
||
572 | |||
573 | /** |
||
574 | * g_rand_double: |
||
575 | * @rand_: a #GRand |
||
576 | * |
||
577 | * Returns the next random #gdouble from @rand_ equally distributed over |
||
578 | * the range [0..1). |
||
579 | * |
||
580 | * Returns: a random number |
||
581 | */ |
||
582 | gdouble |
||
583 | g_rand_double (GRand *rand) |
||
584 | { |
||
585 | /* We set all 52 bits after the point for this, not only the first |
||
586 | 32. Thats why we need two calls to g_rand_int */ |
||
587 | gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM; |
||
588 | retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM; |
||
589 | |||
590 | /* The following might happen due to very bad rounding luck, but |
||
591 | * actually this should be more than rare, we just try again then */ |
||
592 | if (retval >= 1.0) |
||
593 | return g_rand_double (rand); |
||
594 | |||
595 | return retval; |
||
596 | } |
||
597 | |||
598 | /** |
||
599 | * g_rand_double_range: |
||
600 | * @rand_: a #GRand |
||
601 | * @begin: lower closed bound of the interval |
||
602 | * @end: upper open bound of the interval |
||
603 | * |
||
604 | * Returns the next random #gdouble from @rand_ equally distributed over |
||
605 | * the range [@begin..@end). |
||
606 | * |
||
607 | * Returns: a random number |
||
608 | */ |
||
609 | gdouble |
||
610 | g_rand_double_range (GRand *rand, |
||
611 | gdouble begin, |
||
612 | gdouble end) |
||
613 | { |
||
614 | gdouble r; |
||
615 | |||
616 | r = g_rand_double (rand); |
||
617 | |||
618 | return r * end - (r - 1) * begin; |
||
619 | } |
||
620 | |||
621 | static GRand * |
||
622 | get_global_random (void) |
||
623 | { |
||
624 | static GRand *global_random; |
||
625 | |||
626 | /* called while locked */ |
||
627 | if (!global_random) |
||
628 | global_random = g_rand_new (); |
||
629 | |||
630 | return global_random; |
||
631 | } |
||
632 | |||
633 | /** |
||
634 | * g_random_boolean: |
||
635 | * |
||
636 | * Returns a random #gboolean. |
||
637 | * This corresponds to a unbiased coin toss. |
||
638 | * |
||
639 | * Returns: a random #gboolean |
||
640 | */ |
||
641 | /** |
||
642 | * g_random_int: |
||
643 | * |
||
644 | * Return a random #guint32 equally distributed over the range |
||
645 | * [0..2^32-1]. |
||
646 | * |
||
647 | * Returns: a random number |
||
648 | */ |
||
649 | guint32 |
||
650 | g_random_int (void) |
||
651 | { |
||
652 | guint32 result; |
||
653 | G_LOCK (global_random); |
||
654 | result = g_rand_int (get_global_random ()); |
||
655 | G_UNLOCK (global_random); |
||
656 | return result; |
||
657 | } |
||
658 | |||
659 | /** |
||
660 | * g_random_int_range: |
||
661 | * @begin: lower closed bound of the interval |
||
662 | * @end: upper open bound of the interval |
||
663 | * |
||
664 | * Returns a random #gint32 equally distributed over the range |
||
665 | * [@begin..@end-1]. |
||
666 | * |
||
667 | * Returns: a random number |
||
668 | */ |
||
669 | gint32 |
||
670 | g_random_int_range (gint32 begin, |
||
671 | gint32 end) |
||
672 | { |
||
673 | gint32 result; |
||
674 | G_LOCK (global_random); |
||
675 | result = g_rand_int_range (get_global_random (), begin, end); |
||
676 | G_UNLOCK (global_random); |
||
677 | return result; |
||
678 | } |
||
679 | |||
680 | /** |
||
681 | * g_random_double: |
||
682 | * |
||
683 | * Returns a random #gdouble equally distributed over the range [0..1). |
||
684 | * |
||
685 | * Returns: a random number |
||
686 | */ |
||
687 | gdouble |
||
688 | g_random_double (void) |
||
689 | { |
||
690 | double result; |
||
691 | G_LOCK (global_random); |
||
692 | result = g_rand_double (get_global_random ()); |
||
693 | G_UNLOCK (global_random); |
||
694 | return result; |
||
695 | } |
||
696 | |||
697 | /** |
||
698 | * g_random_double_range: |
||
699 | * @begin: lower closed bound of the interval |
||
700 | * @end: upper open bound of the interval |
||
701 | * |
||
702 | * Returns a random #gdouble equally distributed over the range |
||
703 | * [@begin..@end). |
||
704 | * |
||
705 | * Returns: a random number |
||
706 | */ |
||
707 | gdouble |
||
708 | g_random_double_range (gdouble begin, |
||
709 | gdouble end) |
||
710 | { |
||
711 | double result; |
||
712 | G_LOCK (global_random); |
||
713 | result = g_rand_double_range (get_global_random (), begin, end); |
||
714 | G_UNLOCK (global_random); |
||
715 | return result; |
||
716 | } |
||
717 | |||
718 | /** |
||
719 | * g_random_set_seed: |
||
720 | * @seed: a value to reinitialize the global random number generator |
||
721 | * |
||
722 | * Sets the seed for the global random number generator, which is used |
||
723 | * by the g_random_* functions, to @seed. |
||
724 | */ |
||
725 | void |
||
726 | g_random_set_seed (guint32 seed) |
||
727 | { |
||
728 | G_LOCK (global_random); |
||
729 | g_rand_set_seed (get_global_random (), seed); |
||
730 | G_UNLOCK (global_random); |
||
731 | } |