OpenWrt – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* |
2 | * lib/attr.c Netlink Attributes |
||
3 | * |
||
4 | * This library is free software; you can redistribute it and/or |
||
5 | * modify it under the terms of the GNU Lesser General Public |
||
6 | * License as published by the Free Software Foundation version 2.1 |
||
7 | * of the License. |
||
8 | * |
||
9 | * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch> |
||
10 | */ |
||
11 | |||
12 | #include <netlink-local.h> |
||
13 | #include <netlink/netlink.h> |
||
14 | #include <netlink/utils.h> |
||
15 | #include <netlink/addr.h> |
||
16 | #include <netlink/attr.h> |
||
17 | #include <netlink/msg.h> |
||
18 | #include <linux/socket.h> |
||
19 | |||
20 | /** |
||
21 | * @ingroup msg |
||
22 | * @defgroup attr Attributes |
||
23 | * Netlink Attributes Construction/Parsing Interface |
||
24 | * |
||
25 | * \section attr_sec Netlink Attributes |
||
26 | * Netlink attributes allow for data chunks of arbitary length to be |
||
27 | * attached to a netlink message. Each attribute is encoded with a |
||
28 | * type and length field, both 16 bits, stored in the attribute header |
||
29 | * preceding the attribute data. The main advantage of using attributes |
||
30 | * over packing everything into the family header is that the interface |
||
31 | * stays extendable as new attributes can supersede old attributes while |
||
32 | * remaining backwards compatible. Also attributes can be defined optional |
||
33 | * thus avoiding the transmission of unnecessary empty data blocks. |
||
34 | * Special nested attributes allow for more complex data structures to |
||
35 | * be transmitted, e.g. trees, lists, etc. |
||
36 | * |
||
37 | * While not required, netlink attributes typically follow the family |
||
38 | * header of a netlink message and must be properly aligned to NLA_ALIGNTO: |
||
39 | * @code |
||
40 | * +----------------+- - -+---------------+- - -+------------+- - -+ |
||
41 | * | Netlink Header | Pad | Family Header | Pad | Attributes | Pad | |
||
42 | * +----------------+- - -+---------------+- - -+------------+- - -+ |
||
43 | * @endcode |
||
44 | * |
||
45 | * The actual attributes are chained together each separately aligned to |
||
46 | * NLA_ALIGNTO. The position of an attribute is defined based on the |
||
47 | * length field of the preceding attributes: |
||
48 | * @code |
||
49 | * +-------------+- - -+-------------+- - -+------ |
||
50 | * | Attribute 1 | Pad | Attribute 2 | Pad | ... |
||
51 | * +-------------+- - -+-------------+- - -+------ |
||
52 | * nla_next(attr1)------^ |
||
53 | * @endcode |
||
54 | * |
||
55 | * The attribute itself consists of the attribute header followed by |
||
56 | * the actual payload also aligned to NLA_ALIGNTO. The function nla_data() |
||
57 | * returns a pointer to the start of the payload while nla_len() returns |
||
58 | * the length of the payload in bytes. |
||
59 | * |
||
60 | * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not |
||
61 | * safe to dereference any 64 bit data types directly. |
||
62 | * |
||
63 | * @code |
||
64 | * <----------- nla_total_size(payload) -----------> |
||
65 | * <-------- nla_attr_size(payload) ---------> |
||
66 | * +------------------+- - -+- - - - - - - - - +- - -+ |
||
67 | * | Attribute Header | Pad | Payload | Pad | |
||
68 | * +------------------+- - -+- - - - - - - - - +- - -+ |
||
69 | * nla_data(nla)-------------^ |
||
70 | * <- nla_len(nla) -> |
||
71 | * @endcode |
||
72 | * |
||
73 | * @subsection attr_datatypes Attribute Data Types |
||
74 | * A number of basic data types are supported to simplify access and |
||
75 | * validation of netlink attributes. This data type information is |
||
76 | * not encoded in the attribute, both the kernel and userspace part |
||
77 | * are required to share this information on their own. |
||
78 | * |
||
79 | * One of the major advantages of these basic types is the automatic |
||
80 | * validation of each attribute based on an attribute policy. The |
||
81 | * validation covers most of the checks required to safely use |
||
82 | * attributes and thus keeps the individual sanity check to a minimum. |
||
83 | * |
||
84 | * Never access attribute payload without ensuring basic validation |
||
85 | * first, attributes may: |
||
86 | * - not be present even though required |
||
87 | * - contain less actual payload than expected |
||
88 | * - fake a attribute length which exceeds the end of the message |
||
89 | * - contain unterminated character strings |
||
90 | * |
||
91 | * Policies are defined as array of the struct nla_policy. The array is |
||
92 | * indexed with the attribute type, therefore the array must be sized |
||
93 | * accordingly. |
||
94 | * @code |
||
95 | * static struct nla_policy my_policy[ATTR_MAX+1] = { |
||
96 | * [ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... }, |
||
97 | * }; |
||
98 | * |
||
99 | * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy); |
||
100 | * @endcode |
||
101 | * |
||
102 | * Some basic validations are performed on every attribute, regardless of type. |
||
103 | * - If the attribute type exceeds the maximum attribute type specified or |
||
104 | * the attribute type is lesser-or-equal than zero, the attribute will |
||
105 | * be silently ignored. |
||
106 | * - If the payload length falls below the \a minlen value the attribute |
||
107 | * will be rejected. |
||
108 | * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen |
||
109 | * value the attribute will be rejected. |
||
110 | * |
||
111 | * |
||
112 | * @par Unspecific Attribute (NLA_UNSPEC) |
||
113 | * This is the standard type if no type is specified. It is used for |
||
114 | * binary data of arbitary length. Typically this attribute carries |
||
115 | * a binary structure or a stream of bytes. |
||
116 | * @par |
||
117 | * @code |
||
118 | * // In this example, we will assume a binary structure requires to |
||
119 | * // be transmitted. The definition of the structure will typically |
||
120 | * // go into a header file available to both the kernel and userspace |
||
121 | * // side. |
||
122 | * // |
||
123 | * // Note: Be careful when putting 64 bit data types into a structure. |
||
124 | * // The attribute payload is only aligned to 4 bytes, dereferencing |
||
125 | * // the member may fail. |
||
126 | * struct my_struct { |
||
127 | * int a; |
||
128 | * int b; |
||
129 | * }; |
||
130 | * |
||
131 | * // The validation function will not enforce an exact length match to |
||
132 | * // allow structures to grow as required. Note: While it is allowed |
||
133 | * // to add members to the end of the structure, changing the order or |
||
134 | * // inserting members in the middle of the structure will break your |
||
135 | * // binary interface. |
||
136 | * static struct nla_policy my_policy[ATTR_MAX+1] = { |
||
137 | * [ATTR_MY_STRICT] = { .type = NLA_UNSPEC, |
||
138 | * .minlen = sizeof(struct my_struct) }, |
||
139 | * |
||
140 | * // The binary structure is appened to the message using nla_put() |
||
141 | * struct my_struct foo = { .a = 1, .b = 2 }; |
||
142 | * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo); |
||
143 | * |
||
144 | * // On the receiving side, a pointer to the structure pointing inside |
||
145 | * // the message payload is returned by nla_get(). |
||
146 | * if (attrs[ATTR_MY_STRUCT]) |
||
147 | * struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]); |
||
148 | * @endcode |
||
149 | * |
||
150 | * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64) |
||
151 | * Integers come in different sizes from 8 bit to 64 bit. However, since the |
||
152 | * payload length is aligned to 4 bytes, integers smaller than 32 bit are |
||
153 | * only useful to enforce the maximum range of values. |
||
154 | * @par |
||
155 | * \b Note: There is no difference made between signed and unsigned integers. |
||
156 | * The validation only enforces the minimal payload length required to store |
||
157 | * an integer of specified type. |
||
158 | * @par |
||
159 | * @code |
||
160 | * // Even though possible, it does not make sense to specify .minlen or |
||
161 | * // .maxlen for integer types. The data types implies the corresponding |
||
162 | * // minimal payload length. |
||
163 | * static struct nla_policy my_policy[ATTR_MAX+1] = { |
||
164 | * [ATTR_FOO] = { .type = NLA_U32 }, |
||
165 | * |
||
166 | * // Numeric values can be appended directly using the respective |
||
167 | * // nla_put_uxxx() function |
||
168 | * nla_put_u32(msg, ATTR_FOO, 123); |
||
169 | * |
||
170 | * // Same for the receiving side. |
||
171 | * if (attrs[ATTR_FOO]) |
||
172 | * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); |
||
173 | * @endcode |
||
174 | * |
||
175 | * @par Character string (NLA_STRING) |
||
176 | * This data type represents a NUL terminated character string of variable |
||
177 | * length. For binary data streams the type NLA_UNSPEC is recommended. |
||
178 | * @par |
||
179 | * @code |
||
180 | * // Enforce a NUL terminated character string of at most 4 characters |
||
181 | * // including the NUL termination. |
||
182 | * static struct nla_policy my_policy[ATTR_MAX+1] = { |
||
183 | * [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 }, |
||
184 | * |
||
185 | * // nla_put_string() creates a string attribute of the necessary length |
||
186 | * // and appends it to the message including the NUL termination. |
||
187 | * nla_put_string(msg, ATTR_BAR, "some text"); |
||
188 | * |
||
189 | * // It is safe to use the returned character string directly if the |
||
190 | * // attribute has been validated as the validation enforces the proper |
||
191 | * // termination of the string. |
||
192 | * if (attrs[ATTR_BAR]) |
||
193 | * char *text = nla_get_string(attrs[ATTR_BAR]); |
||
194 | * @endcode |
||
195 | * |
||
196 | * @par Flag (NLA_FLAG) |
||
197 | * This attribute type may be used to indicate the presence of a flag. The |
||
198 | * attribute is only valid if the payload length is zero. The presence of |
||
199 | * the attribute header indicates the presence of the flag. |
||
200 | * @par |
||
201 | * @code |
||
202 | * // This attribute type is special as .minlen and .maxlen have no effect. |
||
203 | * static struct nla_policy my_policy[ATTR_MAX+1] = { |
||
204 | * [ATTR_FLAG] = { .type = NLA_FLAG }, |
||
205 | * |
||
206 | * // nla_put_flag() appends a zero sized attribute to the message. |
||
207 | * nla_put_flag(msg, ATTR_FLAG); |
||
208 | * |
||
209 | * // There is no need for a receival function, the presence is the value. |
||
210 | * if (attrs[ATTR_FLAG]) |
||
211 | * // flag is present |
||
212 | * @endcode |
||
213 | * |
||
214 | * @par Micro Seconds (NLA_MSECS) |
||
215 | * |
||
216 | * @par Nested Attribute (NLA_NESTED) |
||
217 | * Attributes can be nested and put into a container to create groups, lists |
||
218 | * or to construct trees of attributes. Nested attributes are often used to |
||
219 | * pass attributes to a subsystem where the top layer has no knowledge of the |
||
220 | * configuration possibilities of each subsystem. |
||
221 | * @par |
||
222 | * \b Note: When validating the attributes using nlmsg_validate() or |
||
223 | * nlmsg_parse() it will only affect the top level attributes. Each |
||
224 | * level of nested attributes must be validated seperately using |
||
225 | * nla_parse_nested() or nla_validate(). |
||
226 | * @par |
||
227 | * @code |
||
228 | * // The minimal length policy may be used to enforce the presence of at |
||
229 | * // least one attribute. |
||
230 | * static struct nla_policy my_policy[ATTR_MAX+1] = { |
||
231 | * [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN }, |
||
232 | * |
||
233 | * // Nested attributes are constructed by enclosing the attributes |
||
234 | * // to be nested with calls to nla_nest_start() respetively nla_nest_end(). |
||
235 | * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS); |
||
236 | * nla_put_u32(msg, ATTR_FOO, 123); |
||
237 | * nla_put_string(msg, ATTR_BAR, "some text"); |
||
238 | * nla_nest_end(msg, opts); |
||
239 | * |
||
240 | * // Various methods exist to parse nested attributes, the easiest being |
||
241 | * // nla_parse_nested() which also allows validation in the same step. |
||
242 | * if (attrs[ATTR_OPTS]) { |
||
243 | * struct nlattr *nested[ATTR_MAX+1]; |
||
244 | * |
||
245 | * nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy); |
||
246 | * |
||
247 | * if (nested[ATTR_FOO]) |
||
248 | * uint32_t foo = nla_get_u32(nested[ATTR_FOO]); |
||
249 | * } |
||
250 | * @endcode |
||
251 | * |
||
252 | * @subsection attr_exceptions Exception Based Attribute Construction |
||
253 | * Often a large number of attributes are added to a message in a single |
||
254 | * function. In order to simplify error handling, a second set of |
||
255 | * construction functions exist which jump to a error label when they |
||
256 | * fail instead of returning an error code. This second set consists |
||
257 | * of macros which are named after their error code based counterpart |
||
258 | * except that the name is written all uppercase. |
||
259 | * |
||
260 | * All of the macros jump to the target \c nla_put_failure if they fail. |
||
261 | * @code |
||
262 | * void my_func(struct nl_msg *msg) |
||
263 | * { |
||
264 | * NLA_PUT_U32(msg, ATTR_FOO, 10); |
||
265 | * NLA_PUT_STRING(msg, ATTR_BAR, "bar"); |
||
266 | * |
||
267 | * return 0; |
||
268 | * |
||
269 | * nla_put_failure: |
||
270 | * return -NLE_NOMEM; |
||
271 | * } |
||
272 | * @endcode |
||
273 | * |
||
274 | * @subsection attr_examples Examples |
||
275 | * @par Example 1.1 Constructing a netlink message with attributes. |
||
276 | * @code |
||
277 | * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu) |
||
278 | * { |
||
279 | * struct nl_msg *msg; |
||
280 | * struct nlattr *info, *vlan; |
||
281 | * struct ifinfomsg ifi = { |
||
282 | * .ifi_family = AF_INET, |
||
283 | * .ifi_index = ifindex, |
||
284 | * }; |
||
285 | * |
||
286 | * // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO |
||
287 | * if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO))) |
||
288 | * return NULL; |
||
289 | * |
||
290 | * // Append the family specific header (struct ifinfomsg) |
||
291 | * if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0) |
||
292 | * goto nla_put_failure |
||
293 | * |
||
294 | * // Append a 32 bit integer attribute to carry the MTU |
||
295 | * NLA_PUT_U32(msg, IFLA_MTU, mtu); |
||
296 | * |
||
297 | * // Append a unspecific attribute to carry the link layer address |
||
298 | * NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr); |
||
299 | * |
||
300 | * // Append a container for nested attributes to carry link information |
||
301 | * if (!(info = nla_nest_start(msg, IFLA_LINKINFO))) |
||
302 | * goto nla_put_failure; |
||
303 | * |
||
304 | * // Put a string attribute into the container |
||
305 | * NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan"); |
||
306 | * |
||
307 | * // Append another container inside the open container to carry |
||
308 | * // vlan specific attributes |
||
309 | * if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA))) |
||
310 | * goto nla_put_failure; |
||
311 | * |
||
312 | * // add vlan specific info attributes here... |
||
313 | * |
||
314 | * // Finish nesting the vlan attributes and close the second container. |
||
315 | * nla_nest_end(msg, vlan); |
||
316 | * |
||
317 | * // Finish nesting the link info attribute and close the first container. |
||
318 | * nla_nest_end(msg, info); |
||
319 | * |
||
320 | * return msg; |
||
321 | * |
||
322 | * // If any of the construction macros fails, we end up here. |
||
323 | * nla_put_failure: |
||
324 | * nlmsg_free(msg); |
||
325 | * return NULL; |
||
326 | * } |
||
327 | * @endcode |
||
328 | * |
||
329 | * @par Example 2.1 Parsing a netlink message with attributes. |
||
330 | * @code |
||
331 | * int parse_message(struct nl_msg *msg) |
||
332 | * { |
||
333 | * // The policy defines two attributes: a 32 bit integer and a container |
||
334 | * // for nested attributes. |
||
335 | * struct nla_policy attr_policy[ATTR_MAX+1] = { |
||
336 | * [ATTR_FOO] = { .type = NLA_U32 }, |
||
337 | * [ATTR_BAR] = { .type = NLA_NESTED }, |
||
338 | * }; |
||
339 | * struct nlattr *attrs[ATTR_MAX+1]; |
||
340 | * int err; |
||
341 | * |
||
342 | * // The nlmsg_parse() function will make sure that the message contains |
||
343 | * // enough payload to hold the header (struct my_hdr), validates any |
||
344 | * // attributes attached to the messages and stores a pointer to each |
||
345 | * // attribute in the attrs[] array accessable by attribute type. |
||
346 | * if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs, |
||
347 | * ATTR_MAX, attr_policy)) < 0) |
||
348 | * goto errout; |
||
349 | * |
||
350 | * if (attrs[ATTR_FOO]) { |
||
351 | * // It is safe to directly access the attribute payload without |
||
352 | * // any further checks since nlmsg_parse() enforced the policy. |
||
353 | * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); |
||
354 | * } |
||
355 | * |
||
356 | * if (attrs[ATTR_BAR]) { |
||
357 | * struct nlattr *nested[NESTED_MAX+1]; |
||
358 | * |
||
359 | * // Attributes nested in a container can be parsed the same way |
||
360 | * // as top level attributes. |
||
361 | * if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR], |
||
362 | * nested_policy)) < 0) |
||
363 | * goto errout; |
||
364 | * |
||
365 | * // Process nested attributes here. |
||
366 | * } |
||
367 | * |
||
368 | * err = 0; |
||
369 | * errout: |
||
370 | * return err; |
||
371 | * } |
||
372 | * @endcode |
||
373 | * |
||
374 | * @{ |
||
375 | */ |
||
376 | |||
377 | /** |
||
378 | * @name Attribute Size Calculation |
||
379 | * @{ |
||
380 | */ |
||
381 | |||
382 | /** @} */ |
||
383 | |||
384 | /** |
||
385 | * @name Parsing Attributes |
||
386 | * @{ |
||
387 | */ |
||
388 | |||
389 | /** |
||
390 | * Check if the attribute header and payload can be accessed safely. |
||
391 | * @arg nla Attribute of any kind. |
||
392 | * @arg remaining Number of bytes remaining in attribute stream. |
||
393 | * |
||
394 | * Verifies that the header and payload do not exceed the number of |
||
395 | * bytes left in the attribute stream. This function must be called |
||
396 | * before access the attribute header or payload when iterating over |
||
397 | * the attribute stream using nla_next(). |
||
398 | * |
||
399 | * @return True if the attribute can be accessed safely, false otherwise. |
||
400 | */ |
||
401 | int nla_ok(const struct nlattr *nla, int remaining) |
||
402 | { |
||
403 | return remaining >= sizeof(*nla) && |
||
404 | nla->nla_len >= sizeof(*nla) && |
||
405 | nla->nla_len <= remaining; |
||
406 | } |
||
407 | |||
408 | /** |
||
409 | * Return next attribute in a stream of attributes. |
||
410 | * @arg nla Attribute of any kind. |
||
411 | * @arg remaining Variable to count remaining bytes in stream. |
||
412 | * |
||
413 | * Calculates the offset to the next attribute based on the attribute |
||
414 | * given. The attribute provided is assumed to be accessible, the |
||
415 | * caller is responsible to use nla_ok() beforehand. The offset (length |
||
416 | * of specified attribute including padding) is then subtracted from |
||
417 | * the remaining bytes variable and a pointer to the next attribute is |
||
418 | * returned. |
||
419 | * |
||
420 | * nla_next() can be called as long as remainig is >0. |
||
421 | * |
||
422 | * @return Pointer to next attribute. |
||
423 | */ |
||
424 | struct nlattr *nla_next(const struct nlattr *nla, int *remaining) |
||
425 | { |
||
426 | int totlen = NLA_ALIGN(nla->nla_len); |
||
427 | |||
428 | *remaining -= totlen; |
||
429 | return (struct nlattr *) ((char *) nla + totlen); |
||
430 | } |
||
431 | |||
432 | static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = { |
||
433 | [NLA_U8] = sizeof(uint8_t), |
||
434 | [NLA_U16] = sizeof(uint16_t), |
||
435 | [NLA_U32] = sizeof(uint32_t), |
||
436 | [NLA_U64] = sizeof(uint64_t), |
||
437 | [NLA_STRING] = 1, |
||
438 | }; |
||
439 | |||
440 | static int validate_nla(struct nlattr *nla, int maxtype, |
||
441 | struct nla_policy *policy) |
||
442 | { |
||
443 | struct nla_policy *pt; |
||
444 | int minlen = 0, type = nla_type(nla); |
||
445 | |||
446 | if (type <= 0 || type > maxtype) |
||
447 | return 0; |
||
448 | |||
449 | pt = &policy[type]; |
||
450 | |||
451 | if (pt->type > NLA_TYPE_MAX) |
||
452 | BUG(); |
||
453 | |||
454 | if (pt->minlen) |
||
455 | minlen = pt->minlen; |
||
456 | else if (pt->type != NLA_UNSPEC) |
||
457 | minlen = nla_attr_minlen[pt->type]; |
||
458 | |||
459 | if (pt->type == NLA_FLAG && nla_len(nla) > 0) |
||
460 | return -NLE_RANGE; |
||
461 | |||
462 | if (nla_len(nla) < minlen) |
||
463 | return -NLE_RANGE; |
||
464 | |||
465 | if (pt->maxlen && nla_len(nla) > pt->maxlen) |
||
466 | return -NLE_RANGE; |
||
467 | |||
468 | if (pt->type == NLA_STRING) { |
||
469 | char *data = nla_data(nla); |
||
470 | if (data[nla_len(nla) - 1] != '\0') |
||
471 | return -NLE_INVAL; |
||
472 | } |
||
473 | |||
474 | return 0; |
||
475 | } |
||
476 | |||
477 | |||
478 | /** |
||
479 | * Create attribute index based on a stream of attributes. |
||
480 | * @arg tb Index array to be filled (maxtype+1 elements). |
||
481 | * @arg maxtype Maximum attribute type expected and accepted. |
||
482 | * @arg head Head of attribute stream. |
||
483 | * @arg len Length of attribute stream. |
||
484 | * @arg policy Attribute validation policy. |
||
485 | * |
||
486 | * Iterates over the stream of attributes and stores a pointer to each |
||
487 | * attribute in the index array using the attribute type as index to |
||
488 | * the array. Attribute with a type greater than the maximum type |
||
489 | * specified will be silently ignored in order to maintain backwards |
||
490 | * compatibility. If \a policy is not NULL, the attribute will be |
||
491 | * validated using the specified policy. |
||
492 | * |
||
493 | * @see nla_validate |
||
494 | * @return 0 on success or a negative error code. |
||
495 | */ |
||
496 | int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len, |
||
497 | struct nla_policy *policy) |
||
498 | { |
||
499 | struct nlattr *nla; |
||
500 | int rem, err; |
||
501 | |||
502 | memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); |
||
503 | |||
504 | nla_for_each_attr(nla, head, len, rem) { |
||
505 | int type = nla_type(nla); |
||
506 | |||
507 | if (type == 0) { |
||
508 | fprintf(stderr, "Illegal nla->nla_type == 0\n"); |
||
509 | continue; |
||
510 | } |
||
511 | |||
512 | if (type <= maxtype) { |
||
513 | if (policy) { |
||
514 | err = validate_nla(nla, maxtype, policy); |
||
515 | if (err < 0) |
||
516 | goto errout; |
||
517 | } |
||
518 | |||
519 | tb[type] = nla; |
||
520 | } |
||
521 | } |
||
522 | |||
523 | if (rem > 0) |
||
524 | fprintf(stderr, "netlink: %d bytes leftover after parsing " |
||
525 | "attributes.\n", rem); |
||
526 | |||
527 | err = 0; |
||
528 | errout: |
||
529 | return err; |
||
530 | } |
||
531 | |||
532 | /** |
||
533 | * Validate a stream of attributes. |
||
534 | * @arg head Head of attributes stream. |
||
535 | * @arg len Length of attributes stream. |
||
536 | * @arg maxtype Maximum attribute type expected and accepted. |
||
537 | * @arg policy Validation policy. |
||
538 | * |
||
539 | * Iterates over the stream of attributes and validates each attribute |
||
540 | * one by one using the specified policy. Attributes with a type greater |
||
541 | * than the maximum type specified will be silently ignored in order to |
||
542 | * maintain backwards compatibility. |
||
543 | * |
||
544 | * See \ref attr_datatypes for more details on what kind of validation |
||
545 | * checks are performed on each attribute data type. |
||
546 | * |
||
547 | * @return 0 on success or a negative error code. |
||
548 | */ |
||
549 | int nla_validate(struct nlattr *head, int len, int maxtype, |
||
550 | struct nla_policy *policy) |
||
551 | { |
||
552 | struct nlattr *nla; |
||
553 | int rem, err; |
||
554 | |||
555 | nla_for_each_attr(nla, head, len, rem) { |
||
556 | err = validate_nla(nla, maxtype, policy); |
||
557 | if (err < 0) |
||
558 | goto errout; |
||
559 | } |
||
560 | |||
561 | err = 0; |
||
562 | errout: |
||
563 | return err; |
||
564 | } |
||
565 | |||
566 | /** |
||
567 | * Find a single attribute in a stream of attributes. |
||
568 | * @arg head Head of attributes stream. |
||
569 | * @arg len Length of attributes stream. |
||
570 | * @arg attrtype Attribute type to look for. |
||
571 | * |
||
572 | * Iterates over the stream of attributes and compares each type with |
||
573 | * the type specified. Returns the first attribute which matches the |
||
574 | * type. |
||
575 | * |
||
576 | * @return Pointer to attribute found or NULL. |
||
577 | */ |
||
578 | struct nlattr *nla_find(struct nlattr *head, int len, int attrtype) |
||
579 | { |
||
580 | struct nlattr *nla; |
||
581 | int rem; |
||
582 | |||
583 | nla_for_each_attr(nla, head, len, rem) |
||
584 | if (nla_type(nla) == attrtype) |
||
585 | return nla; |
||
586 | |||
587 | return NULL; |
||
588 | } |
||
589 | |||
590 | /** @} */ |
||
591 | |||
592 | /** |
||
593 | * @name Unspecific Attribute |
||
594 | * @{ |
||
595 | */ |
||
596 | |||
597 | /** |
||
598 | * Reserve space for a attribute. |
||
599 | * @arg msg Netlink Message. |
||
600 | * @arg attrtype Attribute Type. |
||
601 | * @arg attrlen Length of payload. |
||
602 | * |
||
603 | * Reserves room for a attribute in the specified netlink message and |
||
604 | * fills in the attribute header (type, length). Returns NULL if there |
||
605 | * is unsuficient space for the attribute. |
||
606 | * |
||
607 | * Any padding between payload and the start of the next attribute is |
||
608 | * zeroed out. |
||
609 | * |
||
610 | * @return Pointer to start of attribute or NULL on failure. |
||
611 | */ |
||
612 | struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen) |
||
613 | { |
||
614 | struct nlattr *nla; |
||
615 | int tlen; |
||
616 | |||
617 | tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen); |
||
618 | |||
619 | if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size) |
||
620 | return NULL; |
||
621 | |||
622 | nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh); |
||
623 | nla->nla_type = attrtype; |
||
624 | nla->nla_len = nla_attr_size(attrlen); |
||
625 | |||
626 | memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen)); |
||
627 | msg->nm_nlh->nlmsg_len = tlen; |
||
628 | |||
629 | NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d " |
||
630 | "nlmsg_len=%d\n", msg, attrlen, |
||
631 | (void *) nla - nlmsg_data(msg->nm_nlh), |
||
632 | attrtype, msg->nm_nlh->nlmsg_len); |
||
633 | |||
634 | return nla; |
||
635 | } |
||
636 | |||
637 | /** |
||
638 | * Add a unspecific attribute to netlink message. |
||
639 | * @arg msg Netlink message. |
||
640 | * @arg attrtype Attribute type. |
||
641 | * @arg datalen Length of data to be used as payload. |
||
642 | * @arg data Pointer to data to be used as attribute payload. |
||
643 | * |
||
644 | * Reserves room for a unspecific attribute and copies the provided data |
||
645 | * into the message as payload of the attribute. Returns an error if there |
||
646 | * is insufficient space for the attribute. |
||
647 | * |
||
648 | * @see nla_reserve |
||
649 | * @return 0 on success or a negative error code. |
||
650 | */ |
||
651 | int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data) |
||
652 | { |
||
653 | struct nlattr *nla; |
||
654 | |||
655 | nla = nla_reserve(msg, attrtype, datalen); |
||
656 | if (!nla) |
||
657 | return -NLE_NOMEM; |
||
658 | |||
659 | memcpy(nla_data(nla), data, datalen); |
||
660 | NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n", |
||
661 | msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype); |
||
662 | |||
663 | return 0; |
||
664 | } |
||
665 | |||
666 | |||
667 | |||
668 | /** @} */ |