wasCSharpSQLite – Blame information for rev 4
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | #define SQLITE_MAX_EXPR_DEPTH |
2 | using System; |
||
3 | using System.Diagnostics; |
||
4 | using System.Text; |
||
5 | |||
6 | using i16 = System.Int16; |
||
7 | using u8 = System.Byte; |
||
8 | using u16 = System.UInt16; |
||
9 | using u32 = System.UInt32; |
||
10 | |||
11 | using Pgno = System.UInt32; |
||
12 | |||
13 | namespace Community.CsharpSqlite |
||
14 | { |
||
15 | public partial class Sqlite3 |
||
16 | { |
||
17 | /* |
||
18 | ** 2001 September 15 |
||
19 | ** |
||
20 | ** The author disclaims copyright to this source code. In place of |
||
21 | ** a legal notice, here is a blessing: |
||
22 | ** |
||
23 | ** May you do good and not evil. |
||
24 | ** May you find forgiveness for yourself and forgive others. |
||
25 | ** May you share freely, never taking more than you give. |
||
26 | ** |
||
27 | ************************************************************************* |
||
28 | ** This file contains C code routines that are called by the parser |
||
29 | ** to handle SELECT statements in SQLite. |
||
30 | ************************************************************************* |
||
31 | ** Included in SQLite3 port to C#-SQLite; 2008 Noah B Hart |
||
32 | ** C#-SQLite is an independent reimplementation of the SQLite software library |
||
33 | ** |
||
34 | ** SQLITE_SOURCE_ID: 2011-06-23 19:49:22 4374b7e83ea0a3fbc3691f9c0c936272862f32f2 |
||
35 | ** |
||
36 | ************************************************************************* |
||
37 | */ |
||
38 | //#include "sqliteInt.h" |
||
39 | |||
40 | |||
41 | /* |
||
42 | ** Delete all the content of a Select structure but do not deallocate |
||
43 | ** the select structure itself. |
||
44 | */ |
||
45 | static void clearSelect( sqlite3 db, Select p ) |
||
46 | { |
||
47 | sqlite3ExprListDelete( db, ref p.pEList ); |
||
48 | sqlite3SrcListDelete( db, ref p.pSrc ); |
||
49 | sqlite3ExprDelete( db, ref p.pWhere ); |
||
50 | sqlite3ExprListDelete( db, ref p.pGroupBy ); |
||
51 | sqlite3ExprDelete( db, ref p.pHaving ); |
||
52 | sqlite3ExprListDelete( db, ref p.pOrderBy ); |
||
53 | sqlite3SelectDelete( db, ref p.pPrior ); |
||
54 | sqlite3ExprDelete( db, ref p.pLimit ); |
||
55 | sqlite3ExprDelete( db, ref p.pOffset ); |
||
56 | } |
||
57 | |||
58 | /* |
||
59 | ** Initialize a SelectDest structure. |
||
60 | */ |
||
61 | static void sqlite3SelectDestInit( SelectDest pDest, int eDest, int iParm ) |
||
62 | { |
||
63 | pDest.eDest = (u8)eDest; |
||
64 | pDest.iParm = iParm; |
||
65 | pDest.affinity = '\0'; |
||
66 | pDest.iMem = 0; |
||
67 | pDest.nMem = 0; |
||
68 | } |
||
69 | |||
70 | |||
71 | /* |
||
72 | ** Allocate a new Select structure and return a pointer to that |
||
73 | ** structure. |
||
74 | */ |
||
75 | // OVERLOADS, so I don't need to rewrite parse.c |
||
76 | static Select sqlite3SelectNew( Parse pParse, int null_2, SrcList pSrc, int null_4, int null_5, int null_6, int null_7, int isDistinct, int null_9, int null_10 ) |
||
77 | { |
||
78 | return sqlite3SelectNew( pParse, null, pSrc, null, null, null, null, isDistinct, null, null ); |
||
79 | } |
||
80 | static Select sqlite3SelectNew( |
||
81 | Parse pParse, /* Parsing context */ |
||
82 | ExprList pEList, /* which columns to include in the result */ |
||
83 | SrcList pSrc, /* the FROM clause -- which tables to scan */ |
||
84 | Expr pWhere, /* the WHERE clause */ |
||
85 | ExprList pGroupBy, /* the GROUP BY clause */ |
||
86 | Expr pHaving, /* the HAVING clause */ |
||
87 | ExprList pOrderBy, /* the ORDER BY clause */ |
||
88 | int isDistinct, /* true if the DISTINCT keyword is present */ |
||
89 | Expr pLimit, /* LIMIT value. NULL means not used */ |
||
90 | Expr pOffset /* OFFSET value. NULL means no offset */ |
||
91 | ) |
||
92 | { |
||
93 | Select pNew; |
||
94 | // Select standin; |
||
95 | sqlite3 db = pParse.db; |
||
96 | pNew = new Select();//sqlite3DbMallocZero(db, sizeof(*pNew) ); |
||
97 | Debug.Assert( //db.mallocFailed != 0 || |
||
98 | null == pOffset || pLimit != null ); /* OFFSET implies LIMIT */ |
||
99 | //if( pNew==null ){ |
||
100 | // pNew = standin; |
||
101 | // memset(pNew, 0, sizeof(*pNew)); |
||
102 | //} |
||
103 | if ( pEList == null ) |
||
104 | { |
||
105 | pEList = sqlite3ExprListAppend( pParse, null, sqlite3Expr( db, TK_ALL, null ) ); |
||
106 | } |
||
107 | pNew.pEList = pEList; |
||
108 | pNew.pSrc = pSrc; |
||
109 | pNew.pWhere = pWhere; |
||
110 | pNew.pGroupBy = pGroupBy; |
||
111 | pNew.pHaving = pHaving; |
||
112 | pNew.pOrderBy = pOrderBy; |
||
113 | pNew.selFlags = (u16)( isDistinct != 0 ? SF_Distinct : 0 ); |
||
114 | pNew.op = TK_SELECT; |
||
115 | pNew.pLimit = pLimit; |
||
116 | pNew.pOffset = pOffset; |
||
117 | Debug.Assert( pOffset == null || pLimit != null ); |
||
118 | pNew.addrOpenEphm[0] = -1; |
||
119 | pNew.addrOpenEphm[1] = -1; |
||
120 | pNew.addrOpenEphm[2] = -1; |
||
121 | //if ( db.mallocFailed != 0 ) |
||
122 | //{ |
||
123 | // clearSelect( db, pNew ); |
||
124 | // //if ( pNew != standin ) sqlite3DbFree( db, ref pNew ); |
||
125 | // pNew = null; |
||
126 | //} |
||
127 | return pNew; |
||
128 | } |
||
129 | |||
130 | /* |
||
131 | ** Delete the given Select structure and all of its substructures. |
||
132 | */ |
||
133 | static void sqlite3SelectDelete( sqlite3 db, ref Select p ) |
||
134 | { |
||
135 | if ( p != null ) |
||
136 | { |
||
137 | clearSelect( db, p ); |
||
138 | sqlite3DbFree( db, ref p ); |
||
139 | } |
||
140 | } |
||
141 | |||
142 | /* |
||
143 | ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the |
||
144 | ** type of join. Return an integer constant that expresses that type |
||
145 | ** in terms of the following bit values: |
||
146 | ** |
||
147 | ** JT_INNER |
||
148 | ** JT_CROSS |
||
149 | ** JT_OUTER |
||
150 | ** JT_NATURAL |
||
151 | ** JT_LEFT |
||
152 | ** JT_RIGHT |
||
153 | ** |
||
154 | ** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
||
155 | ** |
||
156 | ** If an illegal or unsupported join type is seen, then still return |
||
157 | ** a join type, but put an error in the pParse structure. |
||
158 | */ |
||
159 | |||
160 | class Keyword |
||
161 | { |
||
162 | public u8 i; /* Beginning of keyword text in zKeyText[] */ |
||
163 | public u8 nChar; /* Length of the keyword in characters */ |
||
164 | public u8 code; /* Join type mask */ |
||
165 | public Keyword( u8 i, u8 nChar, u8 code ) |
||
166 | { |
||
167 | this.i = i; |
||
168 | this.nChar = nChar; |
||
169 | this.code = code; |
||
170 | } |
||
171 | } |
||
172 | |||
173 | // OVERLOADS, so I don't need to rewrite parse.c |
||
174 | static int sqlite3JoinType( Parse pParse, Token pA, int null_3, int null_4 ) |
||
175 | { |
||
176 | return sqlite3JoinType( pParse, pA, null, null ); |
||
177 | } |
||
178 | static int sqlite3JoinType( Parse pParse, Token pA, Token pB, int null_4 ) |
||
179 | { |
||
180 | return sqlite3JoinType( pParse, pA, pB, null ); |
||
181 | } |
||
182 | static int sqlite3JoinType( Parse pParse, Token pA, Token pB, Token pC ) |
||
183 | { |
||
184 | int jointype = 0; |
||
185 | Token[] apAll = new Token[3]; |
||
186 | Token p; |
||
187 | |||
188 | /* 0123456789 123456789 123456789 123 */ |
||
189 | string zKeyText = "naturaleftouterightfullinnercross"; |
||
190 | |||
191 | Keyword[] aKeyword = new Keyword[]{ |
||
192 | /* natural */ new Keyword( 0, 7, JT_NATURAL ), |
||
193 | /* left */ new Keyword( 6, 4, JT_LEFT|JT_OUTER ), |
||
194 | /* outer */ new Keyword( 10, 5, JT_OUTER ), |
||
195 | /* right */ new Keyword( 14, 5, JT_RIGHT|JT_OUTER ), |
||
196 | /* full */ new Keyword( 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER ), |
||
197 | /* inner */ new Keyword( 23, 5, JT_INNER ), |
||
198 | /* cross */ new Keyword( 28, 5, JT_INNER|JT_CROSS ), |
||
199 | }; |
||
200 | int i, j; |
||
201 | apAll[0] = pA; |
||
202 | apAll[1] = pB; |
||
203 | apAll[2] = pC; |
||
204 | for ( i = 0; i < 3 && apAll[i] != null; i++ ) |
||
205 | { |
||
206 | p = apAll[i]; |
||
207 | for ( j = 0; j < ArraySize( aKeyword ); j++ ) |
||
208 | { |
||
209 | if ( p.n == aKeyword[j].nChar |
||
210 | && p.z.StartsWith( zKeyText.Substring( aKeyword[j].i, aKeyword[j].nChar ), StringComparison.OrdinalIgnoreCase ) ) |
||
211 | { |
||
212 | jointype |= aKeyword[j].code; |
||
213 | break; |
||
214 | } |
||
215 | } |
||
216 | testcase( j == 0 || j == 1 || j == 2 || j == 3 || j == 4 || j == 5 || j == 6 ); |
||
217 | if ( j >= ArraySize( aKeyword ) ) |
||
218 | { |
||
219 | jointype |= JT_ERROR; |
||
220 | break; |
||
221 | } |
||
222 | } |
||
223 | if ( |
||
224 | ( jointype & ( JT_INNER | JT_OUTER ) ) == ( JT_INNER | JT_OUTER ) || |
||
225 | ( jointype & JT_ERROR ) != 0 |
||
226 | ) |
||
227 | { |
||
228 | string zSp = pC == null ? string.Empty : " "; |
||
229 | Debug.Assert( pB != null ); |
||
230 | sqlite3ErrorMsg( pParse, "unknown or unsupported join type: " + |
||
231 | "%T %T%s%T", pA, pB, zSp, pC ); |
||
232 | jointype = JT_INNER; |
||
233 | } |
||
234 | else if ( ( jointype & JT_OUTER ) != 0 |
||
235 | && ( jointype & ( JT_LEFT | JT_RIGHT ) ) != JT_LEFT ) |
||
236 | { |
||
237 | sqlite3ErrorMsg( pParse, |
||
238 | "RIGHT and FULL OUTER JOINs are not currently supported" ); |
||
239 | jointype = JT_INNER; |
||
240 | } |
||
241 | return jointype; |
||
242 | } |
||
243 | |||
244 | /* |
||
245 | ** Return the index of a column in a table. Return -1 if the column |
||
246 | ** is not contained in the table. |
||
247 | */ |
||
248 | static int columnIndex( Table pTab, string zCol ) |
||
249 | { |
||
250 | int i; |
||
251 | for ( i = 0; i < pTab.nCol; i++ ) |
||
252 | { |
||
253 | if ( pTab.aCol[i].zName.Equals( zCol, StringComparison.OrdinalIgnoreCase ) ) |
||
254 | return i; |
||
255 | } |
||
256 | return -1; |
||
257 | } |
||
258 | |||
259 | |||
260 | /* |
||
261 | ** Search the first N tables in pSrc, from left to right, looking for a |
||
262 | ** table that has a column named zCol. |
||
263 | ** |
||
264 | ** When found, set *piTab and *piCol to the table index and column index |
||
265 | ** of the matching column and return TRUE. |
||
266 | ** |
||
267 | ** If not found, return FALSE. |
||
268 | */ |
||
269 | static int tableAndColumnIndex( |
||
270 | SrcList pSrc, /* Array of tables to search */ |
||
271 | int N, /* Number of tables in pSrc.a[] to search */ |
||
272 | string zCol, /* Name of the column we are looking for */ |
||
273 | ref int piTab, /* Write index of pSrc.a[] here */ |
||
274 | ref int piCol /* Write index of pSrc.a[*piTab].pTab.aCol[] here */ |
||
275 | ) |
||
276 | { |
||
277 | int i; /* For looping over tables in pSrc */ |
||
278 | int iCol; /* Index of column matching zCol */ |
||
279 | |||
280 | Debug.Assert( ( piTab == 0 ) == ( piCol == 0 ) ); /* Both or neither are NULL */ |
||
281 | for ( i = 0; i < N; i++ ) |
||
282 | { |
||
283 | iCol = columnIndex( pSrc.a[i].pTab, zCol ); |
||
284 | if ( iCol >= 0 ) |
||
285 | { |
||
286 | //if( piTab ) |
||
287 | { |
||
288 | piTab = i; |
||
289 | piCol = iCol; |
||
290 | } |
||
291 | return 1; |
||
292 | } |
||
293 | } |
||
294 | return 0; |
||
295 | } |
||
296 | |||
297 | /* |
||
298 | ** This function is used to add terms implied by JOIN syntax to the |
||
299 | ** WHERE clause expression of a SELECT statement. The new term, which |
||
300 | ** is ANDed with the existing WHERE clause, is of the form: |
||
301 | ** |
||
302 | ** (vtab1.col1 = tab2.col2) |
||
303 | ** |
||
304 | ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the |
||
305 | ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is |
||
306 | ** column iColRight of tab2. |
||
307 | */ |
||
308 | static void addWhereTerm( |
||
309 | Parse pParse, /* Parsing context */ |
||
310 | SrcList pSrc, /* List of tables in FROM clause */ |
||
311 | int iLeft, /* Index of first table to join in pSrc */ |
||
312 | int iColLeft, /* Index of column in first table */ |
||
313 | int iRight, /* Index of second table in pSrc */ |
||
314 | int iColRight, /* Index of column in second table */ |
||
315 | int isOuterJoin, /* True if this is an OUTER join */ |
||
316 | ref Expr ppWhere /* IN/OUT: The WHERE clause to add to */ |
||
317 | ) |
||
318 | { |
||
319 | sqlite3 db = pParse.db; |
||
320 | Expr pE1; |
||
321 | Expr pE2; |
||
322 | Expr pEq; |
||
323 | |||
324 | Debug.Assert( iLeft < iRight ); |
||
325 | Debug.Assert( pSrc.nSrc > iRight ); |
||
326 | Debug.Assert( pSrc.a[iLeft].pTab != null ); |
||
327 | Debug.Assert( pSrc.a[iRight].pTab != null ); |
||
328 | |||
329 | pE1 = sqlite3CreateColumnExpr( db, pSrc, iLeft, iColLeft ); |
||
330 | pE2 = sqlite3CreateColumnExpr( db, pSrc, iRight, iColRight ); |
||
331 | |||
332 | pEq = sqlite3PExpr( pParse, TK_EQ, pE1, pE2, 0 ); |
||
333 | if ( pEq != null && isOuterJoin != 0 ) |
||
334 | { |
||
335 | ExprSetProperty( pEq, EP_FromJoin ); |
||
336 | Debug.Assert( !ExprHasAnyProperty( pEq, EP_TokenOnly | EP_Reduced ) ); |
||
337 | ExprSetIrreducible( pEq ); |
||
338 | pEq.iRightJoinTable = (i16)pE2.iTable; |
||
339 | } |
||
340 | ppWhere = sqlite3ExprAnd( db, ppWhere, pEq ); |
||
341 | } |
||
342 | |||
343 | /* |
||
344 | ** Set the EP_FromJoin property on all terms of the given expression. |
||
345 | ** And set the Expr.iRightJoinTable to iTable for every term in the |
||
346 | ** expression. |
||
347 | ** |
||
348 | ** The EP_FromJoin property is used on terms of an expression to tell |
||
349 | ** the LEFT OUTER JOIN processing logic that this term is part of the |
||
350 | ** join restriction specified in the ON or USING clause and not a part |
||
351 | ** of the more general WHERE clause. These terms are moved over to the |
||
352 | ** WHERE clause during join processing but we need to remember that they |
||
353 | ** originated in the ON or USING clause. |
||
354 | ** |
||
355 | ** The Expr.iRightJoinTable tells the WHERE clause processing that the |
||
356 | ** expression depends on table iRightJoinTable even if that table is not |
||
357 | ** explicitly mentioned in the expression. That information is needed |
||
358 | ** for cases like this: |
||
359 | ** |
||
360 | ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
||
361 | ** |
||
362 | ** The where clause needs to defer the handling of the t1.x=5 |
||
363 | ** term until after the t2 loop of the join. In that way, a |
||
364 | ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
||
365 | ** defer the handling of t1.x=5, it will be processed immediately |
||
366 | ** after the t1 loop and rows with t1.x!=5 will never appear in |
||
367 | ** the output, which is incorrect. |
||
368 | */ |
||
369 | static void setJoinExpr( Expr p, int iTable ) |
||
370 | { |
||
371 | while ( p != null ) |
||
372 | { |
||
373 | ExprSetProperty( p, EP_FromJoin ); |
||
374 | Debug.Assert( !ExprHasAnyProperty( p, EP_TokenOnly | EP_Reduced ) ); |
||
375 | ExprSetIrreducible( p ); |
||
376 | p.iRightJoinTable = (i16)iTable; |
||
377 | setJoinExpr( p.pLeft, iTable ); |
||
378 | p = p.pRight; |
||
379 | } |
||
380 | } |
||
381 | |||
382 | /* |
||
383 | ** This routine processes the join information for a SELECT statement. |
||
384 | ** ON and USING clauses are converted into extra terms of the WHERE clause. |
||
385 | ** NATURAL joins also create extra WHERE clause terms. |
||
386 | ** |
||
387 | ** The terms of a FROM clause are contained in the Select.pSrc structure. |
||
388 | ** The left most table is the first entry in Select.pSrc. The right-most |
||
389 | ** table is the last entry. The join operator is held in the entry to |
||
390 | ** the left. Thus entry 0 contains the join operator for the join between |
||
391 | ** entries 0 and 1. Any ON or USING clauses associated with the join are |
||
392 | ** also attached to the left entry. |
||
393 | ** |
||
394 | ** This routine returns the number of errors encountered. |
||
395 | */ |
||
396 | static int sqliteProcessJoin( Parse pParse, Select p ) |
||
397 | { |
||
398 | SrcList pSrc; /* All tables in the FROM clause */ |
||
399 | int i; |
||
400 | int j; /* Loop counters */ |
||
401 | SrcList_item pLeft; /* Left table being joined */ |
||
402 | SrcList_item pRight; /* Right table being joined */ |
||
403 | |||
404 | pSrc = p.pSrc; |
||
405 | //pLeft = pSrc.a[0]; |
||
406 | //pRight = pLeft[1]; |
||
407 | for ( i = 0; i < pSrc.nSrc - 1; i++ ) |
||
408 | { |
||
409 | pLeft = pSrc.a[i]; // pLeft ++ |
||
410 | pRight = pSrc.a[i + 1];//Right++, |
||
411 | Table pLeftTab = pLeft.pTab; |
||
412 | Table pRightTab = pRight.pTab; |
||
413 | bool isOuter; |
||
414 | |||
415 | if ( NEVER( pLeftTab == null || pRightTab == null ) ) |
||
416 | continue; |
||
417 | isOuter = ( pRight.jointype & JT_OUTER ) != 0; |
||
418 | |||
419 | /* When the NATURAL keyword is present, add WHERE clause terms for |
||
420 | ** every column that the two tables have in common. |
||
421 | */ |
||
422 | if ( ( pRight.jointype & JT_NATURAL ) != 0 ) |
||
423 | { |
||
424 | if ( pRight.pOn != null || pRight.pUsing != null ) |
||
425 | { |
||
426 | sqlite3ErrorMsg( pParse, "a NATURAL join may not have " + |
||
427 | "an ON or USING clause", string.Empty ); |
||
428 | return 1; |
||
429 | } |
||
430 | for ( j = 0; j < pRightTab.nCol; j++ ) |
||
431 | { |
||
432 | string zName; /* Name of column in the right table */ |
||
433 | int iLeft = 0; /* Matching left table */ |
||
434 | int iLeftCol = 0; /* Matching column in the left table */ |
||
435 | |||
436 | zName = pRightTab.aCol[j].zName; |
||
437 | ////int iRightCol = columnIndex( pRightTab, zName ); |
||
438 | if ( tableAndColumnIndex( pSrc, i + 1, zName, ref iLeft, ref iLeftCol ) != 0 ) |
||
439 | { |
||
440 | addWhereTerm( pParse, pSrc, iLeft, iLeftCol, i + 1, j, |
||
441 | isOuter ? 1 : 0, ref p.pWhere ); |
||
442 | } |
||
443 | } |
||
444 | } |
||
445 | |||
446 | /* Disallow both ON and USING clauses in the same join |
||
447 | */ |
||
448 | if ( pRight.pOn != null && pRight.pUsing != null ) |
||
449 | { |
||
450 | sqlite3ErrorMsg( pParse, "cannot have both ON and USING " + |
||
451 | "clauses in the same join" ); |
||
452 | return 1; |
||
453 | } |
||
454 | |||
455 | /* Add the ON clause to the end of the WHERE clause, connected by |
||
456 | ** an AND operator. |
||
457 | */ |
||
458 | if ( pRight.pOn != null ) |
||
459 | { |
||
460 | if ( isOuter ) |
||
461 | setJoinExpr( pRight.pOn, pRight.iCursor ); |
||
462 | p.pWhere = sqlite3ExprAnd( pParse.db, p.pWhere, pRight.pOn ); |
||
463 | pRight.pOn = null; |
||
464 | } |
||
465 | |||
466 | /* Create extra terms on the WHERE clause for each column named |
||
467 | ** in the USING clause. Example: If the two tables to be joined are |
||
468 | ** A and B and the USING clause names X, Y, and Z, then add this |
||
469 | ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
||
470 | ** Report an error if any column mentioned in the USING clause is |
||
471 | ** not contained in both tables to be joined. |
||
472 | */ |
||
473 | if ( pRight.pUsing != null ) |
||
474 | { |
||
475 | IdList pList = pRight.pUsing; |
||
476 | for ( j = 0; j < pList.nId; j++ ) |
||
477 | { |
||
478 | string zName; /* Name of the term in the USING clause */ |
||
479 | int iLeft = 0; /* Table on the left with matching column name */ |
||
480 | int iLeftCol = 0; /* Column number of matching column on the left */ |
||
481 | int iRightCol; /* Column number of matching column on the right */ |
||
482 | |||
483 | zName = pList.a[j].zName; |
||
484 | iRightCol = columnIndex( pRightTab, zName ); |
||
485 | if ( iRightCol < 0 |
||
486 | || 0 == tableAndColumnIndex( pSrc, i + 1, zName, ref iLeft, ref iLeftCol ) |
||
487 | ) |
||
488 | { |
||
489 | sqlite3ErrorMsg( pParse, "cannot join using column %s - column " + |
||
490 | "not present in both tables", zName ); |
||
491 | return 1; |
||
492 | } |
||
493 | addWhereTerm( pParse, pSrc, iLeft, iLeftCol, i + 1, iRightCol, |
||
494 | isOuter ? 1 : 0, ref p.pWhere ); |
||
495 | } |
||
496 | } |
||
497 | } |
||
498 | return 0; |
||
499 | } |
||
500 | |||
501 | /* |
||
502 | ** Insert code into "v" that will push the record on the top of the |
||
503 | ** stack into the sorter. |
||
504 | */ |
||
505 | static void pushOntoSorter( |
||
506 | Parse pParse, /* Parser context */ |
||
507 | ExprList pOrderBy, /* The ORDER BY clause */ |
||
508 | Select pSelect, /* The whole SELECT statement */ |
||
509 | int regData /* Register holding data to be sorted */ |
||
510 | ) |
||
511 | { |
||
512 | Vdbe v = pParse.pVdbe; |
||
513 | int nExpr = pOrderBy.nExpr; |
||
514 | int regBase = sqlite3GetTempRange( pParse, nExpr + 2 ); |
||
515 | int regRecord = sqlite3GetTempReg( pParse ); |
||
516 | sqlite3ExprCacheClear( pParse ); |
||
517 | sqlite3ExprCodeExprList( pParse, pOrderBy, regBase, false ); |
||
518 | sqlite3VdbeAddOp2( v, OP_Sequence, pOrderBy.iECursor, regBase + nExpr ); |
||
519 | sqlite3ExprCodeMove( pParse, regData, regBase + nExpr + 1, 1 ); |
||
520 | sqlite3VdbeAddOp3( v, OP_MakeRecord, regBase, nExpr + 2, regRecord ); |
||
521 | sqlite3VdbeAddOp2( v, OP_IdxInsert, pOrderBy.iECursor, regRecord ); |
||
522 | sqlite3ReleaseTempReg( pParse, regRecord ); |
||
523 | sqlite3ReleaseTempRange( pParse, regBase, nExpr + 2 ); |
||
524 | if ( pSelect.iLimit != 0 ) |
||
525 | { |
||
526 | int addr1, addr2; |
||
527 | int iLimit; |
||
528 | if ( pSelect.iOffset != 0 ) |
||
529 | { |
||
530 | iLimit = pSelect.iOffset + 1; |
||
531 | } |
||
532 | else |
||
533 | { |
||
534 | iLimit = pSelect.iLimit; |
||
535 | } |
||
536 | addr1 = sqlite3VdbeAddOp1( v, OP_IfZero, iLimit ); |
||
537 | sqlite3VdbeAddOp2( v, OP_AddImm, iLimit, -1 ); |
||
538 | addr2 = sqlite3VdbeAddOp0( v, OP_Goto ); |
||
539 | sqlite3VdbeJumpHere( v, addr1 ); |
||
540 | sqlite3VdbeAddOp1( v, OP_Last, pOrderBy.iECursor ); |
||
541 | sqlite3VdbeAddOp1( v, OP_Delete, pOrderBy.iECursor ); |
||
542 | sqlite3VdbeJumpHere( v, addr2 ); |
||
543 | } |
||
544 | } |
||
545 | |||
546 | /* |
||
547 | ** Add code to implement the OFFSET |
||
548 | */ |
||
549 | static void codeOffset( |
||
550 | Vdbe v, /* Generate code into this VM */ |
||
551 | Select p, /* The SELECT statement being coded */ |
||
552 | int iContinue /* Jump here to skip the current record */ |
||
553 | ) |
||
554 | { |
||
555 | if ( p.iOffset != 0 && iContinue != 0 ) |
||
556 | { |
||
557 | int addr; |
||
558 | sqlite3VdbeAddOp2( v, OP_AddImm, p.iOffset, -1 ); |
||
559 | addr = sqlite3VdbeAddOp1( v, OP_IfNeg, p.iOffset ); |
||
560 | sqlite3VdbeAddOp2( v, OP_Goto, 0, iContinue ); |
||
561 | #if SQLITE_DEBUG |
||
562 | VdbeComment( v, "skip OFFSET records" ); |
||
563 | #endif |
||
564 | sqlite3VdbeJumpHere( v, addr ); |
||
565 | } |
||
566 | } |
||
567 | |||
568 | /* |
||
569 | ** Add code that will check to make sure the N registers starting at iMem |
||
570 | ** form a distinct entry. iTab is a sorting index that holds previously |
||
571 | ** seen combinations of the N values. A new entry is made in iTab |
||
572 | ** if the current N values are new. |
||
573 | ** |
||
574 | ** A jump to addrRepeat is made and the N+1 values are popped from the |
||
575 | ** stack if the top N elements are not distinct. |
||
576 | */ |
||
577 | static void codeDistinct( |
||
578 | Parse pParse, /* Parsing and code generating context */ |
||
579 | int iTab, /* A sorting index used to test for distinctness */ |
||
580 | int addrRepeat, /* Jump to here if not distinct */ |
||
581 | int N, /* Number of elements */ |
||
582 | int iMem /* First element */ |
||
583 | ) |
||
584 | { |
||
585 | Vdbe v; |
||
586 | int r1; |
||
587 | |||
588 | v = pParse.pVdbe; |
||
589 | r1 = sqlite3GetTempReg( pParse ); |
||
590 | sqlite3VdbeAddOp4Int( v, OP_Found, iTab, addrRepeat, iMem, N ); |
||
591 | sqlite3VdbeAddOp3( v, OP_MakeRecord, iMem, N, r1 ); |
||
592 | sqlite3VdbeAddOp2( v, OP_IdxInsert, iTab, r1 ); |
||
593 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
594 | } |
||
595 | |||
596 | #if !SQLITE_OMIT_SUBQUERY |
||
597 | /* |
||
598 | ** Generate an error message when a SELECT is used within a subexpression |
||
599 | ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result |
||
600 | ** column. We do this in a subroutine because the error used to occur |
||
601 | ** in multiple places. (The error only occurs in one place now, but we |
||
602 | ** retain the subroutine to minimize code disruption.) |
||
603 | */ |
||
604 | static bool checkForMultiColumnSelectError( |
||
605 | Parse pParse, /* Parse context. */ |
||
606 | SelectDest pDest, /* Destination of SELECT results */ |
||
607 | int nExpr /* Number of result columns returned by SELECT */ |
||
608 | ) |
||
609 | { |
||
610 | int eDest = pDest.eDest; |
||
611 | if ( nExpr > 1 && ( eDest == SRT_Mem || eDest == SRT_Set ) ) |
||
612 | { |
||
613 | sqlite3ErrorMsg( pParse, "only a single result allowed for " + |
||
614 | "a SELECT that is part of an expression" ); |
||
615 | return true; |
||
616 | } |
||
617 | else |
||
618 | { |
||
619 | return false; |
||
620 | } |
||
621 | } |
||
622 | #endif |
||
623 | |||
624 | /* |
||
625 | ** This routine generates the code for the inside of the inner loop |
||
626 | ** of a SELECT. |
||
627 | ** |
||
628 | ** If srcTab and nColumn are both zero, then the pEList expressions |
||
629 | ** are evaluated in order to get the data for this row. If nColumn>0 |
||
630 | ** then data is pulled from srcTab and pEList is used only to get the |
||
631 | ** datatypes for each column. |
||
632 | */ |
||
633 | static void selectInnerLoop( |
||
634 | Parse pParse, /* The parser context */ |
||
635 | Select p, /* The complete select statement being coded */ |
||
636 | ExprList pEList, /* List of values being extracted */ |
||
637 | int srcTab, /* Pull data from this table */ |
||
638 | int nColumn, /* Number of columns in the source table */ |
||
639 | ExprList pOrderBy, /* If not NULL, sort results using this key */ |
||
640 | int distinct, /* If >=0, make sure results are distinct */ |
||
641 | SelectDest pDest, /* How to dispose of the results */ |
||
642 | int iContinue, /* Jump here to continue with next row */ |
||
643 | int iBreak /* Jump here to break out of the inner loop */ |
||
644 | ) |
||
645 | { |
||
646 | Vdbe v = pParse.pVdbe; |
||
647 | int i; |
||
648 | bool hasDistinct; /* True if the DISTINCT keyword is present */ |
||
649 | int regResult; /* Start of memory holding result set */ |
||
650 | int eDest = pDest.eDest; /* How to dispose of results */ |
||
651 | int iParm = pDest.iParm; /* First argument to disposal method */ |
||
652 | int nResultCol; /* Number of result columns */ |
||
653 | |||
654 | Debug.Assert( v != null ); |
||
655 | if ( NEVER( v == null ) ) |
||
656 | return; |
||
657 | Debug.Assert( pEList != null ); |
||
658 | hasDistinct = distinct >= 0; |
||
659 | if ( pOrderBy == null && !hasDistinct ) |
||
660 | { |
||
661 | codeOffset( v, p, iContinue ); |
||
662 | } |
||
663 | |||
664 | /* Pull the requested columns. |
||
665 | */ |
||
666 | if ( nColumn > 0 ) |
||
667 | { |
||
668 | nResultCol = nColumn; |
||
669 | } |
||
670 | else |
||
671 | { |
||
672 | nResultCol = pEList.nExpr; |
||
673 | } |
||
674 | if ( pDest.iMem == 0 ) |
||
675 | { |
||
676 | pDest.iMem = pParse.nMem + 1; |
||
677 | pDest.nMem = nResultCol; |
||
678 | pParse.nMem += nResultCol; |
||
679 | } |
||
680 | else |
||
681 | { |
||
682 | Debug.Assert( pDest.nMem == nResultCol ); |
||
683 | } |
||
684 | regResult = pDest.iMem; |
||
685 | if ( nColumn > 0 ) |
||
686 | { |
||
687 | for ( i = 0; i < nColumn; i++ ) |
||
688 | { |
||
689 | sqlite3VdbeAddOp3( v, OP_Column, srcTab, i, regResult + i ); |
||
690 | } |
||
691 | } |
||
692 | else if ( eDest != SRT_Exists ) |
||
693 | { |
||
694 | /* If the destination is an EXISTS(...) expression, the actual |
||
695 | ** values returned by the SELECT are not required. |
||
696 | */ |
||
697 | sqlite3ExprCacheClear( pParse ); |
||
698 | sqlite3ExprCodeExprList( pParse, pEList, regResult, eDest == SRT_Output ); |
||
699 | } |
||
700 | nColumn = nResultCol; |
||
701 | |||
702 | /* If the DISTINCT keyword was present on the SELECT statement |
||
703 | ** and this row has been seen before, then do not make this row |
||
704 | ** part of the result. |
||
705 | */ |
||
706 | if ( hasDistinct ) |
||
707 | { |
||
708 | Debug.Assert( pEList != null ); |
||
709 | Debug.Assert( pEList.nExpr == nColumn ); |
||
710 | codeDistinct( pParse, distinct, iContinue, nColumn, regResult ); |
||
711 | if ( pOrderBy == null ) |
||
712 | { |
||
713 | codeOffset( v, p, iContinue ); |
||
714 | } |
||
715 | } |
||
716 | |||
717 | switch ( eDest ) |
||
718 | { |
||
719 | /* In this mode, write each query result to the key of the temporary |
||
720 | ** table iParm. |
||
721 | */ |
||
722 | #if !SQLITE_OMIT_COMPOUND_SELECT |
||
723 | case SRT_Union: |
||
724 | { |
||
725 | int r1; |
||
726 | r1 = sqlite3GetTempReg( pParse ); |
||
727 | sqlite3VdbeAddOp3( v, OP_MakeRecord, regResult, nColumn, r1 ); |
||
728 | sqlite3VdbeAddOp2( v, OP_IdxInsert, iParm, r1 ); |
||
729 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
730 | break; |
||
731 | } |
||
732 | |||
733 | /* Construct a record from the query result, but instead of |
||
734 | ** saving that record, use it as a key to delete elements from |
||
735 | ** the temporary table iParm. |
||
736 | */ |
||
737 | case SRT_Except: |
||
738 | { |
||
739 | sqlite3VdbeAddOp3( v, OP_IdxDelete, iParm, regResult, nColumn ); |
||
740 | break; |
||
741 | } |
||
742 | #endif |
||
743 | |||
744 | /* Store the result as data using a unique key. |
||
745 | */ |
||
746 | case SRT_Table: |
||
747 | case SRT_EphemTab: |
||
748 | { |
||
749 | int r1 = sqlite3GetTempReg( pParse ); |
||
750 | testcase( eDest == SRT_Table ); |
||
751 | testcase( eDest == SRT_EphemTab ); |
||
752 | sqlite3VdbeAddOp3( v, OP_MakeRecord, regResult, nColumn, r1 ); |
||
753 | if ( pOrderBy != null ) |
||
754 | { |
||
755 | pushOntoSorter( pParse, pOrderBy, p, r1 ); |
||
756 | } |
||
757 | else |
||
758 | { |
||
759 | int r2 = sqlite3GetTempReg( pParse ); |
||
760 | sqlite3VdbeAddOp2( v, OP_NewRowid, iParm, r2 ); |
||
761 | sqlite3VdbeAddOp3( v, OP_Insert, iParm, r1, r2 ); |
||
762 | sqlite3VdbeChangeP5( v, OPFLAG_APPEND ); |
||
763 | sqlite3ReleaseTempReg( pParse, r2 ); |
||
764 | } |
||
765 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
766 | break; |
||
767 | } |
||
768 | |||
769 | #if !SQLITE_OMIT_SUBQUERY |
||
770 | /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
||
771 | ** then there should be a single item on the stack. Write this |
||
772 | ** item into the set table with bogus data. |
||
773 | */ |
||
774 | case SRT_Set: |
||
775 | { |
||
776 | Debug.Assert( nColumn == 1 ); |
||
777 | p.affinity = sqlite3CompareAffinity( pEList.a[0].pExpr, pDest.affinity ); |
||
778 | if ( pOrderBy != null ) |
||
779 | { |
||
780 | /* At first glance you would think we could optimize out the |
||
781 | ** ORDER BY in this case since the order of entries in the set |
||
782 | ** does not matter. But there might be a LIMIT clause, in which |
||
783 | ** case the order does matter */ |
||
784 | pushOntoSorter( pParse, pOrderBy, p, regResult ); |
||
785 | } |
||
786 | else |
||
787 | { |
||
788 | int r1 = sqlite3GetTempReg( pParse ); |
||
789 | sqlite3VdbeAddOp4( v, OP_MakeRecord, regResult, 1, r1, p.affinity, 1 ); |
||
790 | sqlite3ExprCacheAffinityChange( pParse, regResult, 1 ); |
||
791 | sqlite3VdbeAddOp2( v, OP_IdxInsert, iParm, r1 ); |
||
792 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
793 | } |
||
794 | break; |
||
795 | } |
||
796 | |||
797 | /* If any row exist in the result set, record that fact and abort. |
||
798 | */ |
||
799 | case SRT_Exists: |
||
800 | { |
||
801 | sqlite3VdbeAddOp2( v, OP_Integer, 1, iParm ); |
||
802 | /* The LIMIT clause will terminate the loop for us */ |
||
803 | break; |
||
804 | } |
||
805 | |||
806 | /* If this is a scalar select that is part of an expression, then |
||
807 | ** store the results in the appropriate memory cell and break out |
||
808 | ** of the scan loop. |
||
809 | */ |
||
810 | case SRT_Mem: |
||
811 | { |
||
812 | Debug.Assert( nColumn == 1 ); |
||
813 | if ( pOrderBy != null ) |
||
814 | { |
||
815 | pushOntoSorter( pParse, pOrderBy, p, regResult ); |
||
816 | } |
||
817 | else |
||
818 | { |
||
819 | sqlite3ExprCodeMove( pParse, regResult, iParm, 1 ); |
||
820 | /* The LIMIT clause will jump out of the loop for us */ |
||
821 | } |
||
822 | break; |
||
823 | } |
||
824 | #endif // * #if !SQLITE_OMIT_SUBQUERY */ |
||
825 | |||
826 | /* Send the data to the callback function or to a subroutine. In the |
||
827 | ** case of a subroutine, the subroutine itself is responsible for |
||
828 | ** popping the data from the stack. |
||
829 | */ |
||
830 | case SRT_Coroutine: |
||
831 | case SRT_Output: |
||
832 | { |
||
833 | testcase( eDest == SRT_Coroutine ); |
||
834 | testcase( eDest == SRT_Output ); |
||
835 | if ( pOrderBy != null ) |
||
836 | { |
||
837 | int r1 = sqlite3GetTempReg( pParse ); |
||
838 | sqlite3VdbeAddOp3( v, OP_MakeRecord, regResult, nColumn, r1 ); |
||
839 | pushOntoSorter( pParse, pOrderBy, p, r1 ); |
||
840 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
841 | } |
||
842 | else if ( eDest == SRT_Coroutine ) |
||
843 | { |
||
844 | sqlite3VdbeAddOp1( v, OP_Yield, pDest.iParm ); |
||
845 | } |
||
846 | else |
||
847 | { |
||
848 | sqlite3VdbeAddOp2( v, OP_ResultRow, regResult, nColumn ); |
||
849 | sqlite3ExprCacheAffinityChange( pParse, regResult, nColumn ); |
||
850 | } |
||
851 | break; |
||
852 | } |
||
853 | |||
854 | #if !SQLITE_OMIT_TRIGGER |
||
855 | /* Discard the results. This is used for SELECT statements inside |
||
856 | ** the body of a TRIGGER. The purpose of such selects is to call |
||
857 | ** user-defined functions that have side effects. We do not care |
||
858 | ** about the actual results of the select. |
||
859 | */ |
||
860 | default: |
||
861 | { |
||
862 | Debug.Assert( eDest == SRT_Discard ); |
||
863 | break; |
||
864 | } |
||
865 | #endif |
||
866 | } |
||
867 | |||
868 | /* Jump to the end of the loop if the LIMIT is reached. Except, if |
||
869 | ** there is a sorter, in which case the sorter has already limited |
||
870 | ** the output for us. |
||
871 | */ |
||
872 | if ( pOrderBy == null && p.iLimit != 0 ) |
||
873 | { |
||
874 | sqlite3VdbeAddOp3( v, OP_IfZero, p.iLimit, iBreak, -1 ); |
||
875 | } |
||
876 | } |
||
877 | |||
878 | /* |
||
879 | ** Given an expression list, generate a KeyInfo structure that records |
||
880 | ** the collating sequence for each expression in that expression list. |
||
881 | ** |
||
882 | ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
||
883 | ** KeyInfo structure is appropriate for initializing a virtual index to |
||
884 | ** implement that clause. If the ExprList is the result set of a SELECT |
||
885 | ** then the KeyInfo structure is appropriate for initializing a virtual |
||
886 | ** index to implement a DISTINCT test. |
||
887 | ** |
||
888 | ** Space to hold the KeyInfo structure is obtain from malloc. The calling |
||
889 | ** function is responsible for seeing that this structure is eventually |
||
890 | ** freed. Add the KeyInfo structure to the P4 field of an opcode using |
||
891 | ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. |
||
892 | */ |
||
893 | static KeyInfo keyInfoFromExprList( Parse pParse, ExprList pList ) |
||
894 | { |
||
895 | sqlite3 db = pParse.db; |
||
896 | int nExpr; |
||
897 | KeyInfo pInfo; |
||
898 | ExprList_item pItem; |
||
899 | int i; |
||
900 | |||
901 | nExpr = pList.nExpr; |
||
902 | pInfo = new KeyInfo();//sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(CollSeq*.Length+1) ); |
||
903 | if ( pInfo != null ) |
||
904 | { |
||
905 | pInfo.aSortOrder = new byte[nExpr];// pInfo.aColl[nExpr]; |
||
906 | pInfo.aColl = new CollSeq[nExpr]; |
||
907 | pInfo.nField = (u16)nExpr; |
||
908 | pInfo.enc = db.aDbStatic[0].pSchema.enc;// ENC(db); |
||
909 | pInfo.db = db; |
||
910 | for ( i = 0; i < nExpr; i++ ) |
||
911 | {//, pItem++){ |
||
912 | pItem = pList.a[i]; |
||
913 | CollSeq pColl; |
||
914 | pColl = sqlite3ExprCollSeq( pParse, pItem.pExpr ); |
||
915 | if ( pColl == null ) |
||
916 | { |
||
917 | pColl = db.pDfltColl; |
||
918 | } |
||
919 | pInfo.aColl[i] = pColl; |
||
920 | pInfo.aSortOrder[i] = (byte)pItem.sortOrder; |
||
921 | } |
||
922 | } |
||
923 | return pInfo; |
||
924 | } |
||
925 | |||
926 | #if !SQLITE_OMIT_COMPOUND_SELECT |
||
927 | /* |
||
928 | ** Name of the connection operator, used for error messages. |
||
929 | */ |
||
930 | static string selectOpName( int id ) |
||
931 | { |
||
932 | string z; |
||
933 | switch ( id ) |
||
934 | { |
||
935 | case TK_ALL: |
||
936 | z = "UNION ALL"; |
||
937 | break; |
||
938 | case TK_INTERSECT: |
||
939 | z = "INTERSECT"; |
||
940 | break; |
||
941 | case TK_EXCEPT: |
||
942 | z = "EXCEPT"; |
||
943 | break; |
||
944 | default: |
||
945 | z = "UNION"; |
||
946 | break; |
||
947 | } |
||
948 | return z; |
||
949 | } |
||
950 | #endif //* SQLITE_OMIT_COMPOUND_SELECT */ |
||
951 | |||
952 | #if !SQLITE_OMIT_EXPLAIN |
||
953 | /* |
||
954 | ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
||
955 | ** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
||
956 | ** where the caption is of the form: |
||
957 | ** |
||
958 | ** "USE TEMP B-TREE FOR xxx" |
||
959 | ** |
||
960 | ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which |
||
961 | ** is determined by the zUsage argument. |
||
962 | */ |
||
963 | static void explainTempTable( Parse pParse, string zUsage ) |
||
964 | { |
||
965 | if ( pParse.explain == 2 ) |
||
966 | { |
||
967 | Vdbe v = pParse.pVdbe; |
||
968 | string zMsg = sqlite3MPrintf( pParse.db, "USE TEMP B-TREE FOR %s", zUsage ); |
||
969 | sqlite3VdbeAddOp4( v, OP_Explain, pParse.iSelectId, 0, 0, zMsg, P4_DYNAMIC ); |
||
970 | } |
||
971 | } |
||
972 | |||
973 | /* |
||
974 | ** Assign expression b to lvalue a. A second, no-op, version of this macro |
||
975 | ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code |
||
976 | ** in sqlite3Select() to assign values to structure member variables that |
||
977 | ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the |
||
978 | ** code with #if !directives. |
||
979 | */ |
||
980 | //# define explainSetInteger(a, b) a = b |
||
981 | static void explainSetInteger( ref int a, int b ) |
||
982 | { |
||
983 | a = b; |
||
984 | } |
||
985 | static void explainSetInteger( ref byte a, int b ) |
||
986 | { |
||
987 | a = (byte)b; |
||
988 | } |
||
989 | #else |
||
990 | /* No-op versions of the explainXXX() functions and macros. */ |
||
991 | //# define explainTempTable(y,z) |
||
992 | static void explainTempTable(ref int a, int b){ a = b;} |
||
993 | |||
994 | //# define explainSetInteger(y,z) |
||
995 | static void explainSetInteger(ref int a, int b){ a = b;} |
||
996 | #endif |
||
997 | |||
998 | #if !(SQLITE_OMIT_EXPLAIN) && !(SQLITE_OMIT_COMPOUND_SELECT) |
||
999 | /* |
||
1000 | ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
||
1001 | ** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
||
1002 | ** where the caption is of one of the two forms: |
||
1003 | ** |
||
1004 | ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" |
||
1005 | ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" |
||
1006 | ** |
||
1007 | ** where iSub1 and iSub2 are the integers passed as the corresponding |
||
1008 | ** function parameters, and op is the text representation of the parameter |
||
1009 | ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, |
||
1010 | ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is |
||
1011 | ** false, or the second form if it is true. |
||
1012 | */ |
||
1013 | static void explainComposite( |
||
1014 | Parse pParse, /* Parse context */ |
||
1015 | int op, /* One of TK_UNION, TK_EXCEPT etc. */ |
||
1016 | int iSub1, /* Subquery id 1 */ |
||
1017 | int iSub2, /* Subquery id 2 */ |
||
1018 | bool bUseTmp /* True if a temp table was used */ |
||
1019 | ) |
||
1020 | { |
||
1021 | Debug.Assert( op == TK_UNION || op == TK_EXCEPT || op == TK_INTERSECT || op == TK_ALL ); |
||
1022 | if ( pParse.explain == 2 ) |
||
1023 | { |
||
1024 | Vdbe v = pParse.pVdbe; |
||
1025 | string zMsg = sqlite3MPrintf( |
||
1026 | pParse.db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, |
||
1027 | bUseTmp ? "USING TEMP B-TREE " : string.Empty, selectOpName( op ) |
||
1028 | ); |
||
1029 | sqlite3VdbeAddOp4( v, OP_Explain, pParse.iSelectId, 0, 0, zMsg, P4_DYNAMIC ); |
||
1030 | } |
||
1031 | } |
||
1032 | |||
1033 | #else |
||
1034 | /* No-op versions of the explainXXX() functions and macros. */ |
||
1035 | //# define explainComposite(v,w,x,y,z) |
||
1036 | static void explainComposite(Parse v, int w,int x,int y,bool z) {} |
||
1037 | #endif |
||
1038 | |||
1039 | |||
1040 | /* |
||
1041 | ** If the inner loop was generated using a non-null pOrderBy argument, |
||
1042 | ** then the results were placed in a sorter. After the loop is terminated |
||
1043 | ** we need to run the sorter and output the results. The following |
||
1044 | ** routine generates the code needed to do that. |
||
1045 | */ |
||
1046 | static void generateSortTail( |
||
1047 | Parse pParse, /* Parsing context */ |
||
1048 | Select p, /* The SELECT statement */ |
||
1049 | Vdbe v, /* Generate code into this VDBE */ |
||
1050 | int nColumn, /* Number of columns of data */ |
||
1051 | SelectDest pDest /* Write the sorted results here */ |
||
1052 | ) |
||
1053 | { |
||
1054 | int addrBreak = sqlite3VdbeMakeLabel( v ); /* Jump here to exit loop */ |
||
1055 | int addrContinue = sqlite3VdbeMakeLabel( v ); /* Jump here for next cycle */ |
||
1056 | int addr; |
||
1057 | int iTab; |
||
1058 | int pseudoTab = 0; |
||
1059 | ExprList pOrderBy = p.pOrderBy; |
||
1060 | |||
1061 | int eDest = pDest.eDest; |
||
1062 | int iParm = pDest.iParm; |
||
1063 | |||
1064 | int regRow; |
||
1065 | int regRowid; |
||
1066 | |||
1067 | iTab = pOrderBy.iECursor; |
||
1068 | regRow = sqlite3GetTempReg( pParse ); |
||
1069 | if ( eDest == SRT_Output || eDest == SRT_Coroutine ) |
||
1070 | { |
||
1071 | pseudoTab = pParse.nTab++; |
||
1072 | sqlite3VdbeAddOp3( v, OP_OpenPseudo, pseudoTab, regRow, nColumn ); |
||
1073 | regRowid = 0; |
||
1074 | } |
||
1075 | else |
||
1076 | { |
||
1077 | regRowid = sqlite3GetTempReg( pParse ); |
||
1078 | } |
||
1079 | addr = 1 + sqlite3VdbeAddOp2( v, OP_Sort, iTab, addrBreak ); |
||
1080 | codeOffset( v, p, addrContinue ); |
||
1081 | sqlite3VdbeAddOp3( v, OP_Column, iTab, pOrderBy.nExpr + 1, regRow ); |
||
1082 | switch ( eDest ) |
||
1083 | { |
||
1084 | case SRT_Table: |
||
1085 | case SRT_EphemTab: |
||
1086 | { |
||
1087 | testcase( eDest == SRT_Table ); |
||
1088 | testcase( eDest == SRT_EphemTab ); |
||
1089 | sqlite3VdbeAddOp2( v, OP_NewRowid, iParm, regRowid ); |
||
1090 | sqlite3VdbeAddOp3( v, OP_Insert, iParm, regRow, regRowid ); |
||
1091 | sqlite3VdbeChangeP5( v, OPFLAG_APPEND ); |
||
1092 | break; |
||
1093 | } |
||
1094 | #if !SQLITE_OMIT_SUBQUERY |
||
1095 | case SRT_Set: |
||
1096 | { |
||
1097 | Debug.Assert( nColumn == 1 ); |
||
1098 | sqlite3VdbeAddOp4( v, OP_MakeRecord, regRow, 1, regRowid, p.affinity, 1 ); |
||
1099 | sqlite3ExprCacheAffinityChange( pParse, regRow, 1 ); |
||
1100 | sqlite3VdbeAddOp2( v, OP_IdxInsert, iParm, regRowid ); |
||
1101 | break; |
||
1102 | } |
||
1103 | case SRT_Mem: |
||
1104 | { |
||
1105 | Debug.Assert( nColumn == 1 ); |
||
1106 | sqlite3ExprCodeMove( pParse, regRow, iParm, 1 ); |
||
1107 | /* The LIMIT clause will terminate the loop for us */ |
||
1108 | break; |
||
1109 | } |
||
1110 | #endif |
||
1111 | default: |
||
1112 | { |
||
1113 | int i; |
||
1114 | Debug.Assert( eDest == SRT_Output || eDest == SRT_Coroutine ); |
||
1115 | testcase( eDest == SRT_Output ); |
||
1116 | testcase( eDest == SRT_Coroutine ); |
||
1117 | for ( i = 0; i < nColumn; i++ ) |
||
1118 | { |
||
1119 | Debug.Assert( regRow != pDest.iMem + i ); |
||
1120 | sqlite3VdbeAddOp3( v, OP_Column, pseudoTab, i, pDest.iMem + i ); |
||
1121 | if ( i == 0 ) |
||
1122 | { |
||
1123 | sqlite3VdbeChangeP5( v, OPFLAG_CLEARCACHE ); |
||
1124 | } |
||
1125 | } |
||
1126 | if ( eDest == SRT_Output ) |
||
1127 | { |
||
1128 | sqlite3VdbeAddOp2( v, OP_ResultRow, pDest.iMem, nColumn ); |
||
1129 | sqlite3ExprCacheAffinityChange( pParse, pDest.iMem, nColumn ); |
||
1130 | } |
||
1131 | else |
||
1132 | { |
||
1133 | sqlite3VdbeAddOp1( v, OP_Yield, pDest.iParm ); |
||
1134 | } |
||
1135 | break; |
||
1136 | } |
||
1137 | } |
||
1138 | sqlite3ReleaseTempReg( pParse, regRow ); |
||
1139 | sqlite3ReleaseTempReg( pParse, regRowid ); |
||
1140 | |||
1141 | /* The bottom of the loop |
||
1142 | */ |
||
1143 | sqlite3VdbeResolveLabel( v, addrContinue ); |
||
1144 | sqlite3VdbeAddOp2( v, OP_Next, iTab, addr ); |
||
1145 | sqlite3VdbeResolveLabel( v, addrBreak ); |
||
1146 | if ( eDest == SRT_Output || eDest == SRT_Coroutine ) |
||
1147 | { |
||
1148 | sqlite3VdbeAddOp2( v, OP_Close, pseudoTab, 0 ); |
||
1149 | } |
||
1150 | |||
1151 | } |
||
1152 | |||
1153 | /* |
||
1154 | ** Return a pointer to a string containing the 'declaration type' of the |
||
1155 | ** expression pExpr. The string may be treated as static by the caller. |
||
1156 | ** |
||
1157 | ** The declaration type is the exact datatype definition extracted from the |
||
1158 | ** original CREATE TABLE statement if the expression is a column. The |
||
1159 | ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
||
1160 | ** is considered a column can be complex in the presence of subqueries. The |
||
1161 | ** result-set expression in all of the following SELECT statements is |
||
1162 | ** considered a column by this function. |
||
1163 | ** |
||
1164 | ** SELECT col FROM tbl; |
||
1165 | ** SELECT (SELECT col FROM tbl; |
||
1166 | ** SELECT (SELECT col FROM tbl); |
||
1167 | ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
||
1168 | ** |
||
1169 | ** The declaration type for any expression other than a column is NULL. |
||
1170 | */ |
||
1171 | static string columnType( |
||
1172 | NameContext pNC, |
||
1173 | Expr pExpr, |
||
1174 | ref string pzOriginDb, |
||
1175 | ref string pzOriginTab, |
||
1176 | ref string pzOriginCol |
||
1177 | ) |
||
1178 | { |
||
1179 | string zType = null; |
||
1180 | string zOriginDb = null; |
||
1181 | string zOriginTab = null; |
||
1182 | string zOriginCol = null; |
||
1183 | int j; |
||
1184 | if ( NEVER( pExpr == null ) || pNC.pSrcList == null ) |
||
1185 | return null; |
||
1186 | |||
1187 | switch ( pExpr.op ) |
||
1188 | { |
||
1189 | case TK_AGG_COLUMN: |
||
1190 | case TK_COLUMN: |
||
1191 | { |
||
1192 | /* The expression is a column. Locate the table the column is being |
||
1193 | ** extracted from in NameContext.pSrcList. This table may be real |
||
1194 | ** database table or a subquery. |
||
1195 | */ |
||
1196 | Table pTab = null; /* Table structure column is extracted from */ |
||
1197 | Select pS = null; /* Select the column is extracted from */ |
||
1198 | int iCol = pExpr.iColumn; /* Index of column in pTab */ |
||
1199 | testcase( pExpr.op == TK_AGG_COLUMN ); |
||
1200 | testcase( pExpr.op == TK_COLUMN ); |
||
1201 | while ( pNC != null && pTab == null ) |
||
1202 | { |
||
1203 | SrcList pTabList = pNC.pSrcList; |
||
1204 | for ( j = 0; j < pTabList.nSrc && pTabList.a[j].iCursor != pExpr.iTable; j++ ) |
||
1205 | ; |
||
1206 | if ( j < pTabList.nSrc ) |
||
1207 | { |
||
1208 | pTab = pTabList.a[j].pTab; |
||
1209 | pS = pTabList.a[j].pSelect; |
||
1210 | } |
||
1211 | else |
||
1212 | { |
||
1213 | pNC = pNC.pNext; |
||
1214 | } |
||
1215 | } |
||
1216 | |||
1217 | if ( pTab == null ) |
||
1218 | { |
||
1219 | /* At one time, code such as "SELECT new.x" within a trigger would |
||
1220 | ** cause this condition to run. Since then, we have restructured how |
||
1221 | ** trigger code is generated and so this condition is no longer |
||
1222 | ** possible. However, it can still be true for statements like |
||
1223 | ** the following: |
||
1224 | ** |
||
1225 | ** CREATE TABLE t1(col INTEGER); |
||
1226 | ** SELECT (SELECT t1.col) FROM FROM t1; |
||
1227 | ** |
||
1228 | ** when columnType() is called on the expression "t1.col" in the |
||
1229 | ** sub-select. In this case, set the column type to NULL, even |
||
1230 | ** though it should really be "INTEGER". |
||
1231 | ** |
||
1232 | ** This is not a problem, as the column type of "t1.col" is never |
||
1233 | ** used. When columnType() is called on the expression |
||
1234 | ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT |
||
1235 | ** branch below. */ |
||
1236 | break; |
||
1237 | } |
||
1238 | |||
1239 | //Debug.Assert( pTab != null && pExpr.pTab == pTab ); |
||
1240 | if ( pS != null ) |
||
1241 | { |
||
1242 | /* The "table" is actually a sub-select or a view in the FROM clause |
||
1243 | ** of the SELECT statement. Return the declaration type and origin |
||
1244 | ** data for the result-set column of the sub-select. |
||
1245 | */ |
||
1246 | if ( iCol >= 0 && ALWAYS( iCol < pS.pEList.nExpr ) ) |
||
1247 | { |
||
1248 | /* If iCol is less than zero, then the expression requests the |
||
1249 | ** rowid of the sub-select or view. This expression is legal (see |
||
1250 | ** test case misc2.2.2) - it always evaluates to NULL. |
||
1251 | */ |
||
1252 | NameContext sNC = new NameContext(); |
||
1253 | Expr p = pS.pEList.a[iCol].pExpr; |
||
1254 | sNC.pSrcList = pS.pSrc; |
||
1255 | sNC.pNext = pNC; |
||
1256 | sNC.pParse = pNC.pParse; |
||
1257 | zType = columnType( sNC, p, ref zOriginDb, ref zOriginTab, ref zOriginCol ); |
||
1258 | } |
||
1259 | } |
||
1260 | else if ( ALWAYS( pTab.pSchema ) ) |
||
1261 | { |
||
1262 | /* A real table */ |
||
1263 | Debug.Assert( pS == null ); |
||
1264 | if ( iCol < 0 ) |
||
1265 | iCol = pTab.iPKey; |
||
1266 | Debug.Assert( iCol == -1 || ( iCol >= 0 && iCol < pTab.nCol ) ); |
||
1267 | if ( iCol < 0 ) |
||
1268 | { |
||
1269 | zType = "INTEGER"; |
||
1270 | zOriginCol = "rowid"; |
||
1271 | } |
||
1272 | else |
||
1273 | { |
||
1274 | zType = pTab.aCol[iCol].zType; |
||
1275 | zOriginCol = pTab.aCol[iCol].zName; |
||
1276 | } |
||
1277 | zOriginTab = pTab.zName; |
||
1278 | if ( pNC.pParse != null ) |
||
1279 | { |
||
1280 | int iDb = sqlite3SchemaToIndex( pNC.pParse.db, pTab.pSchema ); |
||
1281 | zOriginDb = pNC.pParse.db.aDb[iDb].zName; |
||
1282 | } |
||
1283 | } |
||
1284 | break; |
||
1285 | } |
||
1286 | #if !SQLITE_OMIT_SUBQUERY |
||
1287 | case TK_SELECT: |
||
1288 | { |
||
1289 | /* The expression is a sub-select. Return the declaration type and |
||
1290 | ** origin info for the single column in the result set of the SELECT |
||
1291 | ** statement. |
||
1292 | */ |
||
1293 | NameContext sNC = new NameContext(); |
||
1294 | Select pS = pExpr.x.pSelect; |
||
1295 | Expr p = pS.pEList.a[0].pExpr; |
||
1296 | Debug.Assert( ExprHasProperty( pExpr, EP_xIsSelect ) ); |
||
1297 | sNC.pSrcList = pS.pSrc; |
||
1298 | sNC.pNext = pNC; |
||
1299 | sNC.pParse = pNC.pParse; |
||
1300 | zType = columnType( sNC, p, ref zOriginDb, ref zOriginTab, ref zOriginCol ); |
||
1301 | break; |
||
1302 | } |
||
1303 | #endif |
||
1304 | } |
||
1305 | |||
1306 | //if ( pzOriginDb != null ) |
||
1307 | { |
||
1308 | //Debug.Assert( pzOriginTab != null && pzOriginCol != null ); |
||
1309 | pzOriginDb = zOriginDb; |
||
1310 | pzOriginTab = zOriginTab; |
||
1311 | pzOriginCol = zOriginCol; |
||
1312 | } |
||
1313 | return zType; |
||
1314 | } |
||
1315 | |||
1316 | /* |
||
1317 | ** Generate code that will tell the VDBE the declaration types of columns |
||
1318 | ** in the result set. |
||
1319 | */ |
||
1320 | static void generateColumnTypes( |
||
1321 | Parse pParse, /* Parser context */ |
||
1322 | SrcList pTabList, /* List of tables */ |
||
1323 | ExprList pEList /* Expressions defining the result set */ |
||
1324 | ) |
||
1325 | { |
||
1326 | #if !SQLITE_OMIT_DECLTYPE |
||
1327 | Vdbe v = pParse.pVdbe; |
||
1328 | int i; |
||
1329 | NameContext sNC = new NameContext(); |
||
1330 | sNC.pSrcList = pTabList; |
||
1331 | sNC.pParse = pParse; |
||
1332 | for ( i = 0; i < pEList.nExpr; i++ ) |
||
1333 | { |
||
1334 | Expr p = pEList.a[i].pExpr; |
||
1335 | string zType; |
||
1336 | #if SQLITE_ENABLE_COLUMN_METADATA |
||
1337 | string zOrigDb = null; |
||
1338 | string zOrigTab = null; |
||
1339 | string zOrigCol = null; |
||
1340 | zType = columnType( sNC, p, ref zOrigDb, ref zOrigTab, ref zOrigCol ); |
||
1341 | |||
1342 | /* The vdbe must make its own copy of the column-type and other |
||
1343 | ** column specific strings, in case the schema is reset before this |
||
1344 | ** virtual machine is deleted. |
||
1345 | */ |
||
1346 | sqlite3VdbeSetColName( v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT ); |
||
1347 | sqlite3VdbeSetColName( v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT ); |
||
1348 | sqlite3VdbeSetColName( v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT ); |
||
1349 | #else |
||
1350 | string sDummy = null; |
||
1351 | zType = columnType( sNC, p, ref sDummy, ref sDummy, ref sDummy ); |
||
1352 | #endif |
||
1353 | sqlite3VdbeSetColName( v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT ); |
||
1354 | } |
||
1355 | #endif //* SQLITE_OMIT_DECLTYPE */ |
||
1356 | } |
||
1357 | |||
1358 | /* |
||
1359 | ** Generate code that will tell the VDBE the names of columns |
||
1360 | ** in the result set. This information is used to provide the |
||
1361 | ** azCol[] values in the callback. |
||
1362 | */ |
||
1363 | static void generateColumnNames( |
||
1364 | Parse pParse, /* Parser context */ |
||
1365 | SrcList pTabList, /* List of tables */ |
||
1366 | ExprList pEList /* Expressions defining the result set */ |
||
1367 | ) |
||
1368 | { |
||
1369 | Vdbe v = pParse.pVdbe; |
||
1370 | int i, j; |
||
1371 | sqlite3 db = pParse.db; |
||
1372 | bool fullNames; |
||
1373 | bool shortNames; |
||
1374 | |||
1375 | #if !SQLITE_OMIT_EXPLAIN |
||
1376 | /* If this is an EXPLAIN, skip this step */ |
||
1377 | if ( pParse.explain != 0 ) |
||
1378 | { |
||
1379 | return; |
||
1380 | } |
||
1381 | #endif |
||
1382 | |||
1383 | if ( pParse.colNamesSet != 0 || NEVER( v == null ) /*|| db.mallocFailed != 0 */ ) |
||
1384 | return; |
||
1385 | pParse.colNamesSet = 1; |
||
1386 | fullNames = ( db.flags & SQLITE_FullColNames ) != 0; |
||
1387 | shortNames = ( db.flags & SQLITE_ShortColNames ) != 0; |
||
1388 | sqlite3VdbeSetNumCols( v, pEList.nExpr ); |
||
1389 | for ( i = 0; i < pEList.nExpr; i++ ) |
||
1390 | { |
||
1391 | Expr p; |
||
1392 | p = pEList.a[i].pExpr; |
||
1393 | if ( NEVER( p == null ) ) |
||
1394 | continue; |
||
1395 | if ( pEList.a[i].zName != null ) |
||
1396 | { |
||
1397 | string zName = pEList.a[i].zName; |
||
1398 | sqlite3VdbeSetColName( v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT ); |
||
1399 | } |
||
1400 | else if ( ( p.op == TK_COLUMN || p.op == TK_AGG_COLUMN ) && pTabList != null ) |
||
1401 | { |
||
1402 | Table pTab; |
||
1403 | string zCol; |
||
1404 | int iCol = p.iColumn; |
||
1405 | for ( j = 0; ALWAYS( j < pTabList.nSrc ); j++ ) |
||
1406 | { |
||
1407 | if ( pTabList.a[j].iCursor == p.iTable ) |
||
1408 | break; |
||
1409 | } |
||
1410 | Debug.Assert( j < pTabList.nSrc ); |
||
1411 | pTab = pTabList.a[j].pTab; |
||
1412 | if ( iCol < 0 ) |
||
1413 | iCol = pTab.iPKey; |
||
1414 | Debug.Assert( iCol == -1 || ( iCol >= 0 && iCol < pTab.nCol ) ); |
||
1415 | if ( iCol < 0 ) |
||
1416 | { |
||
1417 | zCol = "rowid"; |
||
1418 | } |
||
1419 | else |
||
1420 | { |
||
1421 | zCol = pTab.aCol[iCol].zName; |
||
1422 | } |
||
1423 | if ( !shortNames && !fullNames ) |
||
1424 | { |
||
1425 | sqlite3VdbeSetColName( v, i, COLNAME_NAME, |
||
1426 | pEList.a[i].zSpan, SQLITE_DYNAMIC );//sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); |
||
1427 | } |
||
1428 | else if ( fullNames ) |
||
1429 | { |
||
1430 | string zName; |
||
1431 | zName = sqlite3MPrintf( db, "%s.%s", pTab.zName, zCol ); |
||
1432 | sqlite3VdbeSetColName( v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC ); |
||
1433 | } |
||
1434 | else |
||
1435 | { |
||
1436 | sqlite3VdbeSetColName( v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT ); |
||
1437 | } |
||
1438 | } |
||
1439 | else |
||
1440 | { |
||
1441 | sqlite3VdbeSetColName( v, i, COLNAME_NAME, |
||
1442 | pEList.a[i].zSpan, SQLITE_DYNAMIC );//sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); |
||
1443 | } |
||
1444 | } |
||
1445 | generateColumnTypes( pParse, pTabList, pEList ); |
||
1446 | } |
||
1447 | |||
1448 | /* |
||
1449 | ** Given a an expression list (which is really the list of expressions |
||
1450 | ** that form the result set of a SELECT statement) compute appropriate |
||
1451 | ** column names for a table that would hold the expression list. |
||
1452 | ** |
||
1453 | ** All column names will be unique. |
||
1454 | ** |
||
1455 | ** Only the column names are computed. Column.zType, Column.zColl, |
||
1456 | ** and other fields of Column are zeroed. |
||
1457 | ** |
||
1458 | ** Return SQLITE_OK on success. If a memory allocation error occurs, |
||
1459 | ** store NULL in paCol and 0 in pnCol and return SQLITE_NOMEM. |
||
1460 | */ |
||
1461 | static int selectColumnsFromExprList( |
||
1462 | Parse pParse, /* Parsing context */ |
||
1463 | ExprList pEList, /* Expr list from which to derive column names */ |
||
1464 | ref int pnCol, /* Write the number of columns here */ |
||
1465 | ref Column[] paCol /* Write the new column list here */ |
||
1466 | ) |
||
1467 | { |
||
1468 | sqlite3 db = pParse.db; /* Database connection */ |
||
1469 | int i, j; /* Loop counters */ |
||
1470 | int cnt; /* Index added to make the name unique */ |
||
1471 | Column[] aCol; |
||
1472 | Column pCol; /* For looping over result columns */ |
||
1473 | int nCol; /* Number of columns in the result set */ |
||
1474 | Expr p; /* Expression for a single result column */ |
||
1475 | string zName; /* Column name */ |
||
1476 | int nName; /* Size of name in zName[] */ |
||
1477 | |||
1478 | |||
1479 | pnCol = nCol = pEList.nExpr; |
||
1480 | aCol = paCol = new Column[nCol];//sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); |
||
1481 | //if ( aCol == null ) |
||
1482 | // return SQLITE_NOMEM; |
||
1483 | for ( i = 0; i < nCol; i++ )//, pCol++) |
||
1484 | { |
||
1485 | if ( aCol[i] == null ) |
||
1486 | aCol[i] = new Column(); |
||
1487 | pCol = aCol[i]; |
||
1488 | /* Get an appropriate name for the column |
||
1489 | */ |
||
1490 | p = pEList.a[i].pExpr; |
||
1491 | Debug.Assert( p.pRight == null || ExprHasProperty( p.pRight, EP_IntValue ) |
||
1492 | || p.pRight.u.zToken == null || p.pRight.u.zToken.Length > 0 ); |
||
1493 | if ( pEList.a[i].zName != null && ( zName = pEList.a[i].zName ) != string.Empty ) |
||
1494 | { |
||
1495 | /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
||
1496 | //zName = sqlite3DbStrDup(db, zName); |
||
1497 | } |
||
1498 | else |
||
1499 | { |
||
1500 | Expr pColExpr = p; /* The expression that is the result column name */ |
||
1501 | Table pTab; /* Table associated with this expression */ |
||
1502 | while ( pColExpr.op == TK_DOT ) |
||
1503 | pColExpr = pColExpr.pRight; |
||
1504 | if ( pColExpr.op == TK_COLUMN && ALWAYS( pColExpr.pTab != null ) ) |
||
1505 | { |
||
1506 | /* For columns use the column name name */ |
||
1507 | int iCol = pColExpr.iColumn; |
||
1508 | pTab = pColExpr.pTab; |
||
1509 | if ( iCol < 0 ) |
||
1510 | iCol = pTab.iPKey; |
||
1511 | zName = sqlite3MPrintf( db, "%s", |
||
1512 | iCol >= 0 ? pTab.aCol[iCol].zName : "rowid" ); |
||
1513 | } |
||
1514 | else if ( pColExpr.op == TK_ID ) |
||
1515 | { |
||
1516 | Debug.Assert( !ExprHasProperty( pColExpr, EP_IntValue ) ); |
||
1517 | zName = sqlite3MPrintf( db, "%s", pColExpr.u.zToken ); |
||
1518 | } |
||
1519 | else |
||
1520 | { |
||
1521 | /* Use the original text of the column expression as its name */ |
||
1522 | zName = sqlite3MPrintf( db, "%s", pEList.a[i].zSpan ); |
||
1523 | } |
||
1524 | } |
||
1525 | //if ( db.mallocFailed != 0 ) |
||
1526 | //{ |
||
1527 | // sqlite3DbFree( db, ref zName ); |
||
1528 | // break; |
||
1529 | //} |
||
1530 | |||
1531 | /* Make sure the column name is unique. If the name is not unique, |
||
1532 | ** append a integer to the name so that it becomes unique. |
||
1533 | */ |
||
1534 | nName = sqlite3Strlen30( zName ); |
||
1535 | for ( j = cnt = 0; j < i; j++ ) |
||
1536 | { |
||
1537 | if ( aCol[j].zName.Equals( zName, StringComparison.OrdinalIgnoreCase ) ) |
||
1538 | { |
||
1539 | string zNewName; |
||
1540 | //zName[nName] = 0; |
||
1541 | zNewName = sqlite3MPrintf( db, "%s:%d", zName.Substring( 0, nName ), ++cnt ); |
||
1542 | sqlite3DbFree( db, ref zName ); |
||
1543 | zName = zNewName; |
||
1544 | j = -1; |
||
1545 | if ( zName.Length == 0 ) |
||
1546 | break; |
||
1547 | } |
||
1548 | } |
||
1549 | pCol.zName = zName; |
||
1550 | } |
||
1551 | //if ( db.mallocFailed != 0 ) |
||
1552 | //{ |
||
1553 | // for ( j = 0 ; j < i ; j++ ) |
||
1554 | // { |
||
1555 | // sqlite3DbFree( db, aCol[j].zName ); |
||
1556 | // } |
||
1557 | // sqlite3DbFree( db, aCol ); |
||
1558 | // paCol = null; |
||
1559 | // pnCol = 0; |
||
1560 | // return SQLITE_NOMEM; |
||
1561 | //} |
||
1562 | return SQLITE_OK; |
||
1563 | } |
||
1564 | |||
1565 | /* |
||
1566 | ** Add type and collation information to a column list based on |
||
1567 | ** a SELECT statement. |
||
1568 | ** |
||
1569 | ** The column list presumably came from selectColumnNamesFromExprList(). |
||
1570 | ** The column list has only names, not types or collations. This |
||
1571 | ** routine goes through and adds the types and collations. |
||
1572 | ** |
||
1573 | ** This routine requires that all identifiers in the SELECT |
||
1574 | ** statement be resolved. |
||
1575 | */ |
||
1576 | static void selectAddColumnTypeAndCollation( |
||
1577 | Parse pParse, /* Parsing contexts */ |
||
1578 | int nCol, /* Number of columns */ |
||
1579 | Column[] aCol, /* List of columns */ |
||
1580 | Select pSelect /* SELECT used to determine types and collations */ |
||
1581 | ) |
||
1582 | { |
||
1583 | ////sqlite3 db = pParse.db; |
||
1584 | NameContext sNC; |
||
1585 | Column pCol; |
||
1586 | CollSeq pColl; |
||
1587 | int i; |
||
1588 | Expr p; |
||
1589 | ExprList_item[] a; |
||
1590 | |||
1591 | Debug.Assert( pSelect != null ); |
||
1592 | Debug.Assert( ( pSelect.selFlags & SF_Resolved ) != 0 ); |
||
1593 | Debug.Assert( nCol == pSelect.pEList.nExpr /*|| db.mallocFailed != 0 */ ); |
||
1594 | // if ( db.mallocFailed != 0 ) return; |
||
1595 | sNC = new NameContext();// memset( &sNC, 0, sizeof( sNC ) ); |
||
1596 | sNC.pSrcList = pSelect.pSrc; |
||
1597 | a = pSelect.pEList.a; |
||
1598 | for ( i = 0; i < nCol; i++ )//, pCol++ ) |
||
1599 | { |
||
1600 | pCol = aCol[i]; |
||
1601 | p = a[i].pExpr; |
||
1602 | string bDummy = null; |
||
1603 | pCol.zType = columnType( sNC, p, ref bDummy, ref bDummy, ref bDummy );// sqlite3DbStrDup( db, columnType( sNC, p, 0, 0, 0 ) ); |
||
1604 | pCol.affinity = sqlite3ExprAffinity( p ); |
||
1605 | if ( pCol.affinity == 0 ) |
||
1606 | pCol.affinity = SQLITE_AFF_NONE; |
||
1607 | pColl = sqlite3ExprCollSeq( pParse, p ); |
||
1608 | if ( pColl != null ) |
||
1609 | { |
||
1610 | pCol.zColl = pColl.zName;// sqlite3DbStrDup( db, pColl.zName ); |
||
1611 | } |
||
1612 | } |
||
1613 | } |
||
1614 | |||
1615 | /* |
||
1616 | ** Given a SELECT statement, generate a Table structure that describes |
||
1617 | ** the result set of that SELECT. |
||
1618 | */ |
||
1619 | static Table sqlite3ResultSetOfSelect( Parse pParse, Select pSelect ) |
||
1620 | { |
||
1621 | Table pTab; |
||
1622 | sqlite3 db = pParse.db; |
||
1623 | int savedFlags; |
||
1624 | |||
1625 | savedFlags = db.flags; |
||
1626 | db.flags &= ~SQLITE_FullColNames; |
||
1627 | db.flags |= SQLITE_ShortColNames; |
||
1628 | sqlite3SelectPrep( pParse, pSelect, null ); |
||
1629 | if ( pParse.nErr != 0 ) |
||
1630 | return null; |
||
1631 | while ( pSelect.pPrior != null ) |
||
1632 | pSelect = pSelect.pPrior; |
||
1633 | db.flags = savedFlags; |
||
1634 | pTab = new Table();// sqlite3DbMallocZero( db, sizeof( Table ) ); |
||
1635 | if ( pTab == null ) |
||
1636 | { |
||
1637 | return null; |
||
1638 | } |
||
1639 | /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside |
||
1640 | ** is disabled */ |
||
1641 | Debug.Assert( db.lookaside.bEnabled == 0 ); |
||
1642 | pTab.nRef = 1; |
||
1643 | pTab.zName = null; |
||
1644 | pTab.nRowEst = 1000000; |
||
1645 | selectColumnsFromExprList( pParse, pSelect.pEList, ref pTab.nCol, ref pTab.aCol ); |
||
1646 | selectAddColumnTypeAndCollation( pParse, pTab.nCol, pTab.aCol, pSelect ); |
||
1647 | pTab.iPKey = -1; |
||
1648 | //if ( db.mallocFailed != 0 ) |
||
1649 | //{ |
||
1650 | // sqlite3DeleteTable(db, ref pTab ); |
||
1651 | // return null; |
||
1652 | //} |
||
1653 | return pTab; |
||
1654 | } |
||
1655 | |||
1656 | /* |
||
1657 | ** Get a VDBE for the given parser context. Create a new one if necessary. |
||
1658 | ** If an error occurs, return NULL and leave a message in pParse. |
||
1659 | */ |
||
1660 | static Vdbe sqlite3GetVdbe( Parse pParse ) |
||
1661 | { |
||
1662 | Vdbe v = pParse.pVdbe; |
||
1663 | if ( v == null ) |
||
1664 | { |
||
1665 | v = pParse.pVdbe = sqlite3VdbeCreate( pParse.db ); |
||
1666 | #if !SQLITE_OMIT_TRACE |
||
1667 | if ( v != null ) |
||
1668 | { |
||
1669 | sqlite3VdbeAddOp0( v, OP_Trace ); |
||
1670 | } |
||
1671 | #endif |
||
1672 | } |
||
1673 | return v; |
||
1674 | } |
||
1675 | |||
1676 | |||
1677 | /* |
||
1678 | ** Compute the iLimit and iOffset fields of the SELECT based on the |
||
1679 | ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
||
1680 | ** that appear in the original SQL statement after the LIMIT and OFFSET |
||
1681 | ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
||
1682 | ** are the integer memory register numbers for counters used to compute |
||
1683 | ** the limit and offset. If there is no limit and/or offset, then |
||
1684 | ** iLimit and iOffset are negative. |
||
1685 | ** |
||
1686 | ** This routine changes the values of iLimit and iOffset only if |
||
1687 | ** a limit or offset is defined by pLimit and pOffset. iLimit and |
||
1688 | ** iOffset should have been preset to appropriate default values |
||
1689 | ** (usually but not always -1) prior to calling this routine. |
||
1690 | ** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
||
1691 | ** redefined. The UNION ALL operator uses this property to force |
||
1692 | ** the reuse of the same limit and offset registers across multiple |
||
1693 | ** SELECT statements. |
||
1694 | */ |
||
1695 | static void computeLimitRegisters( Parse pParse, Select p, int iBreak ) |
||
1696 | { |
||
1697 | Vdbe v = null; |
||
1698 | int iLimit = 0; |
||
1699 | int iOffset; |
||
1700 | int addr1, n = 0; |
||
1701 | if ( p.iLimit != 0 ) |
||
1702 | return; |
||
1703 | |||
1704 | /* |
||
1705 | ** "LIMIT -1" always shows all rows. There is some |
||
1706 | ** contraversy about what the correct behavior should be. |
||
1707 | ** The current implementation interprets "LIMIT 0" to mean |
||
1708 | ** no rows. |
||
1709 | */ |
||
1710 | sqlite3ExprCacheClear( pParse ); |
||
1711 | Debug.Assert( p.pOffset == null || p.pLimit != null ); |
||
1712 | if ( p.pLimit != null ) |
||
1713 | { |
||
1714 | p.iLimit = iLimit = ++pParse.nMem; |
||
1715 | v = sqlite3GetVdbe( pParse ); |
||
1716 | if ( NEVER( v == null ) ) |
||
1717 | return; /* VDBE should have already been allocated */ |
||
1718 | if ( sqlite3ExprIsInteger( p.pLimit, ref n ) != 0 ) |
||
1719 | { |
||
1720 | sqlite3VdbeAddOp2( v, OP_Integer, n, iLimit ); |
||
1721 | VdbeComment( v, "LIMIT counter" ); |
||
1722 | if ( n == 0 ) |
||
1723 | { |
||
1724 | sqlite3VdbeAddOp2( v, OP_Goto, 0, iBreak ); |
||
1725 | } |
||
1726 | else |
||
1727 | { |
||
1728 | if ( p.nSelectRow > (double)n ) |
||
1729 | p.nSelectRow = (double)n; |
||
1730 | } |
||
1731 | } |
||
1732 | else |
||
1733 | { |
||
1734 | sqlite3ExprCode( pParse, p.pLimit, iLimit ); |
||
1735 | sqlite3VdbeAddOp1( v, OP_MustBeInt, iLimit ); |
||
1736 | #if SQLITE_DEBUG |
||
1737 | VdbeComment( v, "LIMIT counter" ); |
||
1738 | #endif |
||
1739 | sqlite3VdbeAddOp2( v, OP_IfZero, iLimit, iBreak ); |
||
1740 | } |
||
1741 | if ( p.pOffset != null ) |
||
1742 | { |
||
1743 | p.iOffset = iOffset = ++pParse.nMem; |
||
1744 | pParse.nMem++; /* Allocate an extra register for limit+offset */ |
||
1745 | sqlite3ExprCode( pParse, p.pOffset, iOffset ); |
||
1746 | sqlite3VdbeAddOp1( v, OP_MustBeInt, iOffset ); |
||
1747 | #if SQLITE_DEBUG |
||
1748 | VdbeComment( v, "OFFSET counter" ); |
||
1749 | #endif |
||
1750 | addr1 = sqlite3VdbeAddOp1( v, OP_IfPos, iOffset ); |
||
1751 | sqlite3VdbeAddOp2( v, OP_Integer, 0, iOffset ); |
||
1752 | sqlite3VdbeJumpHere( v, addr1 ); |
||
1753 | sqlite3VdbeAddOp3( v, OP_Add, iLimit, iOffset, iOffset + 1 ); |
||
1754 | #if SQLITE_DEBUG |
||
1755 | VdbeComment( v, "LIMIT+OFFSET" ); |
||
1756 | #endif |
||
1757 | addr1 = sqlite3VdbeAddOp1( v, OP_IfPos, iLimit ); |
||
1758 | sqlite3VdbeAddOp2( v, OP_Integer, -1, iOffset + 1 ); |
||
1759 | sqlite3VdbeJumpHere( v, addr1 ); |
||
1760 | } |
||
1761 | } |
||
1762 | } |
||
1763 | |||
1764 | #if !SQLITE_OMIT_COMPOUND_SELECT |
||
1765 | /* |
||
1766 | ** Return the appropriate collating sequence for the iCol-th column of |
||
1767 | ** the result set for the compound-select statement "p". Return NULL if |
||
1768 | ** the column has no default collating sequence. |
||
1769 | ** |
||
1770 | ** The collating sequence for the compound select is taken from the |
||
1771 | ** left-most term of the select that has a collating sequence. |
||
1772 | */ |
||
1773 | static CollSeq multiSelectCollSeq( Parse pParse, Select p, int iCol ) |
||
1774 | { |
||
1775 | CollSeq pRet; |
||
1776 | if ( p.pPrior != null ) |
||
1777 | { |
||
1778 | pRet = multiSelectCollSeq( pParse, p.pPrior, iCol ); |
||
1779 | } |
||
1780 | else |
||
1781 | { |
||
1782 | pRet = null; |
||
1783 | } |
||
1784 | Debug.Assert( iCol >= 0 ); |
||
1785 | if ( pRet == null && iCol < p.pEList.nExpr ) |
||
1786 | { |
||
1787 | pRet = sqlite3ExprCollSeq( pParse, p.pEList.a[iCol].pExpr ); |
||
1788 | } |
||
1789 | return pRet; |
||
1790 | } |
||
1791 | #endif // * SQLITE_OMIT_COMPOUND_SELECT */ |
||
1792 | |||
1793 | /* Forward reference */ |
||
1794 | //static int multiSelectOrderBy( |
||
1795 | // Parse* pParse, /* Parsing context */ |
||
1796 | // Select* p, /* The right-most of SELECTs to be coded */ |
||
1797 | // SelectDest* pDest /* What to do with query results */ |
||
1798 | //); |
||
1799 | |||
1800 | #if !SQLITE_OMIT_COMPOUND_SELECT |
||
1801 | /* |
||
1802 | ** This routine is called to process a compound query form from |
||
1803 | ** two or more separate queries using UNION, UNION ALL, EXCEPT, or |
||
1804 | ** INTERSECT |
||
1805 | ** |
||
1806 | ** "p" points to the right-most of the two queries. the query on the |
||
1807 | ** left is p.pPrior. The left query could also be a compound query |
||
1808 | ** in which case this routine will be called recursively. |
||
1809 | ** |
||
1810 | ** The results of the total query are to be written into a destination |
||
1811 | ** of type eDest with parameter iParm. |
||
1812 | ** |
||
1813 | ** Example 1: Consider a three-way compound SQL statement. |
||
1814 | ** |
||
1815 | ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
||
1816 | ** |
||
1817 | ** This statement is parsed up as follows: |
||
1818 | ** |
||
1819 | ** SELECT c FROM t3 |
||
1820 | ** | |
||
1821 | ** `----. SELECT b FROM t2 |
||
1822 | ** | |
||
1823 | ** `-----. SELECT a FROM t1 |
||
1824 | ** |
||
1825 | ** The arrows in the diagram above represent the Select.pPrior pointer. |
||
1826 | ** So if this routine is called with p equal to the t3 query, then |
||
1827 | ** pPrior will be the t2 query. p.op will be TK_UNION in this case. |
||
1828 | ** |
||
1829 | ** Notice that because of the way SQLite parses compound SELECTs, the |
||
1830 | ** individual selects always group from left to right. |
||
1831 | */ |
||
1832 | static int multiSelect( |
||
1833 | Parse pParse, /* Parsing context */ |
||
1834 | Select p, /* The right-most of SELECTs to be coded */ |
||
1835 | SelectDest pDest /* What to do with query results */ |
||
1836 | ) |
||
1837 | { |
||
1838 | int rc = SQLITE_OK; /* Success code from a subroutine */ |
||
1839 | Select pPrior; /* Another SELECT immediately to our left */ |
||
1840 | Vdbe v; /* Generate code to this VDBE */ |
||
1841 | SelectDest dest = new SelectDest(); /* Alternative data destination */ |
||
1842 | Select pDelete = null; /* Chain of simple selects to delete */ |
||
1843 | sqlite3 db; /* Database connection */ |
||
1844 | #if !SQLITE_OMIT_EXPLAIN |
||
1845 | int iSub1 = 0; /* EQP id of left-hand query */ |
||
1846 | int iSub2 = 0; /* EQP id of right-hand query */ |
||
1847 | #endif |
||
1848 | |||
1849 | /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
||
1850 | ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
||
1851 | */ |
||
1852 | Debug.Assert( p != null && p.pPrior != null ); /* Calling function guarantees this much */ |
||
1853 | db = pParse.db; |
||
1854 | pPrior = p.pPrior; |
||
1855 | Debug.Assert( pPrior.pRightmost != pPrior ); |
||
1856 | Debug.Assert( pPrior.pRightmost == p.pRightmost ); |
||
1857 | dest = pDest; |
||
1858 | if ( pPrior.pOrderBy != null ) |
||
1859 | { |
||
1860 | sqlite3ErrorMsg( pParse, "ORDER BY clause should come after %s not before", |
||
1861 | selectOpName( p.op ) ); |
||
1862 | rc = 1; |
||
1863 | goto multi_select_end; |
||
1864 | } |
||
1865 | if ( pPrior.pLimit != null ) |
||
1866 | { |
||
1867 | sqlite3ErrorMsg( pParse, "LIMIT clause should come after %s not before", |
||
1868 | selectOpName( p.op ) ); |
||
1869 | rc = 1; |
||
1870 | goto multi_select_end; |
||
1871 | } |
||
1872 | |||
1873 | v = sqlite3GetVdbe( pParse ); |
||
1874 | Debug.Assert( v != null ); /* The VDBE already created by calling function */ |
||
1875 | |||
1876 | /* Create the destination temporary table if necessary |
||
1877 | */ |
||
1878 | if ( dest.eDest == SRT_EphemTab ) |
||
1879 | { |
||
1880 | Debug.Assert( p.pEList != null ); |
||
1881 | sqlite3VdbeAddOp2( v, OP_OpenEphemeral, dest.iParm, p.pEList.nExpr ); |
||
1882 | sqlite3VdbeChangeP5( v, BTREE_UNORDERED ); |
||
1883 | dest.eDest = SRT_Table; |
||
1884 | } |
||
1885 | |||
1886 | /* Make sure all SELECTs in the statement have the same number of elements |
||
1887 | ** in their result sets. |
||
1888 | */ |
||
1889 | Debug.Assert( p.pEList != null && pPrior.pEList != null ); |
||
1890 | if ( p.pEList.nExpr != pPrior.pEList.nExpr ) |
||
1891 | { |
||
1892 | sqlite3ErrorMsg( pParse, "SELECTs to the left and right of %s" + |
||
1893 | " do not have the same number of result columns", selectOpName( p.op ) ); |
||
1894 | rc = 1; |
||
1895 | goto multi_select_end; |
||
1896 | } |
||
1897 | |||
1898 | /* Compound SELECTs that have an ORDER BY clause are handled separately. |
||
1899 | */ |
||
1900 | if ( p.pOrderBy != null ) |
||
1901 | { |
||
1902 | return multiSelectOrderBy( pParse, p, pDest ); |
||
1903 | } |
||
1904 | |||
1905 | /* Generate code for the left and right SELECT statements. |
||
1906 | */ |
||
1907 | switch ( p.op ) |
||
1908 | { |
||
1909 | case TK_ALL: |
||
1910 | { |
||
1911 | int addr = 0; |
||
1912 | int nLimit = 0; |
||
1913 | Debug.Assert( pPrior.pLimit == null ); |
||
1914 | pPrior.pLimit = p.pLimit; |
||
1915 | pPrior.pOffset = p.pOffset; |
||
1916 | explainSetInteger( ref iSub1, pParse.iNextSelectId ); |
||
1917 | rc = sqlite3Select( pParse, pPrior, ref dest ); |
||
1918 | p.pLimit = null; |
||
1919 | p.pOffset = null; |
||
1920 | if ( rc != 0 ) |
||
1921 | { |
||
1922 | goto multi_select_end; |
||
1923 | } |
||
1924 | p.pPrior = null; |
||
1925 | p.iLimit = pPrior.iLimit; |
||
1926 | p.iOffset = pPrior.iOffset; |
||
1927 | if ( p.iLimit != 0 ) |
||
1928 | { |
||
1929 | addr = sqlite3VdbeAddOp1( v, OP_IfZero, p.iLimit ); |
||
1930 | #if SQLITE_DEBUG |
||
1931 | VdbeComment( v, "Jump ahead if LIMIT reached" ); |
||
1932 | #endif |
||
1933 | } |
||
1934 | explainSetInteger( ref iSub2, pParse.iNextSelectId ); |
||
1935 | rc = sqlite3Select( pParse, p, ref dest ); |
||
1936 | testcase( rc != SQLITE_OK ); |
||
1937 | pDelete = p.pPrior; |
||
1938 | p.pPrior = pPrior; |
||
1939 | p.nSelectRow += pPrior.nSelectRow; |
||
1940 | if ( pPrior.pLimit != null |
||
1941 | && sqlite3ExprIsInteger( pPrior.pLimit, ref nLimit ) != 0 |
||
1942 | && p.nSelectRow > (double)nLimit |
||
1943 | ) |
||
1944 | { |
||
1945 | p.nSelectRow = (double)nLimit; |
||
1946 | } |
||
1947 | if ( addr != 0 ) |
||
1948 | { |
||
1949 | sqlite3VdbeJumpHere( v, addr ); |
||
1950 | } |
||
1951 | break; |
||
1952 | } |
||
1953 | case TK_EXCEPT: |
||
1954 | case TK_UNION: |
||
1955 | { |
||
1956 | int unionTab; /* VdbeCursor number of the temporary table holding result */ |
||
1957 | u8 op = 0; /* One of the SRT_ operations to apply to self */ |
||
1958 | int priorOp; /* The SRT_ operation to apply to prior selects */ |
||
1959 | Expr pLimit, pOffset; /* Saved values of p.nLimit and p.nOffset */ |
||
1960 | int addr; |
||
1961 | SelectDest uniondest = new SelectDest(); |
||
1962 | |||
1963 | testcase( p.op == TK_EXCEPT ); |
||
1964 | testcase( p.op == TK_UNION ); |
||
1965 | priorOp = SRT_Union; |
||
1966 | if ( dest.eDest == priorOp && ALWAYS( null == p.pLimit && null == p.pOffset ) ) |
||
1967 | { |
||
1968 | /* We can reuse a temporary table generated by a SELECT to our |
||
1969 | ** right. |
||
1970 | */ |
||
1971 | Debug.Assert( p.pRightmost != p ); /* Can only happen for leftward elements |
||
1972 | ** of a 3-way or more compound */ |
||
1973 | Debug.Assert( p.pLimit == null ); /* Not allowed on leftward elements */ |
||
1974 | Debug.Assert( p.pOffset == null ); /* Not allowed on leftward elements */ |
||
1975 | unionTab = dest.iParm; |
||
1976 | } |
||
1977 | else |
||
1978 | { |
||
1979 | /* We will need to create our own temporary table to hold the |
||
1980 | ** intermediate results. |
||
1981 | */ |
||
1982 | unionTab = pParse.nTab++; |
||
1983 | Debug.Assert( p.pOrderBy == null ); |
||
1984 | addr = sqlite3VdbeAddOp2( v, OP_OpenEphemeral, unionTab, 0 ); |
||
1985 | Debug.Assert( p.addrOpenEphm[0] == -1 ); |
||
1986 | p.addrOpenEphm[0] = addr; |
||
1987 | p.pRightmost.selFlags |= SF_UsesEphemeral; |
||
1988 | Debug.Assert( p.pEList != null ); |
||
1989 | } |
||
1990 | |||
1991 | /* Code the SELECT statements to our left |
||
1992 | */ |
||
1993 | Debug.Assert( pPrior.pOrderBy == null ); |
||
1994 | sqlite3SelectDestInit( uniondest, priorOp, unionTab ); |
||
1995 | explainSetInteger( ref iSub1, pParse.iNextSelectId ); |
||
1996 | rc = sqlite3Select( pParse, pPrior, ref uniondest ); |
||
1997 | if ( rc != 0 ) |
||
1998 | { |
||
1999 | goto multi_select_end; |
||
2000 | } |
||
2001 | |||
2002 | /* Code the current SELECT statement |
||
2003 | */ |
||
2004 | if ( p.op == TK_EXCEPT ) |
||
2005 | { |
||
2006 | op = SRT_Except; |
||
2007 | } |
||
2008 | else |
||
2009 | { |
||
2010 | Debug.Assert( p.op == TK_UNION ); |
||
2011 | op = SRT_Union; |
||
2012 | } |
||
2013 | p.pPrior = null; |
||
2014 | pLimit = p.pLimit; |
||
2015 | p.pLimit = null; |
||
2016 | pOffset = p.pOffset; |
||
2017 | p.pOffset = null; |
||
2018 | uniondest.eDest = op; |
||
2019 | explainSetInteger( ref iSub2, pParse.iNextSelectId ); |
||
2020 | rc = sqlite3Select( pParse, p, ref uniondest ); |
||
2021 | testcase( rc != SQLITE_OK ); |
||
2022 | /* Query flattening in sqlite3Select() might refill p.pOrderBy. |
||
2023 | ** Be sure to delete p.pOrderBy, therefore, to avoid a memory leak. */ |
||
2024 | sqlite3ExprListDelete( db, ref p.pOrderBy ); |
||
2025 | pDelete = p.pPrior; |
||
2026 | p.pPrior = pPrior; |
||
2027 | p.pOrderBy = null; |
||
2028 | if ( p.op == TK_UNION ) |
||
2029 | p.nSelectRow += pPrior.nSelectRow; |
||
2030 | sqlite3ExprDelete( db, ref p.pLimit ); |
||
2031 | p.pLimit = pLimit; |
||
2032 | p.pOffset = pOffset; |
||
2033 | p.iLimit = 0; |
||
2034 | p.iOffset = 0; |
||
2035 | |||
2036 | /* Convert the data in the temporary table into whatever form |
||
2037 | ** it is that we currently need. |
||
2038 | */ |
||
2039 | Debug.Assert( unionTab == dest.iParm || dest.eDest != priorOp ); |
||
2040 | if ( dest.eDest != priorOp ) |
||
2041 | { |
||
2042 | int iCont, iBreak, iStart; |
||
2043 | Debug.Assert( p.pEList != null ); |
||
2044 | if ( dest.eDest == SRT_Output ) |
||
2045 | { |
||
2046 | Select pFirst = p; |
||
2047 | while ( pFirst.pPrior != null ) |
||
2048 | pFirst = pFirst.pPrior; |
||
2049 | generateColumnNames( pParse, null, pFirst.pEList ); |
||
2050 | } |
||
2051 | iBreak = sqlite3VdbeMakeLabel( v ); |
||
2052 | iCont = sqlite3VdbeMakeLabel( v ); |
||
2053 | computeLimitRegisters( pParse, p, iBreak ); |
||
2054 | sqlite3VdbeAddOp2( v, OP_Rewind, unionTab, iBreak ); |
||
2055 | iStart = sqlite3VdbeCurrentAddr( v ); |
||
2056 | selectInnerLoop( pParse, p, p.pEList, unionTab, p.pEList.nExpr, |
||
2057 | null, -1, dest, iCont, iBreak ); |
||
2058 | sqlite3VdbeResolveLabel( v, iCont ); |
||
2059 | sqlite3VdbeAddOp2( v, OP_Next, unionTab, iStart ); |
||
2060 | sqlite3VdbeResolveLabel( v, iBreak ); |
||
2061 | sqlite3VdbeAddOp2( v, OP_Close, unionTab, 0 ); |
||
2062 | } |
||
2063 | break; |
||
2064 | } |
||
2065 | default: |
||
2066 | Debug.Assert( p.op == TK_INTERSECT ); |
||
2067 | { |
||
2068 | int tab1, tab2; |
||
2069 | int iCont, iBreak, iStart; |
||
2070 | Expr pLimit, pOffset; |
||
2071 | int addr; |
||
2072 | SelectDest intersectdest = new SelectDest(); |
||
2073 | int r1; |
||
2074 | |||
2075 | /* INTERSECT is different from the others since it requires |
||
2076 | ** two temporary tables. Hence it has its own case. Begin |
||
2077 | ** by allocating the tables we will need. |
||
2078 | */ |
||
2079 | tab1 = pParse.nTab++; |
||
2080 | tab2 = pParse.nTab++; |
||
2081 | Debug.Assert( p.pOrderBy == null ); |
||
2082 | |||
2083 | addr = sqlite3VdbeAddOp2( v, OP_OpenEphemeral, tab1, 0 ); |
||
2084 | Debug.Assert( p.addrOpenEphm[0] == -1 ); |
||
2085 | p.addrOpenEphm[0] = addr; |
||
2086 | p.pRightmost.selFlags |= SF_UsesEphemeral; |
||
2087 | Debug.Assert( p.pEList != null ); |
||
2088 | |||
2089 | /* Code the SELECTs to our left into temporary table "tab1". |
||
2090 | */ |
||
2091 | sqlite3SelectDestInit( intersectdest, SRT_Union, tab1 ); |
||
2092 | explainSetInteger( ref iSub1, pParse.iNextSelectId ); |
||
2093 | rc = sqlite3Select( pParse, pPrior, ref intersectdest ); |
||
2094 | if ( rc != 0 ) |
||
2095 | { |
||
2096 | goto multi_select_end; |
||
2097 | } |
||
2098 | |||
2099 | /* Code the current SELECT into temporary table "tab2" |
||
2100 | */ |
||
2101 | addr = sqlite3VdbeAddOp2( v, OP_OpenEphemeral, tab2, 0 ); |
||
2102 | Debug.Assert( p.addrOpenEphm[1] == -1 ); |
||
2103 | p.addrOpenEphm[1] = addr; |
||
2104 | p.pPrior = null; |
||
2105 | pLimit = p.pLimit; |
||
2106 | p.pLimit = null; |
||
2107 | pOffset = p.pOffset; |
||
2108 | p.pOffset = null; |
||
2109 | intersectdest.iParm = tab2; |
||
2110 | explainSetInteger( ref iSub2, pParse.iNextSelectId ); |
||
2111 | rc = sqlite3Select( pParse, p, ref intersectdest ); |
||
2112 | testcase( rc != SQLITE_OK ); |
||
2113 | p.pPrior = pPrior; |
||
2114 | if ( p.nSelectRow > pPrior.nSelectRow ) |
||
2115 | p.nSelectRow = pPrior.nSelectRow; |
||
2116 | sqlite3ExprDelete( db, ref p.pLimit ); |
||
2117 | p.pLimit = pLimit; |
||
2118 | p.pOffset = pOffset; |
||
2119 | |||
2120 | /* Generate code to take the intersection of the two temporary |
||
2121 | ** tables. |
||
2122 | */ |
||
2123 | Debug.Assert( p.pEList != null ); |
||
2124 | if ( dest.eDest == SRT_Output ) |
||
2125 | { |
||
2126 | Select pFirst = p; |
||
2127 | while ( pFirst.pPrior != null ) |
||
2128 | pFirst = pFirst.pPrior; |
||
2129 | generateColumnNames( pParse, null, pFirst.pEList ); |
||
2130 | } |
||
2131 | iBreak = sqlite3VdbeMakeLabel( v ); |
||
2132 | iCont = sqlite3VdbeMakeLabel( v ); |
||
2133 | computeLimitRegisters( pParse, p, iBreak ); |
||
2134 | sqlite3VdbeAddOp2( v, OP_Rewind, tab1, iBreak ); |
||
2135 | r1 = sqlite3GetTempReg( pParse ); |
||
2136 | iStart = sqlite3VdbeAddOp2( v, OP_RowKey, tab1, r1 ); |
||
2137 | sqlite3VdbeAddOp4Int( v, OP_NotFound, tab2, iCont, r1, 0 ); |
||
2138 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
2139 | selectInnerLoop( pParse, p, p.pEList, tab1, p.pEList.nExpr, |
||
2140 | null, -1, dest, iCont, iBreak ); |
||
2141 | sqlite3VdbeResolveLabel( v, iCont ); |
||
2142 | sqlite3VdbeAddOp2( v, OP_Next, tab1, iStart ); |
||
2143 | sqlite3VdbeResolveLabel( v, iBreak ); |
||
2144 | sqlite3VdbeAddOp2( v, OP_Close, tab2, 0 ); |
||
2145 | sqlite3VdbeAddOp2( v, OP_Close, tab1, 0 ); |
||
2146 | break; |
||
2147 | } |
||
2148 | } |
||
2149 | |||
2150 | explainComposite( pParse, p.op, iSub1, iSub2, p.op != TK_ALL ); |
||
2151 | |||
2152 | /* Compute collating sequences used by |
||
2153 | ** temporary tables needed to implement the compound select. |
||
2154 | ** Attach the KeyInfo structure to all temporary tables. |
||
2155 | ** |
||
2156 | ** This section is run by the right-most SELECT statement only. |
||
2157 | ** SELECT statements to the left always skip this part. The right-most |
||
2158 | ** SELECT might also skip this part if it has no ORDER BY clause and |
||
2159 | ** no temp tables are required. |
||
2160 | */ |
||
2161 | if ( ( p.selFlags & SF_UsesEphemeral ) != 0 ) |
||
2162 | { |
||
2163 | int i; /* Loop counter */ |
||
2164 | KeyInfo pKeyInfo; /* Collating sequence for the result set */ |
||
2165 | Select pLoop; /* For looping through SELECT statements */ |
||
2166 | CollSeq apColl; /* For looping through pKeyInfo.aColl[] */ |
||
2167 | int nCol; /* Number of columns in result set */ |
||
2168 | |||
2169 | Debug.Assert( p.pRightmost == p ); |
||
2170 | nCol = p.pEList.nExpr; |
||
2171 | pKeyInfo = new KeyInfo(); //sqlite3DbMallocZero(db, |
||
2172 | pKeyInfo.aColl = new CollSeq[nCol]; //sizeof(*pKeyInfo)+nCol*(CollSeq*.Length + 1)); |
||
2173 | //if ( pKeyInfo == null ) |
||
2174 | //{ |
||
2175 | // rc = SQLITE_NOMEM; |
||
2176 | // goto multi_select_end; |
||
2177 | //} |
||
2178 | |||
2179 | pKeyInfo.enc = db.aDbStatic[0].pSchema.enc;// ENC( pParse.db ); |
||
2180 | pKeyInfo.nField = (u16)nCol; |
||
2181 | |||
2182 | for ( i = 0; i < nCol; i++ ) |
||
2183 | {//, apColl++){ |
||
2184 | apColl = multiSelectCollSeq( pParse, p, i ); |
||
2185 | if ( null == apColl ) |
||
2186 | { |
||
2187 | apColl = db.pDfltColl; |
||
2188 | } |
||
2189 | pKeyInfo.aColl[i] = apColl; |
||
2190 | } |
||
2191 | |||
2192 | for ( pLoop = p; pLoop != null; pLoop = pLoop.pPrior ) |
||
2193 | { |
||
2194 | for ( i = 0; i < 2; i++ ) |
||
2195 | { |
||
2196 | int addr = pLoop.addrOpenEphm[i]; |
||
2197 | if ( addr < 0 ) |
||
2198 | { |
||
2199 | /* If [0] is unused then [1] is also unused. So we can |
||
2200 | ** always safely abort as soon as the first unused slot is found */ |
||
2201 | Debug.Assert( pLoop.addrOpenEphm[1] < 0 ); |
||
2202 | break; |
||
2203 | } |
||
2204 | sqlite3VdbeChangeP2( v, addr, nCol ); |
||
2205 | sqlite3VdbeChangeP4( v, addr, pKeyInfo, P4_KEYINFO ); |
||
2206 | pLoop.addrOpenEphm[i] = -1; |
||
2207 | } |
||
2208 | } |
||
2209 | sqlite3DbFree( db, ref pKeyInfo ); |
||
2210 | } |
||
2211 | |||
2212 | multi_select_end: |
||
2213 | pDest.iMem = dest.iMem; |
||
2214 | pDest.nMem = dest.nMem; |
||
2215 | sqlite3SelectDelete( db, ref pDelete ); |
||
2216 | return rc; |
||
2217 | } |
||
2218 | #endif // * SQLITE_OMIT_COMPOUND_SELECT */ |
||
2219 | |||
2220 | /* |
||
2221 | ** Code an output subroutine for a coroutine implementation of a |
||
2222 | ** SELECT statment. |
||
2223 | ** |
||
2224 | ** The data to be output is contained in pIn.iMem. There are |
||
2225 | ** pIn.nMem columns to be output. pDest is where the output should |
||
2226 | ** be sent. |
||
2227 | ** |
||
2228 | ** regReturn is the number of the register holding the subroutine |
||
2229 | ** return address. |
||
2230 | ** |
||
2231 | ** If regPrev>0 then it is the first register in a vector that |
||
2232 | ** records the previous output. mem[regPrev] is a flag that is false |
||
2233 | ** if there has been no previous output. If regPrev>0 then code is |
||
2234 | ** generated to suppress duplicates. pKeyInfo is used for comparing |
||
2235 | ** keys. |
||
2236 | ** |
||
2237 | ** If the LIMIT found in p.iLimit is reached, jump immediately to |
||
2238 | ** iBreak. |
||
2239 | */ |
||
2240 | static int generateOutputSubroutine( |
||
2241 | Parse pParse, /* Parsing context */ |
||
2242 | Select p, /* The SELECT statement */ |
||
2243 | SelectDest pIn, /* Coroutine supplying data */ |
||
2244 | SelectDest pDest, /* Where to send the data */ |
||
2245 | int regReturn, /* The return address register */ |
||
2246 | int regPrev, /* Previous result register. No uniqueness if 0 */ |
||
2247 | KeyInfo pKeyInfo, /* For comparing with previous entry */ |
||
2248 | int p4type, /* The p4 type for pKeyInfo */ |
||
2249 | int iBreak /* Jump here if we hit the LIMIT */ |
||
2250 | ) |
||
2251 | { |
||
2252 | Vdbe v = pParse.pVdbe; |
||
2253 | int iContinue; |
||
2254 | int addr; |
||
2255 | |||
2256 | addr = sqlite3VdbeCurrentAddr( v ); |
||
2257 | iContinue = sqlite3VdbeMakeLabel( v ); |
||
2258 | |||
2259 | /* Suppress duplicates for UNION, EXCEPT, and INTERSECT |
||
2260 | */ |
||
2261 | if ( regPrev != 0 ) |
||
2262 | { |
||
2263 | int j1, j2; |
||
2264 | j1 = sqlite3VdbeAddOp1( v, OP_IfNot, regPrev ); |
||
2265 | j2 = sqlite3VdbeAddOp4( v, OP_Compare, pIn.iMem, regPrev + 1, pIn.nMem, |
||
2266 | pKeyInfo, p4type ); |
||
2267 | sqlite3VdbeAddOp3( v, OP_Jump, j2 + 2, iContinue, j2 + 2 ); |
||
2268 | sqlite3VdbeJumpHere( v, j1 ); |
||
2269 | sqlite3ExprCodeCopy( pParse, pIn.iMem, regPrev + 1, pIn.nMem ); |
||
2270 | sqlite3VdbeAddOp2( v, OP_Integer, 1, regPrev ); |
||
2271 | } |
||
2272 | //if ( pParse.db.mallocFailed != 0 ) return 0; |
||
2273 | |||
2274 | /* Suppress the the first OFFSET entries if there is an OFFSET clause |
||
2275 | */ |
||
2276 | codeOffset( v, p, iContinue ); |
||
2277 | |||
2278 | switch ( pDest.eDest ) |
||
2279 | { |
||
2280 | /* Store the result as data using a unique key. |
||
2281 | */ |
||
2282 | case SRT_Table: |
||
2283 | case SRT_EphemTab: |
||
2284 | { |
||
2285 | int r1 = sqlite3GetTempReg( pParse ); |
||
2286 | int r2 = sqlite3GetTempReg( pParse ); |
||
2287 | testcase( pDest.eDest == SRT_Table ); |
||
2288 | testcase( pDest.eDest == SRT_EphemTab ); |
||
2289 | sqlite3VdbeAddOp3( v, OP_MakeRecord, pIn.iMem, pIn.nMem, r1 ); |
||
2290 | sqlite3VdbeAddOp2( v, OP_NewRowid, pDest.iParm, r2 ); |
||
2291 | sqlite3VdbeAddOp3( v, OP_Insert, pDest.iParm, r1, r2 ); |
||
2292 | sqlite3VdbeChangeP5( v, OPFLAG_APPEND ); |
||
2293 | sqlite3ReleaseTempReg( pParse, r2 ); |
||
2294 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
2295 | break; |
||
2296 | } |
||
2297 | |||
2298 | #if !SQLITE_OMIT_SUBQUERY |
||
2299 | /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
||
2300 | ** then there should be a single item on the stack. Write this |
||
2301 | ** item into the set table with bogus data. |
||
2302 | */ |
||
2303 | case SRT_Set: |
||
2304 | { |
||
2305 | int r1; |
||
2306 | Debug.Assert( pIn.nMem == 1 ); |
||
2307 | p.affinity = |
||
2308 | sqlite3CompareAffinity( p.pEList.a[0].pExpr, pDest.affinity ); |
||
2309 | r1 = sqlite3GetTempReg( pParse ); |
||
2310 | sqlite3VdbeAddOp4( v, OP_MakeRecord, pIn.iMem, 1, r1, p.affinity, 1 ); |
||
2311 | sqlite3ExprCacheAffinityChange( pParse, pIn.iMem, 1 ); |
||
2312 | sqlite3VdbeAddOp2( v, OP_IdxInsert, pDest.iParm, r1 ); |
||
2313 | sqlite3ReleaseTempReg( pParse, r1 ); |
||
2314 | break; |
||
2315 | } |
||
2316 | |||
2317 | #if FALSE //* Never occurs on an ORDER BY query */ |
||
2318 | /* If any row exist in the result set, record that fact and abort. |
||
2319 | */ |
||
2320 | case SRT_Exists: { |
||
2321 | sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest.iParm); |
||
2322 | /* The LIMIT clause will terminate the loop for us */ |
||
2323 | break; |
||
2324 | } |
||
2325 | #endif |
||
2326 | |||
2327 | /* If this is a scalar select that is part of an expression, then |
||
2328 | ** store the results in the appropriate memory cell and break out |
||
2329 | ** of the scan loop. |
||
2330 | */ |
||
2331 | case SRT_Mem: |
||
2332 | { |
||
2333 | Debug.Assert( pIn.nMem == 1 ); |
||
2334 | sqlite3ExprCodeMove( pParse, pIn.iMem, pDest.iParm, 1 ); |
||
2335 | /* The LIMIT clause will jump out of the loop for us */ |
||
2336 | break; |
||
2337 | } |
||
2338 | #endif //* #if !SQLITE_OMIT_SUBQUERY */ |
||
2339 | |||
2340 | /* The results are stored in a sequence of registers |
||
2341 | ** starting at pDest.iMem. Then the co-routine yields. |
||
2342 | */ |
||
2343 | case SRT_Coroutine: |
||
2344 | { |
||
2345 | if ( pDest.iMem == 0 ) |
||
2346 | { |
||
2347 | pDest.iMem = sqlite3GetTempRange( pParse, pIn.nMem ); |
||
2348 | pDest.nMem = pIn.nMem; |
||
2349 | } |
||
2350 | sqlite3ExprCodeMove( pParse, pIn.iMem, pDest.iMem, pDest.nMem ); |
||
2351 | sqlite3VdbeAddOp1( v, OP_Yield, pDest.iParm ); |
||
2352 | break; |
||
2353 | } |
||
2354 | |||
2355 | /* If none of the above, then the result destination must be |
||
2356 | ** SRT_Output. This routine is never called with any other |
||
2357 | ** destination other than the ones handled above or SRT_Output. |
||
2358 | ** |
||
2359 | ** For SRT_Output, results are stored in a sequence of registers. |
||
2360 | ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to |
||
2361 | ** return the next row of result. |
||
2362 | */ |
||
2363 | default: |
||
2364 | { |
||
2365 | Debug.Assert( pDest.eDest == SRT_Output ); |
||
2366 | sqlite3VdbeAddOp2( v, OP_ResultRow, pIn.iMem, pIn.nMem ); |
||
2367 | sqlite3ExprCacheAffinityChange( pParse, pIn.iMem, pIn.nMem ); |
||
2368 | break; |
||
2369 | } |
||
2370 | } |
||
2371 | |||
2372 | /* Jump to the end of the loop if the LIMIT is reached. |
||
2373 | */ |
||
2374 | if ( p.iLimit != 0 ) |
||
2375 | { |
||
2376 | sqlite3VdbeAddOp3( v, OP_IfZero, p.iLimit, iBreak, -1 ); |
||
2377 | } |
||
2378 | |||
2379 | /* Generate the subroutine return |
||
2380 | */ |
||
2381 | sqlite3VdbeResolveLabel( v, iContinue ); |
||
2382 | sqlite3VdbeAddOp1( v, OP_Return, regReturn ); |
||
2383 | |||
2384 | return addr; |
||
2385 | } |
||
2386 | |||
2387 | /* |
||
2388 | ** Alternative compound select code generator for cases when there |
||
2389 | ** is an ORDER BY clause. |
||
2390 | ** |
||
2391 | ** We assume a query of the following form: |
||
2392 | ** |
||
2393 | ** <selectA> <operator> <selectB> ORDER BY <orderbylist> |
||
2394 | ** |
||
2395 | ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea |
||
2396 | ** is to code both <selectA> and <selectB> with the ORDER BY clause as |
||
2397 | ** co-routines. Then run the co-routines in parallel and merge the results |
||
2398 | ** into the output. In addition to the two coroutines (called selectA and |
||
2399 | ** selectB) there are 7 subroutines: |
||
2400 | ** |
||
2401 | ** outA: Move the output of the selectA coroutine into the output |
||
2402 | ** of the compound query. |
||
2403 | ** |
||
2404 | ** outB: Move the output of the selectB coroutine into the output |
||
2405 | ** of the compound query. (Only generated for UNION and |
||
2406 | ** UNION ALL. EXCEPT and INSERTSECT never output a row that |
||
2407 | ** appears only in B.) |
||
2408 | ** |
||
2409 | ** AltB: Called when there is data from both coroutines and A<B. |
||
2410 | ** |
||
2411 | ** AeqB: Called when there is data from both coroutines and A==B. |
||
2412 | ** |
||
2413 | ** AgtB: Called when there is data from both coroutines and A>B. |
||
2414 | ** |
||
2415 | ** EofA: Called when data is exhausted from selectA. |
||
2416 | ** |
||
2417 | ** EofB: Called when data is exhausted from selectB. |
||
2418 | ** |
||
2419 | ** The implementation of the latter five subroutines depend on which |
||
2420 | ** <operator> is used: |
||
2421 | ** |
||
2422 | ** |
||
2423 | ** UNION ALL UNION EXCEPT INTERSECT |
||
2424 | ** ------------- ----------------- -------------- ----------------- |
||
2425 | ** AltB: outA, nextA outA, nextA outA, nextA nextA |
||
2426 | ** |
||
2427 | ** AeqB: outA, nextA nextA nextA outA, nextA |
||
2428 | ** |
||
2429 | ** AgtB: outB, nextB outB, nextB nextB nextB |
||
2430 | ** |
||
2431 | ** EofA: outB, nextB outB, nextB halt halt |
||
2432 | ** |
||
2433 | ** EofB: outA, nextA outA, nextA outA, nextA halt |
||
2434 | ** |
||
2435 | ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA |
||
2436 | ** causes an immediate jump to EofA and an EOF on B following nextB causes |
||
2437 | ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or |
||
2438 | ** following nextX causes a jump to the end of the select processing. |
||
2439 | ** |
||
2440 | ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled |
||
2441 | ** within the output subroutine. The regPrev register set holds the previously |
||
2442 | ** output value. A comparison is made against this value and the output |
||
2443 | ** is skipped if the next results would be the same as the previous. |
||
2444 | ** |
||
2445 | ** The implementation plan is to implement the two coroutines and seven |
||
2446 | ** subroutines first, then put the control logic at the bottom. Like this: |
||
2447 | ** |
||
2448 | ** goto Init |
||
2449 | ** coA: coroutine for left query (A) |
||
2450 | ** coB: coroutine for right query (B) |
||
2451 | ** outA: output one row of A |
||
2452 | ** outB: output one row of B (UNION and UNION ALL only) |
||
2453 | ** EofA: ... |
||
2454 | ** EofB: ... |
||
2455 | ** AltB: ... |
||
2456 | ** AeqB: ... |
||
2457 | ** AgtB: ... |
||
2458 | ** Init: initialize coroutine registers |
||
2459 | ** yield coA |
||
2460 | ** if eof(A) goto EofA |
||
2461 | ** yield coB |
||
2462 | ** if eof(B) goto EofB |
||
2463 | ** Cmpr: Compare A, B |
||
2464 | ** Jump AltB, AeqB, AgtB |
||
2465 | ** End: ... |
||
2466 | ** |
||
2467 | ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not |
||
2468 | ** actually called using Gosub and they do not Return. EofA and EofB loop |
||
2469 | ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, |
||
2470 | ** and AgtB jump to either L2 or to one of EofA or EofB. |
||
2471 | */ |
||
2472 | #if !SQLITE_OMIT_COMPOUND_SELECT |
||
2473 | static int multiSelectOrderBy( |
||
2474 | Parse pParse, /* Parsing context */ |
||
2475 | Select p, /* The right-most of SELECTs to be coded */ |
||
2476 | SelectDest pDest /* What to do with query results */ |
||
2477 | ) |
||
2478 | { |
||
2479 | int i, j; /* Loop counters */ |
||
2480 | Select pPrior; /* Another SELECT immediately to our left */ |
||
2481 | Vdbe v; /* Generate code to this VDBE */ |
||
2482 | SelectDest destA = new SelectDest(); /* Destination for coroutine A */ |
||
2483 | SelectDest destB = new SelectDest(); /* Destination for coroutine B */ |
||
2484 | int regAddrA; /* Address register for select-A coroutine */ |
||
2485 | int regEofA; /* Flag to indicate when select-A is complete */ |
||
2486 | int regAddrB; /* Address register for select-B coroutine */ |
||
2487 | int regEofB; /* Flag to indicate when select-B is complete */ |
||
2488 | int addrSelectA; /* Address of the select-A coroutine */ |
||
2489 | int addrSelectB; /* Address of the select-B coroutine */ |
||
2490 | int regOutA; /* Address register for the output-A subroutine */ |
||
2491 | int regOutB; /* Address register for the output-B subroutine */ |
||
2492 | int addrOutA; /* Address of the output-A subroutine */ |
||
2493 | int addrOutB = 0; /* Address of the output-B subroutine */ |
||
2494 | int addrEofA; /* Address of the select-A-exhausted subroutine */ |
||
2495 | int addrEofB; /* Address of the select-B-exhausted subroutine */ |
||
2496 | int addrAltB; /* Address of the A<B subroutine */ |
||
2497 | int addrAeqB; /* Address of the A==B subroutine */ |
||
2498 | int addrAgtB; /* Address of the A>B subroutine */ |
||
2499 | int regLimitA; /* Limit register for select-A */ |
||
2500 | int regLimitB; /* Limit register for select-A */ |
||
2501 | int regPrev; /* A range of registers to hold previous output */ |
||
2502 | int savedLimit; /* Saved value of p.iLimit */ |
||
2503 | int savedOffset; /* Saved value of p.iOffset */ |
||
2504 | int labelCmpr; /* Label for the start of the merge algorithm */ |
||
2505 | int labelEnd; /* Label for the end of the overall SELECT stmt */ |
||
2506 | int j1; /* Jump instructions that get retargetted */ |
||
2507 | int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ |
||
2508 | KeyInfo pKeyDup = null; /* Comparison information for duplicate removal */ |
||
2509 | KeyInfo pKeyMerge; /* Comparison information for merging rows */ |
||
2510 | sqlite3 db; /* Database connection */ |
||
2511 | ExprList pOrderBy; /* The ORDER BY clause */ |
||
2512 | int nOrderBy; /* Number of terms in the ORDER BY clause */ |
||
2513 | int[] aPermute; /* Mapping from ORDER BY terms to result set columns */ |
||
2514 | #if !SQLITE_OMIT_EXPLAIN |
||
2515 | int iSub1 = 0; /* EQP id of left-hand query */ |
||
2516 | int iSub2 = 0; /* EQP id of right-hand query */ |
||
2517 | #endif |
||
2518 | |||
2519 | Debug.Assert( p.pOrderBy != null ); |
||
2520 | Debug.Assert( pKeyDup == null ); /* "Managed" code needs this. Ticket #3382. */ |
||
2521 | db = pParse.db; |
||
2522 | v = pParse.pVdbe; |
||
2523 | Debug.Assert( v != null ); /* Already thrown the error if VDBE alloc failed */ |
||
2524 | labelEnd = sqlite3VdbeMakeLabel( v ); |
||
2525 | labelCmpr = sqlite3VdbeMakeLabel( v ); |
||
2526 | |||
2527 | |||
2528 | /* Patch up the ORDER BY clause |
||
2529 | */ |
||
2530 | op = p.op; |
||
2531 | pPrior = p.pPrior; |
||
2532 | Debug.Assert( pPrior.pOrderBy == null ); |
||
2533 | pOrderBy = p.pOrderBy; |
||
2534 | Debug.Assert( pOrderBy != null ); |
||
2535 | nOrderBy = pOrderBy.nExpr; |
||
2536 | |||
2537 | /* For operators other than UNION ALL we have to make sure that |
||
2538 | ** the ORDER BY clause covers every term of the result set. Add |
||
2539 | ** terms to the ORDER BY clause as necessary. |
||
2540 | */ |
||
2541 | if ( op != TK_ALL ) |
||
2542 | { |
||
2543 | for ( i = 1; /* db.mallocFailed == 0 && */ i <= p.pEList.nExpr; i++ ) |
||
2544 | { |
||
2545 | ExprList_item pItem; |
||
2546 | for ( j = 0; j < nOrderBy; j++ )//, pItem++) |
||
2547 | { |
||
2548 | pItem = pOrderBy.a[j]; |
||
2549 | Debug.Assert( pItem.iCol > 0 ); |
||
2550 | if ( pItem.iCol == i ) |
||
2551 | break; |
||
2552 | } |
||
2553 | if ( j == nOrderBy ) |
||
2554 | { |
||
2555 | Expr pNew = sqlite3Expr( db, TK_INTEGER, null ); |
||
2556 | //if ( pNew == null ) |
||
2557 | // return SQLITE_NOMEM; |
||
2558 | pNew.flags |= EP_IntValue; |
||
2559 | pNew.u.iValue = i; |
||
2560 | pOrderBy = sqlite3ExprListAppend( pParse, pOrderBy, pNew ); |
||
2561 | pOrderBy.a[nOrderBy++].iCol = (u16)i; |
||
2562 | } |
||
2563 | } |
||
2564 | } |
||
2565 | |||
2566 | /* Compute the comparison permutation and keyinfo that is used with |
||
2567 | ** the permutation used to determine if the next |
||
2568 | ** row of results comes from selectA or selectB. Also add explicit |
||
2569 | ** collations to the ORDER BY clause terms so that when the subqueries |
||
2570 | ** to the right and the left are evaluated, they use the correct |
||
2571 | ** collation. |
||
2572 | */ |
||
2573 | aPermute = new int[nOrderBy];// sqlite3DbMallocRaw( db, sizeof( int ) * nOrderBy ); |
||
2574 | if ( aPermute != null ) |
||
2575 | { |
||
2576 | ExprList_item pItem; |
||
2577 | for ( i = 0; i < nOrderBy; i++ )//, pItem++) |
||
2578 | { |
||
2579 | pItem = pOrderBy.a[i]; |
||
2580 | Debug.Assert( pItem.iCol > 0 && pItem.iCol <= p.pEList.nExpr ); |
||
2581 | aPermute[i] = pItem.iCol - 1; |
||
2582 | } |
||
2583 | pKeyMerge = new KeyInfo();// sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq)+1)); |
||
2584 | if ( pKeyMerge != null ) |
||
2585 | { |
||
2586 | pKeyMerge.aColl = new CollSeq[nOrderBy]; |
||
2587 | pKeyMerge.aSortOrder = new byte[nOrderBy];//(u8)&pKeyMerge.aColl[nOrderBy]; |
||
2588 | pKeyMerge.nField = (u16)nOrderBy; |
||
2589 | pKeyMerge.enc = ENC( db ); |
||
2590 | for ( i = 0; i < nOrderBy; i++ ) |
||
2591 | { |
||
2592 | CollSeq pColl; |
||
2593 | Expr pTerm = pOrderBy.a[i].pExpr; |
||
2594 | if ( ( pTerm.flags & EP_ExpCollate ) != 0 ) |
||
2595 | { |
||
2596 | pColl = pTerm.pColl; |
||
2597 | } |
||
2598 | else |
||
2599 | { |
||
2600 | pColl = multiSelectCollSeq( pParse, p, aPermute[i] ); |
||
2601 | pTerm.flags |= EP_ExpCollate; |
||
2602 | pTerm.pColl = pColl; |
||
2603 | } |
||
2604 | pKeyMerge.aColl[i] = pColl; |
||
2605 | pKeyMerge.aSortOrder[i] = (byte)pOrderBy.a[i].sortOrder; |
||
2606 | } |
||
2607 | } |
||
2608 | } |
||
2609 | else |
||
2610 | { |
||
2611 | pKeyMerge = null; |
||
2612 | } |
||
2613 | |||
2614 | /* Reattach the ORDER BY clause to the query. |
||
2615 | */ |
||
2616 | p.pOrderBy = pOrderBy; |
||
2617 | pPrior.pOrderBy = sqlite3ExprListDup( pParse.db, pOrderBy, 0 ); |
||
2618 | |||
2619 | /* Allocate a range of temporary registers and the KeyInfo needed |
||
2620 | ** for the logic that removes duplicate result rows when the |
||
2621 | ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). |
||
2622 | */ |
||
2623 | if ( op == TK_ALL ) |
||
2624 | { |
||
2625 | regPrev = 0; |
||
2626 | } |
||
2627 | else |
||
2628 | { |
||
2629 | int nExpr = p.pEList.nExpr; |
||
2630 | Debug.Assert( nOrderBy >= nExpr /*|| db.mallocFailed != 0 */ ); |
||
2631 | regPrev = sqlite3GetTempRange( pParse, nExpr + 1 ); |
||
2632 | sqlite3VdbeAddOp2( v, OP_Integer, 0, regPrev ); |
||
2633 | pKeyDup = new KeyInfo();//sqlite3DbMallocZero(db, |
||
2634 | //sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq)+1) ); |
||
2635 | if ( pKeyDup != null ) |
||
2636 | { |
||
2637 | pKeyDup.aColl = new CollSeq[nExpr]; |
||
2638 | pKeyDup.aSortOrder = new byte[nExpr];//(u8)&pKeyDup.aColl[nExpr]; |
||
2639 | pKeyDup.nField = (u16)nExpr; |
||
2640 | pKeyDup.enc = ENC( db ); |
||
2641 | for ( i = 0; i < nExpr; i++ ) |
||
2642 | { |
||
2643 | pKeyDup.aColl[i] = multiSelectCollSeq( pParse, p, i ); |
||
2644 | pKeyDup.aSortOrder[i] = 0; |
||
2645 | } |
||
2646 | } |
||
2647 | } |
||
2648 | |||
2649 | /* Separate the left and the right query from one another |
||
2650 | */ |
||
2651 | p.pPrior = null; |
||
2652 | sqlite3ResolveOrderGroupBy( pParse, p, p.pOrderBy, "ORDER" ); |
||
2653 | if ( pPrior.pPrior == null ) |
||
2654 | { |
||
2655 | sqlite3ResolveOrderGroupBy( pParse, pPrior, pPrior.pOrderBy, "ORDER" ); |
||
2656 | } |
||
2657 | |||
2658 | /* Compute the limit registers */ |
||
2659 | computeLimitRegisters( pParse, p, labelEnd ); |
||
2660 | if ( p.iLimit != 0 && op == TK_ALL ) |
||
2661 | { |
||
2662 | regLimitA = ++pParse.nMem; |
||
2663 | regLimitB = ++pParse.nMem; |
||
2664 | sqlite3VdbeAddOp2( v, OP_Copy, ( p.iOffset != 0 ) ? p.iOffset + 1 : p.iLimit, |
||
2665 | regLimitA ); |
||
2666 | sqlite3VdbeAddOp2( v, OP_Copy, regLimitA, regLimitB ); |
||
2667 | } |
||
2668 | else |
||
2669 | { |
||
2670 | regLimitA = regLimitB = 0; |
||
2671 | } |
||
2672 | sqlite3ExprDelete( db, ref p.pLimit ); |
||
2673 | p.pLimit = null; |
||
2674 | sqlite3ExprDelete( db, ref p.pOffset ); |
||
2675 | p.pOffset = null; |
||
2676 | |||
2677 | regAddrA = ++pParse.nMem; |
||
2678 | regEofA = ++pParse.nMem; |
||
2679 | regAddrB = ++pParse.nMem; |
||
2680 | regEofB = ++pParse.nMem; |
||
2681 | regOutA = ++pParse.nMem; |
||
2682 | regOutB = ++pParse.nMem; |
||
2683 | sqlite3SelectDestInit( destA, SRT_Coroutine, regAddrA ); |
||
2684 | sqlite3SelectDestInit( destB, SRT_Coroutine, regAddrB ); |
||
2685 | |||
2686 | /* Jump past the various subroutines and coroutines to the main |
||
2687 | ** merge loop |
||
2688 | */ |
||
2689 | j1 = sqlite3VdbeAddOp0( v, OP_Goto ); |
||
2690 | addrSelectA = sqlite3VdbeCurrentAddr( v ); |
||
2691 | |||
2692 | |||
2693 | /* Generate a coroutine to evaluate the SELECT statement to the |
||
2694 | ** left of the compound operator - the "A" select. |
||
2695 | */ |
||
2696 | VdbeNoopComment( v, "Begin coroutine for left SELECT" ); |
||
2697 | pPrior.iLimit = regLimitA; |
||
2698 | explainSetInteger( ref iSub1, pParse.iNextSelectId ); |
||
2699 | sqlite3Select( pParse, pPrior, ref destA ); |
||
2700 | sqlite3VdbeAddOp2( v, OP_Integer, 1, regEofA ); |
||
2701 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrA ); |
||
2702 | VdbeNoopComment( v, "End coroutine for left SELECT" ); |
||
2703 | |||
2704 | /* Generate a coroutine to evaluate the SELECT statement on |
||
2705 | ** the right - the "B" select |
||
2706 | */ |
||
2707 | addrSelectB = sqlite3VdbeCurrentAddr( v ); |
||
2708 | VdbeNoopComment( v, "Begin coroutine for right SELECT" ); |
||
2709 | savedLimit = p.iLimit; |
||
2710 | savedOffset = p.iOffset; |
||
2711 | p.iLimit = regLimitB; |
||
2712 | p.iOffset = 0; |
||
2713 | explainSetInteger( ref iSub2, pParse.iNextSelectId ); |
||
2714 | sqlite3Select( pParse, p, ref destB ); |
||
2715 | p.iLimit = savedLimit; |
||
2716 | p.iOffset = savedOffset; |
||
2717 | sqlite3VdbeAddOp2( v, OP_Integer, 1, regEofB ); |
||
2718 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrB ); |
||
2719 | VdbeNoopComment( v, "End coroutine for right SELECT" ); |
||
2720 | |||
2721 | /* Generate a subroutine that outputs the current row of the A |
||
2722 | ** select as the next output row of the compound select. |
||
2723 | */ |
||
2724 | VdbeNoopComment( v, "Output routine for A" ); |
||
2725 | addrOutA = generateOutputSubroutine( pParse, |
||
2726 | p, destA, pDest, regOutA, |
||
2727 | regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd ); |
||
2728 | |||
2729 | /* Generate a subroutine that outputs the current row of the B |
||
2730 | ** select as the next output row of the compound select. |
||
2731 | */ |
||
2732 | if ( op == TK_ALL || op == TK_UNION ) |
||
2733 | { |
||
2734 | VdbeNoopComment( v, "Output routine for B" ); |
||
2735 | addrOutB = generateOutputSubroutine( pParse, |
||
2736 | p, destB, pDest, regOutB, |
||
2737 | regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd ); |
||
2738 | } |
||
2739 | |||
2740 | /* Generate a subroutine to run when the results from select A |
||
2741 | ** are exhausted and only data in select B remains. |
||
2742 | */ |
||
2743 | VdbeNoopComment( v, "eof-A subroutine" ); |
||
2744 | if ( op == TK_EXCEPT || op == TK_INTERSECT ) |
||
2745 | { |
||
2746 | addrEofA = sqlite3VdbeAddOp2( v, OP_Goto, 0, labelEnd ); |
||
2747 | } |
||
2748 | else |
||
2749 | { |
||
2750 | addrEofA = sqlite3VdbeAddOp2( v, OP_If, regEofB, labelEnd ); |
||
2751 | sqlite3VdbeAddOp2( v, OP_Gosub, regOutB, addrOutB ); |
||
2752 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrB ); |
||
2753 | sqlite3VdbeAddOp2( v, OP_Goto, 0, addrEofA ); |
||
2754 | p.nSelectRow += pPrior.nSelectRow; |
||
2755 | } |
||
2756 | |||
2757 | /* Generate a subroutine to run when the results from select B |
||
2758 | ** are exhausted and only data in select A remains. |
||
2759 | */ |
||
2760 | if ( op == TK_INTERSECT ) |
||
2761 | { |
||
2762 | addrEofB = addrEofA; |
||
2763 | if ( p.nSelectRow > pPrior.nSelectRow ) |
||
2764 | p.nSelectRow = pPrior.nSelectRow; |
||
2765 | } |
||
2766 | else |
||
2767 | { |
||
2768 | VdbeNoopComment( v, "eof-B subroutine" ); |
||
2769 | addrEofB = sqlite3VdbeAddOp2( v, OP_If, regEofA, labelEnd ); |
||
2770 | sqlite3VdbeAddOp2( v, OP_Gosub, regOutA, addrOutA ); |
||
2771 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrA ); |
||
2772 | sqlite3VdbeAddOp2( v, OP_Goto, 0, addrEofB ); |
||
2773 | } |
||
2774 | |||
2775 | /* Generate code to handle the case of A<B |
||
2776 | */ |
||
2777 | VdbeNoopComment( v, "A-lt-B subroutine" ); |
||
2778 | addrAltB = sqlite3VdbeAddOp2( v, OP_Gosub, regOutA, addrOutA ); |
||
2779 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrA ); |
||
2780 | sqlite3VdbeAddOp2( v, OP_If, regEofA, addrEofA ); |
||
2781 | sqlite3VdbeAddOp2( v, OP_Goto, 0, labelCmpr ); |
||
2782 | |||
2783 | /* Generate code to handle the case of A==B |
||
2784 | */ |
||
2785 | if ( op == TK_ALL ) |
||
2786 | { |
||
2787 | addrAeqB = addrAltB; |
||
2788 | } |
||
2789 | else if ( op == TK_INTERSECT ) |
||
2790 | { |
||
2791 | addrAeqB = addrAltB; |
||
2792 | addrAltB++; |
||
2793 | } |
||
2794 | else |
||
2795 | { |
||
2796 | VdbeNoopComment( v, "A-eq-B subroutine" ); |
||
2797 | addrAeqB = |
||
2798 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrA ); |
||
2799 | sqlite3VdbeAddOp2( v, OP_If, regEofA, addrEofA ); |
||
2800 | sqlite3VdbeAddOp2( v, OP_Goto, 0, labelCmpr ); |
||
2801 | } |
||
2802 | |||
2803 | /* Generate code to handle the case of A>B |
||
2804 | */ |
||
2805 | VdbeNoopComment( v, "A-gt-B subroutine" ); |
||
2806 | addrAgtB = sqlite3VdbeCurrentAddr( v ); |
||
2807 | if ( op == TK_ALL || op == TK_UNION ) |
||
2808 | { |
||
2809 | sqlite3VdbeAddOp2( v, OP_Gosub, regOutB, addrOutB ); |
||
2810 | } |
||
2811 | sqlite3VdbeAddOp1( v, OP_Yield, regAddrB ); |
||
2812 | sqlite3VdbeAddOp2( v, OP_If, regEofB, addrEofB ); |
||
2813 | sqlite3VdbeAddOp2( v, OP_Goto, 0, labelCmpr ); |
||
2814 | |||
2815 | /* This code runs once to initialize everything. |
||
2816 | */ |
||
2817 | sqlite3VdbeJumpHere( v, j1 ); |
||
2818 | sqlite3VdbeAddOp2( v, OP_Integer, 0, regEofA ); |
||
2819 | sqlite3VdbeAddOp2( v, OP_Integer, 0, regEofB ); |
||
2820 | sqlite3VdbeAddOp2( v, OP_Gosub, regAddrA, addrSelectA ); |
||
2821 | sqlite3VdbeAddOp2( v, OP_Gosub, regAddrB, addrSelectB ); |
||
2822 | sqlite3VdbeAddOp2( v, OP_If, regEofA, addrEofA ); |
||
2823 | sqlite3VdbeAddOp2( v, OP_If, regEofB, addrEofB ); |
||
2824 | |||
2825 | /* Implement the main merge loop |
||
2826 | */ |
||
2827 | sqlite3VdbeResolveLabel( v, labelCmpr ); |
||
2828 | sqlite3VdbeAddOp4( v, OP_Permutation, 0, 0, 0, aPermute, P4_INTARRAY ); |
||
2829 | sqlite3VdbeAddOp4( v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, |
||
2830 | pKeyMerge, P4_KEYINFO_HANDOFF ); |
||
2831 | sqlite3VdbeAddOp3( v, OP_Jump, addrAltB, addrAeqB, addrAgtB ); |
||
2832 | |||
2833 | /* Release temporary registers |
||
2834 | */ |
||
2835 | if ( regPrev != 0 ) |
||
2836 | { |
||
2837 | sqlite3ReleaseTempRange( pParse, regPrev, nOrderBy + 1 ); |
||
2838 | } |
||
2839 | |||
2840 | /* Jump to the this point in order to terminate the query. |
||
2841 | */ |
||
2842 | sqlite3VdbeResolveLabel( v, labelEnd ); |
||
2843 | |||
2844 | /* Set the number of output columns |
||
2845 | */ |
||
2846 | if ( pDest.eDest == SRT_Output ) |
||
2847 | { |
||
2848 | Select pFirst = pPrior; |
||
2849 | while ( pFirst.pPrior != null ) |
||
2850 | pFirst = pFirst.pPrior; |
||
2851 | generateColumnNames( pParse, null, pFirst.pEList ); |
||
2852 | } |
||
2853 | |||
2854 | /* Reassembly the compound query so that it will be freed correctly |
||
2855 | ** by the calling function */ |
||
2856 | if ( p.pPrior != null ) |
||
2857 | { |
||
2858 | sqlite3SelectDelete( db, ref p.pPrior ); |
||
2859 | } |
||
2860 | p.pPrior = pPrior; |
||
2861 | |||
2862 | /*** TBD: Insert subroutine calls to close cursors on incomplete |
||
2863 | **** subqueries ****/ |
||
2864 | explainComposite( pParse, p.op, iSub1, iSub2, false ); |
||
2865 | return SQLITE_OK; |
||
2866 | } |
||
2867 | #endif |
||
2868 | #if !(SQLITE_OMIT_SUBQUERY) || !(SQLITE_OMIT_VIEW) |
||
2869 | /* Forward Declarations */ |
||
2870 | //static void substExprList(sqlite3*, ExprList*, int, ExprList); |
||
2871 | //static void substSelect(sqlite3*, Select *, int, ExprList ); |
||
2872 | |||
2873 | /* |
||
2874 | ** Scan through the expression pExpr. Replace every reference to |
||
2875 | ** a column in table number iTable with a copy of the iColumn-th |
||
2876 | ** entry in pEList. (But leave references to the ROWID column |
||
2877 | ** unchanged.) |
||
2878 | ** |
||
2879 | ** This routine is part of the flattening procedure. A subquery |
||
2880 | ** whose result set is defined by pEList appears as entry in the |
||
2881 | ** FROM clause of a SELECT such that the VDBE cursor assigned to that |
||
2882 | ** FORM clause entry is iTable. This routine make the necessary |
||
2883 | ** changes to pExpr so that it refers directly to the source table |
||
2884 | ** of the subquery rather the result set of the subquery. |
||
2885 | */ |
||
2886 | static Expr substExpr( |
||
2887 | sqlite3 db, /* Report malloc errors to this connection */ |
||
2888 | Expr pExpr, /* Expr in which substitution occurs */ |
||
2889 | int iTable, /* Table to be substituted */ |
||
2890 | ExprList pEList /* Substitute expressions */ |
||
2891 | ) |
||
2892 | { |
||
2893 | if ( pExpr == null ) |
||
2894 | return null; |
||
2895 | if ( pExpr.op == TK_COLUMN && pExpr.iTable == iTable ) |
||
2896 | { |
||
2897 | if ( pExpr.iColumn < 0 ) |
||
2898 | { |
||
2899 | pExpr.op = TK_NULL; |
||
2900 | } |
||
2901 | else |
||
2902 | { |
||
2903 | Expr pNew; |
||
2904 | Debug.Assert( pEList != null && pExpr.iColumn < pEList.nExpr ); |
||
2905 | Debug.Assert( pExpr.pLeft == null && pExpr.pRight == null ); |
||
2906 | pNew = sqlite3ExprDup( db, pEList.a[pExpr.iColumn].pExpr, 0 ); |
||
2907 | if ( pExpr.pColl != null ) |
||
2908 | { |
||
2909 | pNew.pColl = pExpr.pColl; |
||
2910 | } |
||
2911 | sqlite3ExprDelete( db, ref pExpr ); |
||
2912 | pExpr = pNew; |
||
2913 | } |
||
2914 | } |
||
2915 | else |
||
2916 | { |
||
2917 | pExpr.pLeft = substExpr( db, pExpr.pLeft, iTable, pEList ); |
||
2918 | pExpr.pRight = substExpr( db, pExpr.pRight, iTable, pEList ); |
||
2919 | if ( ExprHasProperty( pExpr, EP_xIsSelect ) ) |
||
2920 | { |
||
2921 | substSelect( db, pExpr.x.pSelect, iTable, pEList ); |
||
2922 | } |
||
2923 | else |
||
2924 | { |
||
2925 | substExprList( db, pExpr.x.pList, iTable, pEList ); |
||
2926 | } |
||
2927 | } |
||
2928 | return pExpr; |
||
2929 | } |
||
2930 | |||
2931 | static void substExprList( |
||
2932 | sqlite3 db, /* Report malloc errors here */ |
||
2933 | ExprList pList, /* List to scan and in which to make substitutes */ |
||
2934 | int iTable, /* Table to be substituted */ |
||
2935 | ExprList pEList /* Substitute values */ |
||
2936 | ) |
||
2937 | { |
||
2938 | int i; |
||
2939 | if ( pList == null ) |
||
2940 | return; |
||
2941 | for ( i = 0; i < pList.nExpr; i++ ) |
||
2942 | { |
||
2943 | pList.a[i].pExpr = substExpr( db, pList.a[i].pExpr, iTable, pEList ); |
||
2944 | } |
||
2945 | } |
||
2946 | |||
2947 | static void substSelect( |
||
2948 | sqlite3 db, /* Report malloc errors here */ |
||
2949 | Select p, /* SELECT statement in which to make substitutions */ |
||
2950 | int iTable, /* Table to be replaced */ |
||
2951 | ExprList pEList /* Substitute values */ |
||
2952 | ) |
||
2953 | { |
||
2954 | SrcList pSrc; |
||
2955 | SrcList_item pItem; |
||
2956 | int i; |
||
2957 | if ( p == null ) |
||
2958 | return; |
||
2959 | substExprList( db, p.pEList, iTable, pEList ); |
||
2960 | substExprList( db, p.pGroupBy, iTable, pEList ); |
||
2961 | substExprList( db, p.pOrderBy, iTable, pEList ); |
||
2962 | p.pHaving = substExpr( db, p.pHaving, iTable, pEList ); |
||
2963 | p.pWhere = substExpr( db, p.pWhere, iTable, pEList ); |
||
2964 | substSelect( db, p.pPrior, iTable, pEList ); |
||
2965 | pSrc = p.pSrc; |
||
2966 | Debug.Assert( pSrc != null ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ |
||
2967 | if ( ALWAYS( pSrc ) ) |
||
2968 | { |
||
2969 | for ( i = pSrc.nSrc; i > 0; i-- )//, pItem++ ) |
||
2970 | { |
||
2971 | pItem = pSrc.a[pSrc.nSrc - i]; |
||
2972 | substSelect( db, pItem.pSelect, iTable, pEList ); |
||
2973 | } |
||
2974 | } |
||
2975 | } |
||
2976 | #endif //* !SQLITE_OMIT_SUBQUERY) || !SQLITE_OMIT_VIEW) */ |
||
2977 | |||
2978 | #if !(SQLITE_OMIT_SUBQUERY) || !(SQLITE_OMIT_VIEW) |
||
2979 | /* |
||
2980 | ** This routine attempts to flatten subqueries in order to speed |
||
2981 | ** execution. It returns 1 if it makes changes and 0 if no flattening |
||
2982 | ** occurs. |
||
2983 | ** |
||
2984 | ** To understand the concept of flattening, consider the following |
||
2985 | ** query: |
||
2986 | ** |
||
2987 | ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
||
2988 | ** |
||
2989 | ** The default way of implementing this query is to execute the |
||
2990 | ** subquery first and store the results in a temporary table, then |
||
2991 | ** run the outer query on that temporary table. This requires two |
||
2992 | ** passes over the data. Furthermore, because the temporary table |
||
2993 | ** has no indices, the WHERE clause on the outer query cannot be |
||
2994 | ** optimized. |
||
2995 | ** |
||
2996 | ** This routine attempts to rewrite queries such as the above into |
||
2997 | ** a single flat select, like this: |
||
2998 | ** |
||
2999 | ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
||
3000 | ** |
||
3001 | ** The code generated for this simpification gives the same result |
||
3002 | ** but only has to scan the data once. And because indices might |
||
3003 | ** exist on the table t1, a complete scan of the data might be |
||
3004 | ** avoided. |
||
3005 | ** |
||
3006 | ** Flattening is only attempted if all of the following are true: |
||
3007 | ** |
||
3008 | ** (1) The subquery and the outer query do not both use aggregates. |
||
3009 | ** |
||
3010 | ** (2) The subquery is not an aggregate or the outer query is not a join. |
||
3011 | ** |
||
3012 | ** (3) The subquery is not the right operand of a left outer join |
||
3013 | ** (Originally ticket #306. Strengthened by ticket #3300) |
||
3014 | ** |
||
3015 | ** (4) The subquery is not DISTINCT. |
||
3016 | ** |
||
3017 | ** (*) At one point restrictions (4) and (5) defined a subset of DISTINCT |
||
3018 | ** sub-queries that were excluded from this optimization. Restriction |
||
3019 | ** (4) has since been expanded to exclude all DISTINCT subqueries. |
||
3020 | ** |
||
3021 | ** (6) The subquery does not use aggregates or the outer query is not |
||
3022 | ** DISTINCT. |
||
3023 | ** |
||
3024 | ** (7) The subquery has a FROM clause. |
||
3025 | ** |
||
3026 | ** (8) The subquery does not use LIMIT or the outer query is not a join. |
||
3027 | ** |
||
3028 | ** (9) The subquery does not use LIMIT or the outer query does not use |
||
3029 | ** aggregates. |
||
3030 | ** |
||
3031 | ** (10) The subquery does not use aggregates or the outer query does not |
||
3032 | ** use LIMIT. |
||
3033 | ** |
||
3034 | ** (11) The subquery and the outer query do not both have ORDER BY clauses. |
||
3035 | ** |
||
3036 | ** (*) Not implemented. Subsumed into restriction (3). Was previously |
||
3037 | ** a separate restriction deriving from ticket #350. |
||
3038 | ** |
||
3039 | ** (13) The subquery and outer query do not both use LIMIT. |
||
3040 | ** |
||
3041 | ** (14) The subquery does not use OFFSET. |
||
3042 | ** |
||
3043 | ** (15) The outer query is not part of a compound select or the |
||
3044 | ** subquery does not have a LIMIT clause. |
||
3045 | ** (See ticket #2339 and ticket [02a8e81d44]). |
||
3046 | ** |
||
3047 | ** (16) The outer query is not an aggregate or the subquery does |
||
3048 | ** not contain ORDER BY. (Ticket #2942) This used to not matter |
||
3049 | ** until we introduced the group_concat() function. |
||
3050 | ** |
||
3051 | ** (17) The sub-query is not a compound select, or it is a UNION ALL |
||
3052 | ** compound clause made up entirely of non-aggregate queries, and |
||
3053 | ** the parent query: |
||
3054 | ** |
||
3055 | ** * is not itself part of a compound select, |
||
3056 | ** * is not an aggregate or DISTINCT query, and |
||
3057 | ** * has no other tables or sub-selects in the FROM clause. |
||
3058 | ** |
||
3059 | ** The parent and sub-query may contain WHERE clauses. Subject to |
||
3060 | ** rules (11), (13) and (14), they may also contain ORDER BY, |
||
3061 | ** LIMIT and OFFSET clauses. |
||
3062 | ** |
||
3063 | ** (18) If the sub-query is a compound select, then all terms of the |
||
3064 | ** ORDER by clause of the parent must be simple references to |
||
3065 | ** columns of the sub-query. |
||
3066 | ** |
||
3067 | ** (19) The subquery does not use LIMIT or the outer query does not |
||
3068 | ** have a WHERE clause. |
||
3069 | ** |
||
3070 | ** (20) If the sub-query is a compound select, then it must not use |
||
3071 | ** an ORDER BY clause. Ticket #3773. We could relax this constraint |
||
3072 | ** somewhat by saying that the terms of the ORDER BY clause must |
||
3073 | ** appear as unmodified result columns in the outer query. But |
||
3074 | ** have other optimizations in mind to deal with that case. |
||
3075 | ** |
||
3076 | ** (21) The subquery does not use LIMIT or the outer query is not |
||
3077 | ** DISTINCT. (See ticket [752e1646fc]). |
||
3078 | ** |
||
3079 | ** In this routine, the "p" parameter is a pointer to the outer query. |
||
3080 | ** The subquery is p.pSrc.a[iFrom]. isAgg is true if the outer query |
||
3081 | ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
||
3082 | ** |
||
3083 | ** If flattening is not attempted, this routine is a no-op and returns 0. |
||
3084 | ** If flattening is attempted this routine returns 1. |
||
3085 | ** |
||
3086 | ** All of the expression analysis must occur on both the outer query and |
||
3087 | ** the subquery before this routine runs. |
||
3088 | */ |
||
3089 | static int flattenSubquery( |
||
3090 | Parse pParse, /* Parsing context */ |
||
3091 | Select p, /* The parent or outer SELECT statement */ |
||
3092 | int iFrom, /* Index in p.pSrc.a[] of the inner subquery */ |
||
3093 | bool isAgg, /* True if outer SELECT uses aggregate functions */ |
||
3094 | bool subqueryIsAgg /* True if the subquery uses aggregate functions */ |
||
3095 | ) |
||
3096 | { |
||
3097 | string zSavedAuthContext = pParse.zAuthContext; |
||
3098 | Select pParent; |
||
3099 | Select pSub; /* The inner query or "subquery" */ |
||
3100 | Select pSub1; /* Pointer to the rightmost select in sub-query */ |
||
3101 | SrcList pSrc; /* The FROM clause of the outer query */ |
||
3102 | SrcList pSubSrc; /* The FROM clause of the subquery */ |
||
3103 | ExprList pList; /* The result set of the outer query */ |
||
3104 | int iParent; /* VDBE cursor number of the pSub result set temp table */ |
||
3105 | int i; /* Loop counter */ |
||
3106 | Expr pWhere; /* The WHERE clause */ |
||
3107 | SrcList_item pSubitem;/* The subquery */ |
||
3108 | sqlite3 db = pParse.db; |
||
3109 | |||
3110 | /* Check to see if flattening is permitted. Return 0 if not. |
||
3111 | */ |
||
3112 | Debug.Assert( p != null ); |
||
3113 | Debug.Assert( p.pPrior == null ); /* Unable to flatten compound queries */ |
||
3114 | if ( ( db.flags & SQLITE_QueryFlattener ) != 0 ) |
||
3115 | return 0; |
||
3116 | pSrc = p.pSrc; |
||
3117 | Debug.Assert( pSrc != null && iFrom >= 0 && iFrom < pSrc.nSrc ); |
||
3118 | pSubitem = pSrc.a[iFrom]; |
||
3119 | iParent = pSubitem.iCursor; |
||
3120 | pSub = pSubitem.pSelect; |
||
3121 | Debug.Assert( pSub != null ); |
||
3122 | if ( isAgg && subqueryIsAgg ) |
||
3123 | return 0; /* Restriction (1) */ |
||
3124 | if ( subqueryIsAgg && pSrc.nSrc > 1 ) |
||
3125 | return 0; /* Restriction (2) */ |
||
3126 | pSubSrc = pSub.pSrc; |
||
3127 | Debug.Assert( pSubSrc != null ); |
||
3128 | /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
||
3129 | ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET |
||
3130 | ** because they could be computed at compile-time. But when LIMIT and OFFSET |
||
3131 | ** became arbitrary expressions, we were forced to add restrictions (13) |
||
3132 | ** and (14). */ |
||
3133 | if ( pSub.pLimit != null && p.pLimit != null ) |
||
3134 | return 0; /* Restriction (13) */ |
||
3135 | if ( pSub.pOffset != null ) |
||
3136 | return 0; /* Restriction (14) */ |
||
3137 | if ( p.pRightmost != null && pSub.pLimit != null ) |
||
3138 | { |
||
3139 | return 0; /* Restriction (15) */ |
||
3140 | } |
||
3141 | if ( pSubSrc.nSrc == 0 ) |
||
3142 | return 0; /* Restriction (7) */ |
||
3143 | if ( ( pSub.selFlags & SF_Distinct ) != 0 ) |
||
3144 | return 0; /* Restriction (5) */ |
||
3145 | if ( pSub.pLimit != null && ( pSrc.nSrc > 1 || isAgg ) ) |
||
3146 | { |
||
3147 | return 0; /* Restrictions (8)(9) */ |
||
3148 | } |
||
3149 | if ( ( p.selFlags & SF_Distinct ) != 0 && subqueryIsAgg ) |
||
3150 | { |
||
3151 | return 0; /* Restriction (6) */ |
||
3152 | } |
||
3153 | if ( p.pOrderBy != null && pSub.pOrderBy != null ) |
||
3154 | { |
||
3155 | return 0; /* Restriction (11) */ |
||
3156 | } |
||
3157 | if ( isAgg && pSub.pOrderBy != null ) |
||
3158 | return 0; /* Restriction (16) */ |
||
3159 | if ( pSub.pLimit != null && p.pWhere != null ) |
||
3160 | return 0; /* Restriction (19) */ |
||
3161 | if ( pSub.pLimit != null && ( p.selFlags & SF_Distinct ) != 0 ) |
||
3162 | { |
||
3163 | return 0; /* Restriction (21) */ |
||
3164 | } |
||
3165 | |||
3166 | /* OBSOLETE COMMENT 1: |
||
3167 | ** Restriction 3: If the subquery is a join, make sure the subquery is |
||
3168 | ** not used as the right operand of an outer join. Examples of why this |
||
3169 | ** is not allowed: |
||
3170 | ** |
||
3171 | ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
||
3172 | ** |
||
3173 | ** If we flatten the above, we would get |
||
3174 | ** |
||
3175 | ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
||
3176 | ** |
||
3177 | ** which is not at all the same thing. |
||
3178 | ** |
||
3179 | ** OBSOLETE COMMENT 2: |
||
3180 | ** Restriction 12: If the subquery is the right operand of a left outer |
||
3181 | |||
3182 | /* Restriction 12: If the subquery is the right operand of a left outer |
||
3183 | ** join, make sure the subquery has no WHERE clause. |
||
3184 | ** An examples of why this is not allowed: |
||
3185 | ** |
||
3186 | ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
||
3187 | ** |
||
3188 | ** If we flatten the above, we would get |
||
3189 | ** |
||
3190 | ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
||
3191 | ** |
||
3192 | ** But the t2.x>0 test will always fail on a NULL row of t2, which |
||
3193 | ** effectively converts the OUTER JOIN into an INNER JOIN. |
||
3194 | ** |
||
3195 | ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: |
||
3196 | ** Ticket #3300 shows that flattening the right term of a LEFT JOIN |
||
3197 | ** is fraught with danger. Best to avoid the whole thing. If the |
||
3198 | ** subquery is the right term of a LEFT JOIN, then do not flatten. |
||
3199 | */ |
||
3200 | if ( ( pSubitem.jointype & JT_OUTER ) != 0 ) |
||
3201 | { |
||
3202 | return 0; |
||
3203 | } |
||
3204 | |||
3205 | /* Restriction 17: If the sub-query is a compound SELECT, then it must |
||
3206 | ** use only the UNION ALL operator. And none of the simple select queries |
||
3207 | ** that make up the compound SELECT are allowed to be aggregate or distinct |
||
3208 | ** queries. |
||
3209 | */ |
||
3210 | if ( pSub.pPrior != null ) |
||
3211 | { |
||
3212 | if ( pSub.pOrderBy != null ) |
||
3213 | { |
||
3214 | return 0; /* Restriction 20 */ |
||
3215 | } |
||
3216 | if ( isAgg || ( p.selFlags & SF_Distinct ) != 0 || pSrc.nSrc != 1 ) |
||
3217 | { |
||
3218 | return 0; |
||
3219 | } |
||
3220 | for ( pSub1 = pSub; pSub1 != null; pSub1 = pSub1.pPrior ) |
||
3221 | { |
||
3222 | testcase( ( pSub1.selFlags & ( SF_Distinct | SF_Aggregate ) ) == SF_Distinct ); |
||
3223 | testcase( ( pSub1.selFlags & ( SF_Distinct | SF_Aggregate ) ) == SF_Aggregate ); |
||
3224 | if ( ( pSub1.selFlags & ( SF_Distinct | SF_Aggregate ) ) != 0 |
||
3225 | || ( pSub1.pPrior != null && pSub1.op != TK_ALL ) |
||
3226 | || NEVER( pSub1.pSrc == null ) || pSub1.pSrc.nSrc != 1 |
||
3227 | ) |
||
3228 | { |
||
3229 | return 0; |
||
3230 | } |
||
3231 | } |
||
3232 | |||
3233 | /* Restriction 18. */ |
||
3234 | if ( p.pOrderBy != null ) |
||
3235 | { |
||
3236 | int ii; |
||
3237 | for ( ii = 0; ii < p.pOrderBy.nExpr; ii++ ) |
||
3238 | { |
||
3239 | if ( p.pOrderBy.a[ii].iCol == 0 ) |
||
3240 | return 0; |
||
3241 | } |
||
3242 | } |
||
3243 | } |
||
3244 | |||
3245 | /***** If we reach this point, flattening is permitted. *****/ |
||
3246 | |||
3247 | /* Authorize the subquery */ |
||
3248 | pParse.zAuthContext = pSubitem.zName; |
||
3249 | sqlite3AuthCheck( pParse, SQLITE_SELECT, null, null, null ); |
||
3250 | pParse.zAuthContext = zSavedAuthContext; |
||
3251 | |||
3252 | /* If the sub-query is a compound SELECT statement, then (by restrictions |
||
3253 | ** 17 and 18 above) it must be a UNION ALL and the parent query must |
||
3254 | ** be of the form: |
||
3255 | ** |
||
3256 | ** SELECT <expr-list> FROM (<sub-query>) <where-clause> |
||
3257 | ** |
||
3258 | ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block |
||
3259 | ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or |
||
3260 | ** OFFSET clauses and joins them to the left-hand-side of the original |
||
3261 | ** using UNION ALL operators. In this case N is the number of simple |
||
3262 | ** select statements in the compound sub-query. |
||
3263 | ** |
||
3264 | ** Example: |
||
3265 | ** |
||
3266 | ** SELECT a+1 FROM ( |
||
3267 | ** SELECT x FROM tab |
||
3268 | ** UNION ALL |
||
3269 | ** SELECT y FROM tab |
||
3270 | ** UNION ALL |
||
3271 | ** SELECT abs(z*2) FROM tab2 |
||
3272 | ** ) WHERE a!=5 ORDER BY 1 |
||
3273 | ** |
||
3274 | ** Transformed into: |
||
3275 | ** |
||
3276 | ** SELECT x+1 FROM tab WHERE x+1!=5 |
||
3277 | ** UNION ALL |
||
3278 | ** SELECT y+1 FROM tab WHERE y+1!=5 |
||
3279 | ** UNION ALL |
||
3280 | ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 |
||
3281 | ** ORDER BY 1 |
||
3282 | ** |
||
3283 | ** We call this the "compound-subquery flattening". |
||
3284 | */ |
||
3285 | for ( pSub = pSub.pPrior; pSub != null; pSub = pSub.pPrior ) |
||
3286 | { |
||
3287 | Select pNew; |
||
3288 | ExprList pOrderBy = p.pOrderBy; |
||
3289 | Expr pLimit = p.pLimit; |
||
3290 | Select pPrior = p.pPrior; |
||
3291 | p.pOrderBy = null; |
||
3292 | p.pSrc = null; |
||
3293 | p.pPrior = null; |
||
3294 | p.pLimit = null; |
||
3295 | pNew = sqlite3SelectDup( db, p, 0 ); |
||
3296 | p.pLimit = pLimit; |
||
3297 | p.pOrderBy = pOrderBy; |
||
3298 | p.pSrc = pSrc; |
||
3299 | p.op = TK_ALL; |
||
3300 | p.pRightmost = null; |
||
3301 | if ( pNew == null ) |
||
3302 | { |
||
3303 | pNew = pPrior; |
||
3304 | } |
||
3305 | else |
||
3306 | { |
||
3307 | pNew.pPrior = pPrior; |
||
3308 | pNew.pRightmost = null; |
||
3309 | } |
||
3310 | p.pPrior = pNew; |
||
3311 | // if ( db.mallocFailed != 0 ) return 1; |
||
3312 | } |
||
3313 | |||
3314 | /* Begin flattening the iFrom-th entry of the FROM clause |
||
3315 | ** in the outer query. |
||
3316 | */ |
||
3317 | pSub = pSub1 = pSubitem.pSelect; |
||
3318 | /* Delete the transient table structure associated with the |
||
3319 | ** subquery |
||
3320 | */ |
||
3321 | |||
3322 | sqlite3DbFree( db, ref pSubitem.zDatabase ); |
||
3323 | sqlite3DbFree( db, ref pSubitem.zName ); |
||
3324 | sqlite3DbFree( db, ref pSubitem.zAlias ); |
||
3325 | pSubitem.zDatabase = null; |
||
3326 | pSubitem.zName = null; |
||
3327 | pSubitem.zAlias = null; |
||
3328 | pSubitem.pSelect = null; |
||
3329 | /* Defer deleting the Table object associated with the |
||
3330 | ** subquery until code generation is |
||
3331 | ** complete, since there may still exist Expr.pTab entries that |
||
3332 | ** refer to the subquery even after flattening. Ticket #3346. |
||
3333 | ** |
||
3334 | ** pSubitem->pTab is always non-NULL by test restrictions and tests above. |
||
3335 | */ |
||
3336 | if ( ALWAYS( pSubitem.pTab != null ) ) |
||
3337 | { |
||
3338 | Table pTabToDel = pSubitem.pTab; |
||
3339 | if ( pTabToDel.nRef == 1 ) |
||
3340 | { |
||
3341 | Parse pToplevel = sqlite3ParseToplevel( pParse ); |
||
3342 | pTabToDel.pNextZombie = pToplevel.pZombieTab; |
||
3343 | pToplevel.pZombieTab = pTabToDel; |
||
3344 | } |
||
3345 | else |
||
3346 | { |
||
3347 | pTabToDel.nRef--; |
||
3348 | } |
||
3349 | pSubitem.pTab = null; |
||
3350 | } |
||
3351 | |||
3352 | /* The following loop runs once for each term in a compound-subquery |
||
3353 | ** flattening (as described above). If we are doing a different kind |
||
3354 | ** of flattening - a flattening other than a compound-subquery flattening - |
||
3355 | ** then this loop only runs once. |
||
3356 | ** |
||
3357 | ** This loop moves all of the FROM elements of the subquery into the |
||
3358 | ** the FROM clause of the outer query. Before doing this, remember |
||
3359 | ** the cursor number for the original outer query FROM element in |
||
3360 | ** iParent. The iParent cursor will never be used. Subsequent code |
||
3361 | ** will scan expressions looking for iParent references and replace |
||
3362 | ** those references with expressions that resolve to the subquery FROM |
||
3363 | ** elements we are now copying in. |
||
3364 | */ |
||
3365 | for ( pParent = p; pParent != null; pParent = pParent.pPrior, pSub = pSub.pPrior ) |
||
3366 | { |
||
3367 | int nSubSrc; |
||
3368 | u8 jointype = 0; |
||
3369 | pSubSrc = pSub.pSrc; /* FROM clause of subquery */ |
||
3370 | nSubSrc = pSubSrc.nSrc; /* Number of terms in subquery FROM clause */ |
||
3371 | pSrc = pParent.pSrc; /* FROM clause of the outer query */ |
||
3372 | |||
3373 | if ( pSrc != null ) |
||
3374 | { |
||
3375 | Debug.Assert( pParent == p ); /* First time through the loop */ |
||
3376 | jointype = pSubitem.jointype; |
||
3377 | } |
||
3378 | else |
||
3379 | { |
||
3380 | Debug.Assert( pParent != p ); /* 2nd and subsequent times through the loop */ |
||
3381 | pSrc = pParent.pSrc = sqlite3SrcListAppend( db, null, null, null ); |
||
3382 | //if ( pSrc == null ) |
||
3383 | //{ |
||
3384 | // //Debug.Assert( db.mallocFailed != 0 ); |
||
3385 | // break; |
||
3386 | //} |
||
3387 | } |
||
3388 | |||
3389 | /* The subquery uses a single slot of the FROM clause of the outer |
||
3390 | ** query. If the subquery has more than one element in its FROM clause, |
||
3391 | ** then expand the outer query to make space for it to hold all elements |
||
3392 | ** of the subquery. |
||
3393 | ** |
||
3394 | ** Example: |
||
3395 | ** |
||
3396 | ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; |
||
3397 | ** |
||
3398 | ** The outer query has 3 slots in its FROM clause. One slot of the |
||
3399 | ** outer query (the middle slot) is used by the subquery. The next |
||
3400 | ** block of code will expand the out query to 4 slots. The middle |
||
3401 | ** slot is expanded to two slots in order to make space for the |
||
3402 | ** two elements in the FROM clause of the subquery. |
||
3403 | */ |
||
3404 | if ( nSubSrc > 1 ) |
||
3405 | { |
||
3406 | pParent.pSrc = pSrc = sqlite3SrcListEnlarge( db, pSrc, nSubSrc - 1, iFrom + 1 ); |
||
3407 | //if ( db.mallocFailed != 0 ) |
||
3408 | //{ |
||
3409 | // break; |
||
3410 | //} |
||
3411 | } |
||
3412 | |||
3413 | /* Transfer the FROM clause terms from the subquery into the |
||
3414 | ** outer query. |
||
3415 | */ |
||
3416 | for ( i = 0; i < nSubSrc; i++ ) |
||
3417 | { |
||
3418 | sqlite3IdListDelete( db, ref pSrc.a[i + iFrom].pUsing ); |
||
3419 | pSrc.a[i + iFrom] = pSubSrc.a[i]; |
||
3420 | pSubSrc.a[i] = new SrcList_item();//memset(pSubSrc.a[i], 0, sizeof(pSubSrc.a[i])); |
||
3421 | } |
||
3422 | pSubitem = pSrc.a[iFrom]; // Reset for C# |
||
3423 | pSrc.a[iFrom].jointype = jointype; |
||
3424 | |||
3425 | /* Now begin substituting subquery result set expressions for |
||
3426 | ** references to the iParent in the outer query. |
||
3427 | ** |
||
3428 | ** Example: |
||
3429 | ** |
||
3430 | ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
||
3431 | ** \ \_____________ subquery __________/ / |
||
3432 | ** \_____________________ outer query ______________________________/ |
||
3433 | ** |
||
3434 | ** We look at every expression in the outer query and every place we see |
||
3435 | ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
||
3436 | */ |
||
3437 | pList = pParent.pEList; |
||
3438 | for ( i = 0; i < pList.nExpr; i++ ) |
||
3439 | { |
||
3440 | if ( pList.a[i].zName == null ) |
||
3441 | { |
||
3442 | string zSpan = pList.a[i].zSpan; |
||
3443 | if ( ALWAYS( zSpan ) ) |
||
3444 | { |
||
3445 | pList.a[i].zName = zSpan;// sqlite3DbStrDup( db, zSpan ); |
||
3446 | } |
||
3447 | } |
||
3448 | } |
||
3449 | substExprList( db, pParent.pEList, iParent, pSub.pEList ); |
||
3450 | if ( isAgg ) |
||
3451 | { |
||
3452 | substExprList( db, pParent.pGroupBy, iParent, pSub.pEList ); |
||
3453 | pParent.pHaving = substExpr( db, pParent.pHaving, iParent, pSub.pEList ); |
||
3454 | } |
||
3455 | if ( pSub.pOrderBy != null ) |
||
3456 | { |
||
3457 | Debug.Assert( pParent.pOrderBy == null ); |
||
3458 | pParent.pOrderBy = pSub.pOrderBy; |
||
3459 | pSub.pOrderBy = null; |
||
3460 | } |
||
3461 | else if ( pParent.pOrderBy != null ) |
||
3462 | { |
||
3463 | substExprList( db, pParent.pOrderBy, iParent, pSub.pEList ); |
||
3464 | } |
||
3465 | if ( pSub.pWhere != null ) |
||
3466 | { |
||
3467 | pWhere = sqlite3ExprDup( db, pSub.pWhere, 0 ); |
||
3468 | } |
||
3469 | else |
||
3470 | { |
||
3471 | pWhere = null; |
||
3472 | } |
||
3473 | if ( subqueryIsAgg ) |
||
3474 | { |
||
3475 | Debug.Assert( pParent.pHaving == null ); |
||
3476 | pParent.pHaving = pParent.pWhere; |
||
3477 | pParent.pWhere = pWhere; |
||
3478 | pParent.pHaving = substExpr( db, pParent.pHaving, iParent, pSub.pEList ); |
||
3479 | pParent.pHaving = sqlite3ExprAnd( db, pParent.pHaving, |
||
3480 | sqlite3ExprDup( db, pSub.pHaving, 0 ) ); |
||
3481 | Debug.Assert( pParent.pGroupBy == null ); |
||
3482 | pParent.pGroupBy = sqlite3ExprListDup( db, pSub.pGroupBy, 0 ); |
||
3483 | } |
||
3484 | else |
||
3485 | { |
||
3486 | pParent.pWhere = substExpr( db, pParent.pWhere, iParent, pSub.pEList ); |
||
3487 | pParent.pWhere = sqlite3ExprAnd( db, pParent.pWhere, pWhere ); |
||
3488 | } |
||
3489 | |||
3490 | /* The flattened query is distinct if either the inner or the |
||
3491 | ** outer query is distinct. |
||
3492 | */ |
||
3493 | pParent.selFlags = (u16)( pParent.selFlags | pSub.selFlags & SF_Distinct ); |
||
3494 | |||
3495 | /* |
||
3496 | ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
||
3497 | ** |
||
3498 | ** One is tempted to try to add a and b to combine the limits. But this |
||
3499 | ** does not work if either limit is negative. |
||
3500 | */ |
||
3501 | if ( pSub.pLimit != null ) |
||
3502 | { |
||
3503 | pParent.pLimit = pSub.pLimit; |
||
3504 | pSub.pLimit = null; |
||
3505 | } |
||
3506 | } |
||
3507 | |||
3508 | /* Finially, delete what is left of the subquery and return |
||
3509 | ** success. |
||
3510 | */ |
||
3511 | sqlite3SelectDelete( db, ref pSub ); |
||
3512 | sqlite3SelectDelete( db, ref pSub1 ); |
||
3513 | return 1; |
||
3514 | } |
||
3515 | #endif //* !SQLITE_OMIT_SUBQUERY) || !SQLITE_OMIT_VIEW) */ |
||
3516 | |||
3517 | /* |
||
3518 | ** Analyze the SELECT statement passed as an argument to see if it |
||
3519 | ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if |
||
3520 | ** it is, or 0 otherwise. At present, a query is considered to be |
||
3521 | ** a min()/max() query if: |
||
3522 | ** |
||
3523 | ** 1. There is a single object in the FROM clause. |
||
3524 | ** |
||
3525 | ** 2. There is a single expression in the result set, and it is |
||
3526 | ** either min(x) or max(x), where x is a column reference. |
||
3527 | */ |
||
3528 | static u8 minMaxQuery( Select p ) |
||
3529 | { |
||
3530 | Expr pExpr; |
||
3531 | ExprList pEList = p.pEList; |
||
3532 | |||
3533 | if ( pEList.nExpr != 1 ) |
||
3534 | return WHERE_ORDERBY_NORMAL; |
||
3535 | pExpr = pEList.a[0].pExpr; |
||
3536 | if ( pExpr.op != TK_AGG_FUNCTION ) |
||
3537 | return 0; |
||
3538 | if ( NEVER( ExprHasProperty( pExpr, EP_xIsSelect ) ) ) |
||
3539 | return 0; |
||
3540 | pEList = pExpr.x.pList; |
||
3541 | if ( pEList == null || pEList.nExpr != 1 ) |
||
3542 | return 0; |
||
3543 | if ( pEList.a[0].pExpr.op != TK_AGG_COLUMN ) |
||
3544 | return WHERE_ORDERBY_NORMAL; |
||
3545 | Debug.Assert( !ExprHasProperty( pExpr, EP_IntValue ) ); |
||
3546 | if ( pExpr.u.zToken.Equals( "min", StringComparison.OrdinalIgnoreCase ) ) |
||
3547 | { |
||
3548 | return WHERE_ORDERBY_MIN; |
||
3549 | } |
||
3550 | else if ( pExpr.u.zToken.Equals( "max", StringComparison.OrdinalIgnoreCase ) ) |
||
3551 | { |
||
3552 | return WHERE_ORDERBY_MAX; |
||
3553 | } |
||
3554 | return WHERE_ORDERBY_NORMAL; |
||
3555 | } |
||
3556 | |||
3557 | /* |
||
3558 | ** The select statement passed as the first argument is an aggregate query. |
||
3559 | ** The second argment is the associated aggregate-info object. This |
||
3560 | ** function tests if the SELECT is of the form: |
||
3561 | ** |
||
3562 | ** SELECT count() FROM <tbl> |
||
3563 | ** |
||
3564 | ** where table is a database table, not a sub-select or view. If the query |
||
3565 | ** does match this pattern, then a pointer to the Table object representing |
||
3566 | ** <tbl> is returned. Otherwise, 0 is returned. |
||
3567 | */ |
||
3568 | static Table isSimpleCount( Select p, AggInfo pAggInfo ) |
||
3569 | { |
||
3570 | Table pTab; |
||
3571 | Expr pExpr; |
||
3572 | |||
3573 | Debug.Assert( null == p.pGroupBy ); |
||
3574 | |||
3575 | if ( p.pWhere != null || p.pEList.nExpr != 1 |
||
3576 | || p.pSrc.nSrc != 1 || p.pSrc.a[0].pSelect != null |
||
3577 | ) |
||
3578 | { |
||
3579 | return null; |
||
3580 | } |
||
3581 | pTab = p.pSrc.a[0].pTab; |
||
3582 | pExpr = p.pEList.a[0].pExpr; |
||
3583 | Debug.Assert( pTab != null && null == pTab.pSelect && pExpr != null ); |
||
3584 | |||
3585 | if ( IsVirtual( pTab ) ) |
||
3586 | return null; |
||
3587 | if ( pExpr.op != TK_AGG_FUNCTION ) |
||
3588 | return null; |
||
3589 | if ( ( pAggInfo.aFunc[0].pFunc.flags & SQLITE_FUNC_COUNT ) == 0 ) |
||
3590 | return null; |
||
3591 | if ( ( pExpr.flags & EP_Distinct ) != 0 ) |
||
3592 | return null; |
||
3593 | |||
3594 | return pTab; |
||
3595 | } |
||
3596 | |||
3597 | /* |
||
3598 | ** If the source-list item passed as an argument was augmented with an |
||
3599 | ** INDEXED BY clause, then try to locate the specified index. If there |
||
3600 | ** was such a clause and the named index cannot be found, return |
||
3601 | ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate |
||
3602 | ** pFrom.pIndex and return SQLITE_OK. |
||
3603 | */ |
||
3604 | static int sqlite3IndexedByLookup( Parse pParse, SrcList_item pFrom ) |
||
3605 | { |
||
3606 | if ( pFrom.pTab != null && pFrom.zIndex != null && pFrom.zIndex.Length != 0 ) |
||
3607 | { |
||
3608 | Table pTab = pFrom.pTab; |
||
3609 | string zIndex = pFrom.zIndex; |
||
3610 | Index pIdx; |
||
3611 | for ( pIdx = pTab.pIndex; |
||
3612 | pIdx != null && !pIdx.zName.Equals( zIndex, StringComparison.OrdinalIgnoreCase ); |
||
3613 | pIdx = pIdx.pNext |
||
3614 | ) |
||
3615 | ; |
||
3616 | if ( null == pIdx ) |
||
3617 | { |
||
3618 | sqlite3ErrorMsg( pParse, "no such index: %s", zIndex ); |
||
3619 | pParse.checkSchema = 1; |
||
3620 | return SQLITE_ERROR; |
||
3621 | } |
||
3622 | pFrom.pIndex = pIdx; |
||
3623 | } |
||
3624 | return SQLITE_OK; |
||
3625 | } |
||
3626 | |||
3627 | /* |
||
3628 | ** This routine is a Walker callback for "expanding" a SELECT statement. |
||
3629 | ** "Expanding" means to do the following: |
||
3630 | ** |
||
3631 | ** (1) Make sure VDBE cursor numbers have been assigned to every |
||
3632 | ** element of the FROM clause. |
||
3633 | ** |
||
3634 | ** (2) Fill in the pTabList.a[].pTab fields in the SrcList that |
||
3635 | ** defines FROM clause. When views appear in the FROM clause, |
||
3636 | ** fill pTabList.a[].x.pSelect with a copy of the SELECT statement |
||
3637 | ** that implements the view. A copy is made of the view's SELECT |
||
3638 | ** statement so that we can freely modify or delete that statement |
||
3639 | ** without worrying about messing up the presistent representation |
||
3640 | ** of the view. |
||
3641 | ** |
||
3642 | ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword |
||
3643 | ** on joins and the ON and USING clause of joins. |
||
3644 | ** |
||
3645 | ** (4) Scan the list of columns in the result set (pEList) looking |
||
3646 | ** for instances of the "*" operator or the TABLE.* operator. |
||
3647 | ** If found, expand each "*" to be every column in every table |
||
3648 | ** and TABLE.* to be every column in TABLE. |
||
3649 | ** |
||
3650 | */ |
||
3651 | static int selectExpander( Walker pWalker, Select p ) |
||
3652 | { |
||
3653 | Parse pParse = pWalker.pParse; |
||
3654 | int i, j, k; |
||
3655 | SrcList pTabList; |
||
3656 | ExprList pEList; |
||
3657 | SrcList_item pFrom; |
||
3658 | sqlite3 db = pParse.db; |
||
3659 | |||
3660 | //if ( db.mallocFailed != 0 ) |
||
3661 | //{ |
||
3662 | // return WRC_Abort; |
||
3663 | //} |
||
3664 | if ( NEVER( p.pSrc == null ) || ( p.selFlags & SF_Expanded ) != 0 ) |
||
3665 | { |
||
3666 | return WRC_Prune; |
||
3667 | } |
||
3668 | p.selFlags |= SF_Expanded; |
||
3669 | pTabList = p.pSrc; |
||
3670 | pEList = p.pEList; |
||
3671 | |||
3672 | /* Make sure cursor numbers have been assigned to all entries in |
||
3673 | ** the FROM clause of the SELECT statement. |
||
3674 | */ |
||
3675 | sqlite3SrcListAssignCursors( pParse, pTabList ); |
||
3676 | |||
3677 | /* Look up every table named in the FROM clause of the select. If |
||
3678 | ** an entry of the FROM clause is a subquery instead of a table or view, |
||
3679 | ** then create a transient table ure to describe the subquery. |
||
3680 | */ |
||
3681 | for ( i = 0; i < pTabList.nSrc; i++ )// pFrom++ ) |
||
3682 | { |
||
3683 | pFrom = pTabList.a[i]; |
||
3684 | Table pTab; |
||
3685 | if ( pFrom.pTab != null ) |
||
3686 | { |
||
3687 | /* This statement has already been prepared. There is no need |
||
3688 | ** to go further. */ |
||
3689 | Debug.Assert( i == 0 ); |
||
3690 | return WRC_Prune; |
||
3691 | } |
||
3692 | if ( pFrom.zName == null ) |
||
3693 | { |
||
3694 | #if !SQLITE_OMIT_SUBQUERY |
||
3695 | Select pSel = pFrom.pSelect; |
||
3696 | /* A sub-query in the FROM clause of a SELECT */ |
||
3697 | Debug.Assert( pSel != null ); |
||
3698 | Debug.Assert( pFrom.pTab == null ); |
||
3699 | sqlite3WalkSelect( pWalker, pSel ); |
||
3700 | pFrom.pTab = pTab = new Table();// sqlite3DbMallocZero( db, sizeof( Table ) ); |
||
3701 | if ( pTab == null ) |
||
3702 | return WRC_Abort; |
||
3703 | pTab.nRef = 1; |
||
3704 | pTab.zName = sqlite3MPrintf( db, "sqlite_subquery_%p_", pTab ); |
||
3705 | while ( pSel.pPrior != null ) |
||
3706 | { |
||
3707 | pSel = pSel.pPrior; |
||
3708 | } |
||
3709 | selectColumnsFromExprList( pParse, pSel.pEList, ref pTab.nCol, ref pTab.aCol ); |
||
3710 | pTab.iPKey = -1; |
||
3711 | pTab.nRowEst = 1000000; |
||
3712 | pTab.tabFlags |= TF_Ephemeral; |
||
3713 | #endif |
||
3714 | } |
||
3715 | else |
||
3716 | { |
||
3717 | /* An ordinary table or view name in the FROM clause */ |
||
3718 | Debug.Assert( pFrom.pTab == null ); |
||
3719 | pFrom.pTab = pTab = |
||
3720 | sqlite3LocateTable( pParse, 0, pFrom.zName, pFrom.zDatabase ); |
||
3721 | if ( pTab == null ) |
||
3722 | return WRC_Abort; |
||
3723 | pTab.nRef++; |
||
3724 | #if !(SQLITE_OMIT_VIEW) || !(SQLITE_OMIT_VIRTUALTABLE) |
||
3725 | if ( pTab.pSelect != null || IsVirtual( pTab ) ) |
||
3726 | { |
||
3727 | /* We reach here if the named table is a really a view */ |
||
3728 | if ( sqlite3ViewGetColumnNames( pParse, pTab ) != 0 ) |
||
3729 | return WRC_Abort; |
||
3730 | |||
3731 | pFrom.pSelect = sqlite3SelectDup( db, pTab.pSelect, 0 ); |
||
3732 | sqlite3WalkSelect( pWalker, pFrom.pSelect ); |
||
3733 | } |
||
3734 | #endif |
||
3735 | } |
||
3736 | /* Locate the index named by the INDEXED BY clause, if any. */ |
||
3737 | if ( sqlite3IndexedByLookup( pParse, pFrom ) != 0 ) |
||
3738 | { |
||
3739 | return WRC_Abort; |
||
3740 | } |
||
3741 | } |
||
3742 | |||
3743 | /* Process NATURAL keywords, and ON and USING clauses of joins. |
||
3744 | */ |
||
3745 | if ( /* db.mallocFailed != 0 || */ sqliteProcessJoin( pParse, p ) != 0 ) |
||
3746 | { |
||
3747 | return WRC_Abort; |
||
3748 | } |
||
3749 | |||
3750 | /* For every "*" that occurs in the column list, insert the names of |
||
3751 | ** all columns in all tables. And for every TABLE.* insert the names |
||
3752 | ** of all columns in TABLE. The parser inserted a special expression |
||
3753 | ** with the TK_ALL operator for each "*" that it found in the column list. |
||
3754 | ** The following code just has to locate the TK_ALL expressions and expand |
||
3755 | ** each one to the list of all columns in all tables. |
||
3756 | ** |
||
3757 | ** The first loop just checks to see if there are any "*" operators |
||
3758 | ** that need expanding. |
||
3759 | */ |
||
3760 | for ( k = 0; k < pEList.nExpr; k++ ) |
||
3761 | { |
||
3762 | Expr pE = pEList.a[k].pExpr; |
||
3763 | if ( pE.op == TK_ALL ) |
||
3764 | break; |
||
3765 | Debug.Assert( pE.op != TK_DOT || pE.pRight != null ); |
||
3766 | Debug.Assert( pE.op != TK_DOT || ( pE.pLeft != null && pE.pLeft.op == TK_ID ) ); |
||
3767 | if ( pE.op == TK_DOT && pE.pRight.op == TK_ALL ) |
||
3768 | break; |
||
3769 | } |
||
3770 | if ( k < pEList.nExpr ) |
||
3771 | { |
||
3772 | /* |
||
3773 | ** If we get here it means the result set contains one or more "*" |
||
3774 | ** operators that need to be expanded. Loop through each expression |
||
3775 | ** in the result set and expand them one by one. |
||
3776 | */ |
||
3777 | ExprList_item[] a = pEList.a; |
||
3778 | ExprList pNew = null; |
||
3779 | int flags = pParse.db.flags; |
||
3780 | bool longNames = ( flags & SQLITE_FullColNames ) != 0 |
||
3781 | && ( flags & SQLITE_ShortColNames ) == 0; |
||
3782 | |||
3783 | for ( k = 0; k < pEList.nExpr; k++ ) |
||
3784 | { |
||
3785 | Expr pE = a[k].pExpr; |
||
3786 | Debug.Assert( pE.op != TK_DOT || pE.pRight != null ); |
||
3787 | if ( pE.op != TK_ALL && ( pE.op != TK_DOT || pE.pRight.op != TK_ALL ) ) |
||
3788 | { |
||
3789 | /* This particular expression does not need to be expanded. |
||
3790 | */ |
||
3791 | pNew = sqlite3ExprListAppend( pParse, pNew, a[k].pExpr ); |
||
3792 | if ( pNew != null ) |
||
3793 | { |
||
3794 | pNew.a[pNew.nExpr - 1].zName = a[k].zName; |
||
3795 | pNew.a[pNew.nExpr - 1].zSpan = a[k].zSpan; |
||
3796 | a[k].zName = null; |
||
3797 | a[k].zSpan = null; |
||
3798 | } |
||
3799 | a[k].pExpr = null; |
||
3800 | } |
||
3801 | else |
||
3802 | { |
||
3803 | /* This expression is a "*" or a "TABLE.*" and needs to be |
||
3804 | ** expanded. */ |
||
3805 | int tableSeen = 0; /* Set to 1 when TABLE matches */ |
||
3806 | string zTName; /* text of name of TABLE */ |
||
3807 | if ( pE.op == TK_DOT ) |
||
3808 | { |
||
3809 | Debug.Assert( pE.pLeft != null ); |
||
3810 | Debug.Assert( !ExprHasProperty( pE.pLeft, EP_IntValue ) ); |
||
3811 | zTName = pE.pLeft.u.zToken; |
||
3812 | } |
||
3813 | else |
||
3814 | { |
||
3815 | zTName = null; |
||
3816 | } |
||
3817 | for ( i = 0; i < pTabList.nSrc; i++ )//, pFrom++ ) |
||
3818 | { |
||
3819 | pFrom = pTabList.a[i]; |
||
3820 | Table pTab = pFrom.pTab; |
||
3821 | string zTabName = pFrom.zAlias; |
||
3822 | if ( zTabName == null ) |
||
3823 | { |
||
3824 | zTabName = pTab.zName; |
||
3825 | } |
||
3826 | ///if ( db.mallocFailed != 0 ) break; |
||
3827 | if ( zTName != null && !zTName.Equals( zTabName, StringComparison.OrdinalIgnoreCase ) ) |
||
3828 | { |
||
3829 | continue; |
||
3830 | } |
||
3831 | tableSeen = 1; |
||
3832 | for ( j = 0; j < pTab.nCol; j++ ) |
||
3833 | { |
||
3834 | Expr pExpr, pRight; |
||
3835 | string zName = pTab.aCol[j].zName; |
||
3836 | string zColname; /* The computed column name */ |
||
3837 | string zToFree; /* Malloced string that needs to be freed */ |
||
3838 | Token sColname = new Token(); /* Computed column name as a token */ |
||
3839 | |||
3840 | /* If a column is marked as 'hidden' (currently only possible |
||
3841 | ** for virtual tables), do not include it in the expanded |
||
3842 | ** result-set list. |
||
3843 | */ |
||
3844 | if ( IsHiddenColumn( pTab.aCol[j] ) ) |
||
3845 | { |
||
3846 | Debug.Assert( IsVirtual( pTab ) ); |
||
3847 | continue; |
||
3848 | } |
||
3849 | |||
3850 | if ( i > 0 && ( zTName == null || zTName.Length == 0 ) ) |
||
3851 | { |
||
3852 | int iDummy = 0; |
||
3853 | if ( ( pFrom.jointype & JT_NATURAL ) != 0 |
||
3854 | && tableAndColumnIndex( pTabList, i, zName, ref iDummy, ref iDummy ) != 0 |
||
3855 | ) |
||
3856 | { |
||
3857 | /* In a NATURAL join, omit the join columns from the |
||
3858 | ** table to the right of the join */ |
||
3859 | continue; |
||
3860 | } |
||
3861 | if ( sqlite3IdListIndex( pFrom.pUsing, zName ) >= 0 ) |
||
3862 | { |
||
3863 | /* In a join with a USING clause, omit columns in the |
||
3864 | ** using clause from the table on the right. */ |
||
3865 | continue; |
||
3866 | } |
||
3867 | } |
||
3868 | pRight = sqlite3Expr( db, TK_ID, zName ); |
||
3869 | zColname = zName; |
||
3870 | zToFree = string.Empty; |
||
3871 | if ( longNames || pTabList.nSrc > 1 ) |
||
3872 | { |
||
3873 | Expr pLeft; |
||
3874 | pLeft = sqlite3Expr( db, TK_ID, zTabName ); |
||
3875 | pExpr = sqlite3PExpr( pParse, TK_DOT, pLeft, pRight, 0 ); |
||
3876 | if ( longNames ) |
||
3877 | { |
||
3878 | zColname = sqlite3MPrintf( db, "%s.%s", zTabName, zName ); |
||
3879 | zToFree = zColname; |
||
3880 | } |
||
3881 | } |
||
3882 | else |
||
3883 | { |
||
3884 | pExpr = pRight; |
||
3885 | } |
||
3886 | pNew = sqlite3ExprListAppend( pParse, pNew, pExpr ); |
||
3887 | sColname.z = zColname; |
||
3888 | sColname.n = sqlite3Strlen30( zColname ); |
||
3889 | sqlite3ExprListSetName( pParse, pNew, sColname, 0 ); |
||
3890 | sqlite3DbFree( db, ref zToFree ); |
||
3891 | } |
||
3892 | } |
||
3893 | if ( tableSeen == 0 ) |
||
3894 | { |
||
3895 | if ( zTName != null ) |
||
3896 | { |
||
3897 | sqlite3ErrorMsg( pParse, "no such table: %s", zTName ); |
||
3898 | } |
||
3899 | else |
||
3900 | { |
||
3901 | sqlite3ErrorMsg( pParse, "no tables specified" ); |
||
3902 | } |
||
3903 | } |
||
3904 | } |
||
3905 | } |
||
3906 | sqlite3ExprListDelete( db, ref pEList ); |
||
3907 | p.pEList = pNew; |
||
3908 | } |
||
3909 | //#if SQLITE_MAX_COLUMN |
||
3910 | if ( p.pEList != null && p.pEList.nExpr > db.aLimit[SQLITE_LIMIT_COLUMN] ) |
||
3911 | { |
||
3912 | sqlite3ErrorMsg( pParse, "too many columns in result set" ); |
||
3913 | } |
||
3914 | //#endif |
||
3915 | return WRC_Continue; |
||
3916 | } |
||
3917 | |||
3918 | /* |
||
3919 | ** No-op routine for the parse-tree walker. |
||
3920 | ** |
||
3921 | ** When this routine is the Walker.xExprCallback then expression trees |
||
3922 | ** are walked without any actions being taken at each node. Presumably, |
||
3923 | ** when this routine is used for Walker.xExprCallback then |
||
3924 | ** Walker.xSelectCallback is set to do something useful for every |
||
3925 | ** subquery in the parser tree. |
||
3926 | */ |
||
3927 | static int exprWalkNoop( Walker NotUsed, ref Expr NotUsed2 ) |
||
3928 | { |
||
3929 | UNUSED_PARAMETER2( NotUsed, NotUsed2 ); |
||
3930 | return WRC_Continue; |
||
3931 | } |
||
3932 | |||
3933 | /* |
||
3934 | ** This routine "expands" a SELECT statement and all of its subqueries. |
||
3935 | ** For additional information on what it means to "expand" a SELECT |
||
3936 | ** statement, see the comment on the selectExpand worker callback above. |
||
3937 | ** |
||
3938 | ** Expanding a SELECT statement is the first step in processing a |
||
3939 | ** SELECT statement. The SELECT statement must be expanded before |
||
3940 | ** name resolution is performed. |
||
3941 | ** |
||
3942 | ** If anything goes wrong, an error message is written into pParse. |
||
3943 | ** The calling function can detect the problem by looking at pParse.nErr |
||
3944 | ** and/or pParse.db.mallocFailed. |
||
3945 | */ |
||
3946 | static void sqlite3SelectExpand( Parse pParse, Select pSelect ) |
||
3947 | { |
||
3948 | Walker w = new Walker(); |
||
3949 | w.xSelectCallback = selectExpander; |
||
3950 | w.xExprCallback = exprWalkNoop; |
||
3951 | w.pParse = pParse; |
||
3952 | sqlite3WalkSelect( w, pSelect ); |
||
3953 | } |
||
3954 | |||
3955 | |||
3956 | #if !SQLITE_OMIT_SUBQUERY |
||
3957 | /* |
||
3958 | ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() |
||
3959 | ** interface. |
||
3960 | ** |
||
3961 | ** For each FROM-clause subquery, add Column.zType and Column.zColl |
||
3962 | ** information to the Table ure that represents the result set |
||
3963 | ** of that subquery. |
||
3964 | ** |
||
3965 | ** The Table ure that represents the result set was coned |
||
3966 | ** by selectExpander() but the type and collation information was omitted |
||
3967 | ** at that point because identifiers had not yet been resolved. This |
||
3968 | ** routine is called after identifier resolution. |
||
3969 | */ |
||
3970 | static int selectAddSubqueryTypeInfo( Walker pWalker, Select p ) |
||
3971 | { |
||
3972 | Parse pParse; |
||
3973 | int i; |
||
3974 | SrcList pTabList; |
||
3975 | SrcList_item pFrom; |
||
3976 | |||
3977 | Debug.Assert( ( p.selFlags & SF_Resolved ) != 0 ); |
||
3978 | if ( ( p.selFlags & SF_HasTypeInfo ) == 0 ) |
||
3979 | { |
||
3980 | p.selFlags |= SF_HasTypeInfo; |
||
3981 | pParse = pWalker.pParse; |
||
3982 | pTabList = p.pSrc; |
||
3983 | for ( i = 0; i < pTabList.nSrc; i++ )//, pFrom++ ) |
||
3984 | { |
||
3985 | pFrom = pTabList.a[i]; |
||
3986 | Table pTab = pFrom.pTab; |
||
3987 | if ( ALWAYS( pTab != null ) && ( pTab.tabFlags & TF_Ephemeral ) != 0 ) |
||
3988 | { |
||
3989 | /* A sub-query in the FROM clause of a SELECT */ |
||
3990 | Select pSel = pFrom.pSelect; |
||
3991 | Debug.Assert( pSel != null ); |
||
3992 | while ( pSel.pPrior != null ) |
||
3993 | pSel = pSel.pPrior; |
||
3994 | selectAddColumnTypeAndCollation( pParse, pTab.nCol, pTab.aCol, pSel ); |
||
3995 | } |
||
3996 | } |
||
3997 | } |
||
3998 | return WRC_Continue; |
||
3999 | } |
||
4000 | #endif |
||
4001 | |||
4002 | |||
4003 | /* |
||
4004 | ** This routine adds datatype and collating sequence information to |
||
4005 | ** the Table ures of all FROM-clause subqueries in a |
||
4006 | ** SELECT statement. |
||
4007 | ** |
||
4008 | ** Use this routine after name resolution. |
||
4009 | */ |
||
4010 | static void sqlite3SelectAddTypeInfo( Parse pParse, Select pSelect ) |
||
4011 | { |
||
4012 | #if !SQLITE_OMIT_SUBQUERY |
||
4013 | Walker w = new Walker(); |
||
4014 | w.xSelectCallback = selectAddSubqueryTypeInfo; |
||
4015 | w.xExprCallback = exprWalkNoop; |
||
4016 | w.pParse = pParse; |
||
4017 | sqlite3WalkSelect( w, pSelect ); |
||
4018 | #endif |
||
4019 | } |
||
4020 | |||
4021 | |||
4022 | /* |
||
4023 | ** This routine sets of a SELECT statement for processing. The |
||
4024 | ** following is accomplished: |
||
4025 | ** |
||
4026 | ** * VDBE VdbeCursor numbers are assigned to all FROM-clause terms. |
||
4027 | ** * Ephemeral Table objects are created for all FROM-clause subqueries. |
||
4028 | ** * ON and USING clauses are shifted into WHERE statements |
||
4029 | ** * Wildcards "*" and "TABLE.*" in result sets are expanded. |
||
4030 | ** * Identifiers in expression are matched to tables. |
||
4031 | ** |
||
4032 | ** This routine acts recursively on all subqueries within the SELECT. |
||
4033 | */ |
||
4034 | static void sqlite3SelectPrep( |
||
4035 | Parse pParse, /* The parser context */ |
||
4036 | Select p, /* The SELECT statement being coded. */ |
||
4037 | NameContext pOuterNC /* Name context for container */ |
||
4038 | ) |
||
4039 | { |
||
4040 | if ( NEVER( p == null ) ) |
||
4041 | return; |
||
4042 | ////sqlite3 db = pParse.db; |
||
4043 | if ( ( p.selFlags & SF_HasTypeInfo ) != 0 ) |
||
4044 | return; |
||
4045 | sqlite3SelectExpand( pParse, p ); |
||
4046 | if ( pParse.nErr != 0 /*|| db.mallocFailed != 0 */ ) |
||
4047 | return; |
||
4048 | sqlite3ResolveSelectNames( pParse, p, pOuterNC ); |
||
4049 | if ( pParse.nErr != 0 /*|| db.mallocFailed != 0 */ ) |
||
4050 | return; |
||
4051 | sqlite3SelectAddTypeInfo( pParse, p ); |
||
4052 | } |
||
4053 | |||
4054 | /* |
||
4055 | ** Reset the aggregate accumulator. |
||
4056 | ** |
||
4057 | ** The aggregate accumulator is a set of memory cells that hold |
||
4058 | ** intermediate results while calculating an aggregate. This |
||
4059 | ** routine simply stores NULLs in all of those memory cells. |
||
4060 | */ |
||
4061 | static void resetAccumulator( Parse pParse, AggInfo pAggInfo ) |
||
4062 | { |
||
4063 | Vdbe v = pParse.pVdbe; |
||
4064 | int i; |
||
4065 | AggInfo_func pFunc; |
||
4066 | if ( pAggInfo.nFunc + pAggInfo.nColumn == 0 ) |
||
4067 | { |
||
4068 | return; |
||
4069 | } |
||
4070 | for ( i = 0; i < pAggInfo.nColumn; i++ ) |
||
4071 | { |
||
4072 | sqlite3VdbeAddOp2( v, OP_Null, 0, pAggInfo.aCol[i].iMem ); |
||
4073 | } |
||
4074 | for ( i = 0; i < pAggInfo.nFunc; i++ ) |
||
4075 | {//, pFunc++){ |
||
4076 | pFunc = pAggInfo.aFunc[i]; |
||
4077 | sqlite3VdbeAddOp2( v, OP_Null, 0, pFunc.iMem ); |
||
4078 | if ( pFunc.iDistinct >= 0 ) |
||
4079 | { |
||
4080 | Expr pE = pFunc.pExpr; |
||
4081 | Debug.Assert( !ExprHasProperty( pE, EP_xIsSelect ) ); |
||
4082 | if ( pE.x.pList == null || pE.x.pList.nExpr != 1 ) |
||
4083 | { |
||
4084 | sqlite3ErrorMsg( pParse, "DISTINCT aggregates must have exactly one " + |
||
4085 | "argument" ); |
||
4086 | pFunc.iDistinct = -1; |
||
4087 | } |
||
4088 | else |
||
4089 | { |
||
4090 | KeyInfo pKeyInfo = keyInfoFromExprList( pParse, pE.x.pList ); |
||
4091 | sqlite3VdbeAddOp4( v, OP_OpenEphemeral, pFunc.iDistinct, 0, 0, |
||
4092 | pKeyInfo, P4_KEYINFO_HANDOFF ); |
||
4093 | } |
||
4094 | } |
||
4095 | } |
||
4096 | } |
||
4097 | |||
4098 | /* |
||
4099 | ** Invoke the OP_AggFinalize opcode for every aggregate function |
||
4100 | ** in the AggInfo structure. |
||
4101 | */ |
||
4102 | static void finalizeAggFunctions( Parse pParse, AggInfo pAggInfo ) |
||
4103 | { |
||
4104 | Vdbe v = pParse.pVdbe; |
||
4105 | int i; |
||
4106 | AggInfo_func pF; |
||
4107 | for ( i = 0; i < pAggInfo.nFunc; i++ ) |
||
4108 | {//, pF++){ |
||
4109 | pF = pAggInfo.aFunc[i]; |
||
4110 | ExprList pList = pF.pExpr.x.pList; |
||
4111 | Debug.Assert( !ExprHasProperty( pF.pExpr, EP_xIsSelect ) ); |
||
4112 | sqlite3VdbeAddOp4( v, OP_AggFinal, pF.iMem, pList != null ? pList.nExpr : 0, 0, |
||
4113 | pF.pFunc, P4_FUNCDEF ); |
||
4114 | } |
||
4115 | } |
||
4116 | |||
4117 | /* |
||
4118 | ** Update the accumulator memory cells for an aggregate based on |
||
4119 | ** the current cursor position. |
||
4120 | */ |
||
4121 | static void updateAccumulator( Parse pParse, AggInfo pAggInfo ) |
||
4122 | { |
||
4123 | Vdbe v = pParse.pVdbe; |
||
4124 | int i; |
||
4125 | AggInfo_func pF; |
||
4126 | AggInfo_col pC; |
||
4127 | |||
4128 | pAggInfo.directMode = 1; |
||
4129 | sqlite3ExprCacheClear( pParse ); |
||
4130 | for ( i = 0; i < pAggInfo.nFunc; i++ ) |
||
4131 | {//, pF++){ |
||
4132 | pF = pAggInfo.aFunc[i]; |
||
4133 | int nArg; |
||
4134 | int addrNext = 0; |
||
4135 | int regAgg; |
||
4136 | Debug.Assert( !ExprHasProperty( pF.pExpr, EP_xIsSelect ) ); |
||
4137 | ExprList pList = pF.pExpr.x.pList; |
||
4138 | if ( pList != null ) |
||
4139 | { |
||
4140 | nArg = pList.nExpr; |
||
4141 | regAgg = sqlite3GetTempRange( pParse, nArg ); |
||
4142 | sqlite3ExprCodeExprList( pParse, pList, regAgg, true ); |
||
4143 | } |
||
4144 | else |
||
4145 | { |
||
4146 | nArg = 0; |
||
4147 | regAgg = 0; |
||
4148 | } |
||
4149 | if ( pF.iDistinct >= 0 ) |
||
4150 | { |
||
4151 | addrNext = sqlite3VdbeMakeLabel( v ); |
||
4152 | Debug.Assert( nArg == 1 ); |
||
4153 | codeDistinct( pParse, pF.iDistinct, addrNext, 1, regAgg ); |
||
4154 | } |
||
4155 | if ( ( pF.pFunc.flags & SQLITE_FUNC_NEEDCOLL ) != 0 ) |
||
4156 | { |
||
4157 | CollSeq pColl = null; |
||
4158 | ExprList_item pItem; |
||
4159 | int j; |
||
4160 | Debug.Assert( pList != null ); /* pList!=0 if pF->pFunc has NEEDCOLL */ |
||
4161 | for ( j = 0; pColl == null && j < nArg; j++ ) |
||
4162 | {//, pItem++){ |
||
4163 | pItem = pList.a[j]; |
||
4164 | pColl = sqlite3ExprCollSeq( pParse, pItem.pExpr ); |
||
4165 | } |
||
4166 | if ( pColl == null ) |
||
4167 | { |
||
4168 | pColl = pParse.db.pDfltColl; |
||
4169 | } |
||
4170 | sqlite3VdbeAddOp4( v, OP_CollSeq, 0, 0, 0, pColl, P4_COLLSEQ ); |
||
4171 | } |
||
4172 | sqlite3VdbeAddOp4( v, OP_AggStep, 0, regAgg, pF.iMem, |
||
4173 | pF.pFunc, P4_FUNCDEF ); |
||
4174 | sqlite3VdbeChangeP5( v, (u8)nArg ); |
||
4175 | sqlite3ExprCacheAffinityChange( pParse, regAgg, nArg ); |
||
4176 | sqlite3ReleaseTempRange( pParse, regAgg, nArg ); |
||
4177 | if ( addrNext != 0 ) |
||
4178 | { |
||
4179 | sqlite3VdbeResolveLabel( v, addrNext ); |
||
4180 | sqlite3ExprCacheClear( pParse ); |
||
4181 | } |
||
4182 | } |
||
4183 | |||
4184 | /* Before populating the accumulator registers, clear the column cache. |
||
4185 | ** Otherwise, if any of the required column values are already present |
||
4186 | ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value |
||
4187 | ** to pC->iMem. But by the time the value is used, the original register |
||
4188 | ** may have been used, invalidating the underlying buffer holding the |
||
4189 | ** text or blob value. See ticket [883034dcb5]. |
||
4190 | ** |
||
4191 | ** Another solution would be to change the OP_SCopy used to copy cached |
||
4192 | ** values to an OP_Copy. |
||
4193 | */ |
||
4194 | sqlite3ExprCacheClear( pParse ); |
||
4195 | for ( i = 0; i < pAggInfo.nAccumulator; i++ )//, pC++) |
||
4196 | { |
||
4197 | pC = pAggInfo.aCol[i]; |
||
4198 | sqlite3ExprCode( pParse, pC.pExpr, pC.iMem ); |
||
4199 | } |
||
4200 | pAggInfo.directMode = 0; |
||
4201 | sqlite3ExprCacheClear( pParse ); |
||
4202 | } |
||
4203 | |||
4204 | /* |
||
4205 | ** Add a single OP_Explain instruction to the VDBE to explain a simple |
||
4206 | ** count() query ("SELECT count() FROM pTab"). |
||
4207 | */ |
||
4208 | #if !SQLITE_OMIT_EXPLAIN |
||
4209 | static void explainSimpleCount( |
||
4210 | Parse pParse, /* Parse context */ |
||
4211 | Table pTab, /* Table being queried */ |
||
4212 | Index pIdx /* Index used to optimize scan, or NULL */ |
||
4213 | ) |
||
4214 | { |
||
4215 | if ( pParse.explain == 2 ) |
||
4216 | { |
||
4217 | string zEqp = sqlite3MPrintf( pParse.db, "SCAN TABLE %s %s%s(~%d rows)", |
||
4218 | pTab.zName, |
||
4219 | pIdx != null ? "USING COVERING INDEX " : string.Empty, |
||
4220 | pIdx != null ? pIdx.zName : string.Empty, |
||
4221 | pTab.nRowEst |
||
4222 | ); |
||
4223 | sqlite3VdbeAddOp4( |
||
4224 | pParse.pVdbe, OP_Explain, pParse.iSelectId, 0, 0, zEqp, P4_DYNAMIC |
||
4225 | ); |
||
4226 | } |
||
4227 | } |
||
4228 | #else |
||
4229 | //# define explainSimpleCount(a,b,c) |
||
4230 | static void explainSimpleCount(Parse a, Table b, Index c){} |
||
4231 | #endif |
||
4232 | |||
4233 | /* |
||
4234 | ** Generate code for the SELECT statement given in the p argument. |
||
4235 | ** |
||
4236 | ** The results are distributed in various ways depending on the |
||
4237 | ** contents of the SelectDest structure pointed to by argument pDest |
||
4238 | ** as follows: |
||
4239 | ** |
||
4240 | ** pDest.eDest Result |
||
4241 | ** ------------ ------------------------------------------- |
||
4242 | ** SRT_Output Generate a row of output (using the OP_ResultRow |
||
4243 | ** opcode) for each row in the result set. |
||
4244 | ** |
||
4245 | ** SRT_Mem Only valid if the result is a single column. |
||
4246 | ** Store the first column of the first result row |
||
4247 | ** in register pDest.iParm then abandon the rest |
||
4248 | ** of the query. This destination implies "LIMIT 1". |
||
4249 | ** |
||
4250 | ** SRT_Set The result must be a single column. Store each |
||
4251 | ** row of result as the key in table pDest.iParm. |
||
4252 | ** Apply the affinity pDest.affinity before storing |
||
4253 | ** results. Used to implement "IN (SELECT ...)". |
||
4254 | ** |
||
4255 | ** SRT_Union Store results as a key in a temporary table pDest.iParm. |
||
4256 | ** |
||
4257 | ** SRT_Except Remove results from the temporary table pDest.iParm. |
||
4258 | ** |
||
4259 | ** SRT_Table Store results in temporary table pDest.iParm. |
||
4260 | ** This is like SRT_EphemTab except that the table |
||
4261 | ** is assumed to already be open. |
||
4262 | ** |
||
4263 | ** SRT_EphemTab Create an temporary table pDest.iParm and store |
||
4264 | ** the result there. The cursor is left open after |
||
4265 | ** returning. This is like SRT_Table except that |
||
4266 | ** this destination uses OP_OpenEphemeral to create |
||
4267 | ** the table first. |
||
4268 | ** |
||
4269 | ** SRT_Coroutine Generate a co-routine that returns a new row of |
||
4270 | ** results each time it is invoked. The entry point |
||
4271 | ** of the co-routine is stored in register pDest.iParm. |
||
4272 | ** |
||
4273 | ** SRT_Exists Store a 1 in memory cell pDest.iParm if the result |
||
4274 | ** set is not empty. |
||
4275 | ** |
||
4276 | ** SRT_Discard Throw the results away. This is used by SELECT |
||
4277 | ** statements within triggers whose only purpose is |
||
4278 | ** the side-effects of functions. |
||
4279 | ** |
||
4280 | ** This routine returns the number of errors. If any errors are |
||
4281 | ** encountered, then an appropriate error message is left in |
||
4282 | ** pParse.zErrMsg. |
||
4283 | ** |
||
4284 | ** This routine does NOT free the Select structure passed in. The |
||
4285 | ** calling function needs to do that. |
||
4286 | */ |
||
4287 | static SelectDest sdDummy = null; |
||
4288 | static bool bDummy = false; |
||
4289 | |||
4290 | static int sqlite3Select( |
||
4291 | Parse pParse, /* The parser context */ |
||
4292 | Select p, /* The SELECT statement being coded. */ |
||
4293 | ref SelectDest pDest /* What to do with the query results */ |
||
4294 | ) |
||
4295 | { |
||
4296 | int i, j; /* Loop counters */ |
||
4297 | WhereInfo pWInfo; /* Return from sqlite3WhereBegin() */ |
||
4298 | Vdbe v; /* The virtual machine under construction */ |
||
4299 | bool isAgg; /* True for select lists like "count()" */ |
||
4300 | ExprList pEList = new ExprList(); /* List of columns to extract. */ |
||
4301 | SrcList pTabList = new SrcList(); /* List of tables to select from */ |
||
4302 | Expr pWhere; /* The WHERE clause. May be NULL */ |
||
4303 | ExprList pOrderBy; /* The ORDER BY clause. May be NULL */ |
||
4304 | ExprList pGroupBy; /* The GROUP BY clause. May be NULL */ |
||
4305 | Expr pHaving; /* The HAVING clause. May be NULL */ |
||
4306 | bool isDistinct; /* True if the DISTINCT keyword is present */ |
||
4307 | int distinct; /* Table to use for the distinct set */ |
||
4308 | int rc = 1; /* Value to return from this function */ |
||
4309 | int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ |
||
4310 | AggInfo sAggInfo; /* Information used by aggregate queries */ |
||
4311 | int iEnd; /* Address of the end of the query */ |
||
4312 | sqlite3 db; /* The database connection */ |
||
4313 | |||
4314 | #if !SQLITE_OMIT_EXPLAIN |
||
4315 | int iRestoreSelectId = pParse.iSelectId; |
||
4316 | pParse.iSelectId = pParse.iNextSelectId++; |
||
4317 | #endif |
||
4318 | |||
4319 | db = pParse.db; |
||
4320 | if ( p == null /*|| db.mallocFailed != 0 */ || pParse.nErr != 0 ) |
||
4321 | { |
||
4322 | return 1; |
||
4323 | } |
||
4324 | #if !SQLITE_OMIT_AUTHORIZATION |
||
4325 | if (sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0)) return 1; |
||
4326 | #endif |
||
4327 | sAggInfo = new AggInfo();// memset(sAggInfo, 0, sAggInfo).Length; |
||
4328 | |||
4329 | if ( pDest.eDest <= SRT_Discard ) //IgnorableOrderby(pDest)) |
||
4330 | { |
||
4331 | Debug.Assert( pDest.eDest == SRT_Exists || pDest.eDest == SRT_Union || |
||
4332 | pDest.eDest == SRT_Except || pDest.eDest == SRT_Discard ); |
||
4333 | /* If ORDER BY makes no difference in the output then neither does |
||
4334 | ** DISTINCT so it can be removed too. */ |
||
4335 | sqlite3ExprListDelete( db, ref p.pOrderBy ); |
||
4336 | p.pOrderBy = null; |
||
4337 | p.selFlags = (u16)( p.selFlags & ~SF_Distinct ); |
||
4338 | } |
||
4339 | sqlite3SelectPrep( pParse, p, null ); |
||
4340 | pOrderBy = p.pOrderBy; |
||
4341 | pTabList = p.pSrc; |
||
4342 | pEList = p.pEList; |
||
4343 | if ( pParse.nErr != 0 /*|| db.mallocFailed != 0 */ ) |
||
4344 | { |
||
4345 | goto select_end; |
||
4346 | } |
||
4347 | isAgg = ( p.selFlags & SF_Aggregate ) != 0; |
||
4348 | Debug.Assert( pEList != null ); |
||
4349 | |||
4350 | /* Begin generating code. |
||
4351 | */ |
||
4352 | v = sqlite3GetVdbe( pParse ); |
||
4353 | if ( v == null ) |
||
4354 | goto select_end; |
||
4355 | |||
4356 | /* If writing to memory or generating a set |
||
4357 | ** only a single column may be output. |
||
4358 | */ |
||
4359 | #if !SQLITE_OMIT_SUBQUERY |
||
4360 | if ( checkForMultiColumnSelectError( pParse, pDest, pEList.nExpr ) ) |
||
4361 | { |
||
4362 | goto select_end; |
||
4363 | } |
||
4364 | #endif |
||
4365 | |||
4366 | /* Generate code for all sub-queries in the FROM clause |
||
4367 | */ |
||
4368 | #if !SQLITE_OMIT_SUBQUERY || !SQLITE_OMIT_VIEW |
||
4369 | for ( i = 0; p.pPrior == null && i < pTabList.nSrc; i++ ) |
||
4370 | { |
||
4371 | SrcList_item pItem = pTabList.a[i]; |
||
4372 | SelectDest dest = new SelectDest(); |
||
4373 | Select pSub = pItem.pSelect; |
||
4374 | bool isAggSub; |
||
4375 | |||
4376 | if ( pSub == null || pItem.isPopulated != 0 ) |
||
4377 | continue; |
||
4378 | |||
4379 | /* Increment Parse.nHeight by the height of the largest expression |
||
4380 | ** tree refered to by this, the parent select. The child select |
||
4381 | ** may contain expression trees of at most |
||
4382 | ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
||
4383 | ** more conservative than necessary, but much easier than enforcing |
||
4384 | ** an exact limit. |
||
4385 | */ |
||
4386 | pParse.nHeight += sqlite3SelectExprHeight( p ); |
||
4387 | |||
4388 | /* Check to see if the subquery can be absorbed into the parent. */ |
||
4389 | isAggSub = ( pSub.selFlags & SF_Aggregate ) != 0; |
||
4390 | if ( flattenSubquery( pParse, p, i, isAgg, isAggSub ) != 0 ) |
||
4391 | { |
||
4392 | if ( isAggSub ) |
||
4393 | { |
||
4394 | isAgg = true; |
||
4395 | p.selFlags |= SF_Aggregate; |
||
4396 | } |
||
4397 | i = -1; |
||
4398 | } |
||
4399 | else |
||
4400 | { |
||
4401 | sqlite3SelectDestInit( dest, SRT_EphemTab, pItem.iCursor ); |
||
4402 | Debug.Assert( 0 == pItem.isPopulated ); |
||
4403 | explainSetInteger( ref pItem.iSelectId, (int)pParse.iNextSelectId ); |
||
4404 | sqlite3Select( pParse, pSub, ref dest ); |
||
4405 | pItem.isPopulated = 1; |
||
4406 | pItem.pTab.nRowEst = (uint)pSub.nSelectRow; |
||
4407 | } |
||
4408 | //if ( /* pParse.nErr != 0 || */ db.mallocFailed != 0 ) |
||
4409 | //{ |
||
4410 | // goto select_end; |
||
4411 | //} |
||
4412 | pParse.nHeight -= sqlite3SelectExprHeight( p ); |
||
4413 | pTabList = p.pSrc; |
||
4414 | if ( !( pDest.eDest <= SRT_Discard ) )// if( null==IgnorableOrderby(pDest) ) |
||
4415 | { |
||
4416 | pOrderBy = p.pOrderBy; |
||
4417 | } |
||
4418 | } |
||
4419 | pEList = p.pEList; |
||
4420 | #endif |
||
4421 | pWhere = p.pWhere; |
||
4422 | pGroupBy = p.pGroupBy; |
||
4423 | pHaving = p.pHaving; |
||
4424 | isDistinct = ( p.selFlags & SF_Distinct ) != 0; |
||
4425 | |||
4426 | #if !SQLITE_OMIT_COMPOUND_SELECT |
||
4427 | /* If there is are a sequence of queries, do the earlier ones first. |
||
4428 | */ |
||
4429 | if ( p.pPrior != null ) |
||
4430 | { |
||
4431 | if ( p.pRightmost == null ) |
||
4432 | { |
||
4433 | Select pLoop, pRight = null; |
||
4434 | int cnt = 0; |
||
4435 | int mxSelect; |
||
4436 | for ( pLoop = p; pLoop != null; pLoop = pLoop.pPrior, cnt++ ) |
||
4437 | { |
||
4438 | pLoop.pRightmost = p; |
||
4439 | pLoop.pNext = pRight; |
||
4440 | pRight = pLoop; |
||
4441 | } |
||
4442 | mxSelect = db.aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; |
||
4443 | if ( mxSelect != 0 && cnt > mxSelect ) |
||
4444 | { |
||
4445 | sqlite3ErrorMsg( pParse, "too many terms in compound SELECT" ); |
||
4446 | goto select_end; |
||
4447 | } |
||
4448 | } |
||
4449 | rc = multiSelect( pParse, p, pDest ); |
||
4450 | explainSetInteger( ref pParse.iSelectId, iRestoreSelectId ); |
||
4451 | return rc; |
||
4452 | } |
||
4453 | #endif |
||
4454 | |||
4455 | /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. |
||
4456 | ** GROUP BY might use an index, DISTINCT never does. |
||
4457 | */ |
||
4458 | Debug.Assert( p.pGroupBy == null || ( p.selFlags & SF_Aggregate ) != 0 ); |
||
4459 | if ( ( p.selFlags & ( SF_Distinct | SF_Aggregate ) ) == SF_Distinct ) |
||
4460 | { |
||
4461 | p.pGroupBy = sqlite3ExprListDup( db, p.pEList, 0 ); |
||
4462 | pGroupBy = p.pGroupBy; |
||
4463 | p.selFlags = (u16)( p.selFlags & ~SF_Distinct ); |
||
4464 | } |
||
4465 | |||
4466 | /* If there is both a GROUP BY and an ORDER BY clause and they are |
||
4467 | ** identical, then disable the ORDER BY clause since the GROUP BY |
||
4468 | ** will cause elements to come out in the correct order. This is |
||
4469 | ** an optimization - the correct answer should result regardless. |
||
4470 | ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER |
||
4471 | ** to disable this optimization for testing purposes. |
||
4472 | */ |
||
4473 | if ( sqlite3ExprListCompare( p.pGroupBy, pOrderBy ) == 0 |
||
4474 | && ( db.flags & SQLITE_GroupByOrder ) == 0 ) |
||
4475 | { |
||
4476 | pOrderBy = null; |
||
4477 | } |
||
4478 | |||
4479 | /* If there is an ORDER BY clause, then this sorting |
||
4480 | ** index might end up being unused if the data can be |
||
4481 | ** extracted in pre-sorted order. If that is the case, then the |
||
4482 | ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
||
4483 | ** we figure out that the sorting index is not needed. The addrSortIndex |
||
4484 | ** variable is used to facilitate that change. |
||
4485 | */ |
||
4486 | if ( pOrderBy != null ) |
||
4487 | { |
||
4488 | KeyInfo pKeyInfo; |
||
4489 | pKeyInfo = keyInfoFromExprList( pParse, pOrderBy ); |
||
4490 | pOrderBy.iECursor = pParse.nTab++; |
||
4491 | p.addrOpenEphm[2] = addrSortIndex = |
||
4492 | sqlite3VdbeAddOp4( v, OP_OpenEphemeral, |
||
4493 | pOrderBy.iECursor, pOrderBy.nExpr + 2, 0, |
||
4494 | pKeyInfo, P4_KEYINFO_HANDOFF ); |
||
4495 | } |
||
4496 | else |
||
4497 | { |
||
4498 | addrSortIndex = -1; |
||
4499 | } |
||
4500 | |||
4501 | /* If the output is destined for a temporary table, open that table. |
||
4502 | */ |
||
4503 | if ( pDest.eDest == SRT_EphemTab ) |
||
4504 | { |
||
4505 | sqlite3VdbeAddOp2( v, OP_OpenEphemeral, pDest.iParm, pEList.nExpr ); |
||
4506 | } |
||
4507 | |||
4508 | /* Set the limiter. |
||
4509 | */ |
||
4510 | iEnd = sqlite3VdbeMakeLabel( v ); |
||
4511 | p.nSelectRow = (double)LARGEST_INT64; |
||
4512 | computeLimitRegisters( pParse, p, iEnd ); |
||
4513 | |||
4514 | /* Open a virtual index to use for the distinct set. |
||
4515 | */ |
||
4516 | if ( ( p.selFlags & SF_Distinct ) != 0 ) |
||
4517 | { |
||
4518 | KeyInfo pKeyInfo; |
||
4519 | Debug.Assert( isAgg || pGroupBy != null ); |
||
4520 | distinct = pParse.nTab++; |
||
4521 | pKeyInfo = keyInfoFromExprList( pParse, p.pEList ); |
||
4522 | sqlite3VdbeAddOp4( v, OP_OpenEphemeral, distinct, 0, 0, |
||
4523 | pKeyInfo, P4_KEYINFO_HANDOFF ); |
||
4524 | sqlite3VdbeChangeP5( v, BTREE_UNORDERED ); |
||
4525 | } |
||
4526 | else |
||
4527 | { |
||
4528 | distinct = -1; |
||
4529 | } |
||
4530 | |||
4531 | /* Aggregate and non-aggregate queries are handled differently */ |
||
4532 | if ( !isAgg && pGroupBy == null ) |
||
4533 | { |
||
4534 | /* This case is for non-aggregate queries |
||
4535 | ** Begin the database scan |
||
4536 | */ |
||
4537 | pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, ref pOrderBy, 0 ); |
||
4538 | if ( pWInfo == null ) |
||
4539 | goto select_end; |
||
4540 | if ( pWInfo.nRowOut < p.nSelectRow ) |
||
4541 | p.nSelectRow = pWInfo.nRowOut; |
||
4542 | |||
4543 | /* If sorting index that was created by a prior OP_OpenEphemeral |
||
4544 | ** instruction ended up not being needed, then change the OP_OpenEphemeral |
||
4545 | ** into an OP_Noop. |
||
4546 | */ |
||
4547 | if ( addrSortIndex >= 0 && pOrderBy == null ) |
||
4548 | { |
||
4549 | sqlite3VdbeChangeToNoop( v, addrSortIndex, 1 ); |
||
4550 | p.addrOpenEphm[2] = -1; |
||
4551 | } |
||
4552 | |||
4553 | /* Use the standard inner loop |
||
4554 | */ |
||
4555 | Debug.Assert( !isDistinct ); |
||
4556 | selectInnerLoop( pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, |
||
4557 | pWInfo.iContinue, pWInfo.iBreak ); |
||
4558 | |||
4559 | /* End the database scan loop. |
||
4560 | */ |
||
4561 | sqlite3WhereEnd( pWInfo ); |
||
4562 | } |
||
4563 | else |
||
4564 | { |
||
4565 | /* This is the processing for aggregate queries */ |
||
4566 | NameContext sNC; /* Name context for processing aggregate information */ |
||
4567 | int iAMem; /* First Mem address for storing current GROUP BY */ |
||
4568 | int iBMem; /* First Mem address for previous GROUP BY */ |
||
4569 | int iUseFlag; /* Mem address holding flag indicating that at least |
||
4570 | ** one row of the input to the aggregator has been |
||
4571 | ** processed */ |
||
4572 | int iAbortFlag; /* Mem address which causes query abort if positive */ |
||
4573 | int groupBySort; /* Rows come from source in GR BY' clause thanROUP BY order */ |
||
4574 | |||
4575 | int addrEnd; /* End of processing for this SELECT */ |
||
4576 | |||
4577 | /* Remove any and all aliases between the result set and the |
||
4578 | ** GROUP BY clause. |
||
4579 | */ |
||
4580 | if ( pGroupBy != null ) |
||
4581 | { |
||
4582 | int k; /* Loop counter */ |
||
4583 | ExprList_item pItem; /* For looping over expression in a list */ |
||
4584 | |||
4585 | for ( k = p.pEList.nExpr; k > 0; k-- )//, pItem++) |
||
4586 | { |
||
4587 | pItem = p.pEList.a[p.pEList.nExpr - k]; |
||
4588 | pItem.iAlias = 0; |
||
4589 | } |
||
4590 | for ( k = pGroupBy.nExpr; k > 0; k-- )//, pItem++ ) |
||
4591 | { |
||
4592 | pItem = pGroupBy.a[pGroupBy.nExpr - k]; |
||
4593 | pItem.iAlias = 0; |
||
4594 | } |
||
4595 | if ( p.nSelectRow > (double)100 ) |
||
4596 | p.nSelectRow = (double)100; |
||
4597 | } |
||
4598 | else |
||
4599 | { |
||
4600 | p.nSelectRow = (double)1; |
||
4601 | } |
||
4602 | |||
4603 | /* Create a label to jump to when we want to abort the query */ |
||
4604 | addrEnd = sqlite3VdbeMakeLabel( v ); |
||
4605 | |||
4606 | /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
||
4607 | ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
||
4608 | ** SELECT statement. |
||
4609 | */ |
||
4610 | sNC = new NameContext(); // memset(sNC, 0, sNC).Length; |
||
4611 | sNC.pParse = pParse; |
||
4612 | sNC.pSrcList = pTabList; |
||
4613 | sNC.pAggInfo = sAggInfo; |
||
4614 | sAggInfo.nSortingColumn = pGroupBy != null ? pGroupBy.nExpr + 1 : 0; |
||
4615 | sAggInfo.pGroupBy = pGroupBy; |
||
4616 | sqlite3ExprAnalyzeAggList( sNC, pEList ); |
||
4617 | sqlite3ExprAnalyzeAggList( sNC, pOrderBy ); |
||
4618 | if ( pHaving != null ) |
||
4619 | { |
||
4620 | sqlite3ExprAnalyzeAggregates( sNC, ref pHaving ); |
||
4621 | } |
||
4622 | sAggInfo.nAccumulator = sAggInfo.nColumn; |
||
4623 | for ( i = 0; i < sAggInfo.nFunc; i++ ) |
||
4624 | { |
||
4625 | Debug.Assert( !ExprHasProperty( sAggInfo.aFunc[i].pExpr, EP_xIsSelect ) ); |
||
4626 | sqlite3ExprAnalyzeAggList( sNC, sAggInfo.aFunc[i].pExpr.x.pList ); |
||
4627 | } |
||
4628 | // if ( db.mallocFailed != 0 ) goto select_end; |
||
4629 | |||
4630 | /* Processing for aggregates with GROUP BY is very different and |
||
4631 | ** much more complex than aggregates without a GROUP BY. |
||
4632 | */ |
||
4633 | if ( pGroupBy != null ) |
||
4634 | { |
||
4635 | KeyInfo pKeyInfo; /* Keying information for the group by clause */ |
||
4636 | int j1; /* A-vs-B comparision jump */ |
||
4637 | int addrOutputRow; /* Start of subroutine that outputs a result row */ |
||
4638 | int regOutputRow; /* Return address register for output subroutine */ |
||
4639 | int addrSetAbort; /* Set the abort flag and return */ |
||
4640 | int addrTopOfLoop; /* Top of the input loop */ |
||
4641 | int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
||
4642 | int addrReset; /* Subroutine for resetting the accumulator */ |
||
4643 | int regReset; /* Return address register for reset subroutine */ |
||
4644 | |||
4645 | /* If there is a GROUP BY clause we might need a sorting index to |
||
4646 | ** implement it. Allocate that sorting index now. If it turns out |
||
4647 | ** that we do not need it after all, the OpenEphemeral instruction |
||
4648 | ** will be converted into a Noop. |
||
4649 | */ |
||
4650 | sAggInfo.sortingIdx = pParse.nTab++; |
||
4651 | pKeyInfo = keyInfoFromExprList( pParse, pGroupBy ); |
||
4652 | addrSortingIdx = sqlite3VdbeAddOp4( v, OP_OpenEphemeral, |
||
4653 | sAggInfo.sortingIdx, sAggInfo.nSortingColumn, |
||
4654 | 0, pKeyInfo, P4_KEYINFO_HANDOFF ); |
||
4655 | |||
4656 | /* Initialize memory locations used by GROUP BY aggregate processing |
||
4657 | */ |
||
4658 | iUseFlag = ++pParse.nMem; |
||
4659 | iAbortFlag = ++pParse.nMem; |
||
4660 | regOutputRow = ++pParse.nMem; |
||
4661 | addrOutputRow = sqlite3VdbeMakeLabel( v ); |
||
4662 | regReset = ++pParse.nMem; |
||
4663 | addrReset = sqlite3VdbeMakeLabel( v ); |
||
4664 | iAMem = pParse.nMem + 1; |
||
4665 | pParse.nMem += pGroupBy.nExpr; |
||
4666 | iBMem = pParse.nMem + 1; |
||
4667 | pParse.nMem += pGroupBy.nExpr; |
||
4668 | sqlite3VdbeAddOp2( v, OP_Integer, 0, iAbortFlag ); |
||
4669 | #if SQLITE_DEBUG |
||
4670 | VdbeComment( v, "clear abort flag" ); |
||
4671 | #endif |
||
4672 | sqlite3VdbeAddOp2( v, OP_Integer, 0, iUseFlag ); |
||
4673 | #if SQLITE_DEBUG |
||
4674 | VdbeComment( v, "indicate accumulator empty" ); |
||
4675 | #endif |
||
4676 | |||
4677 | /* Begin a loop that will extract all source rows in GROUP BY order. |
||
4678 | ** This might involve two separate loops with an OP_Sort in between, or |
||
4679 | ** it might be a single loop that uses an index to extract information |
||
4680 | ** in the right order to begin with. |
||
4681 | */ |
||
4682 | sqlite3VdbeAddOp2( v, OP_Gosub, regReset, addrReset ); |
||
4683 | pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, ref pGroupBy, 0 ); |
||
4684 | if ( pWInfo == null ) |
||
4685 | goto select_end; |
||
4686 | if ( pGroupBy == null ) |
||
4687 | { |
||
4688 | /* The optimizer is able to deliver rows in group by order so |
||
4689 | ** we do not have to sort. The OP_OpenEphemeral table will be |
||
4690 | ** cancelled later because we still need to use the pKeyInfo |
||
4691 | */ |
||
4692 | pGroupBy = p.pGroupBy; |
||
4693 | groupBySort = 0; |
||
4694 | } |
||
4695 | else |
||
4696 | { |
||
4697 | /* Rows are coming out in undetermined order. We have to push |
||
4698 | ** each row into a sorting index, terminate the first loop, |
||
4699 | ** then loop over the sorting index in order to get the output |
||
4700 | ** in sorted order |
||
4701 | */ |
||
4702 | int regBase; |
||
4703 | int regRecord; |
||
4704 | int nCol; |
||
4705 | int nGroupBy; |
||
4706 | |||
4707 | explainTempTable( pParse, |
||
4708 | isDistinct && 0 == ( p.selFlags & SF_Distinct ) ? "DISTINCT" : "GROUP BY" ); |
||
4709 | |||
4710 | groupBySort = 1; |
||
4711 | nGroupBy = pGroupBy.nExpr; |
||
4712 | nCol = nGroupBy + 1; |
||
4713 | j = nGroupBy + 1; |
||
4714 | for ( i = 0; i < sAggInfo.nColumn; i++ ) |
||
4715 | { |
||
4716 | if ( sAggInfo.aCol[i].iSorterColumn >= j ) |
||
4717 | { |
||
4718 | nCol++; |
||
4719 | j++; |
||
4720 | } |
||
4721 | } |
||
4722 | regBase = sqlite3GetTempRange( pParse, nCol ); |
||
4723 | sqlite3ExprCacheClear( pParse ); |
||
4724 | sqlite3ExprCodeExprList( pParse, pGroupBy, regBase, false ); |
||
4725 | sqlite3VdbeAddOp2( v, OP_Sequence, sAggInfo.sortingIdx, regBase + nGroupBy ); |
||
4726 | j = nGroupBy + 1; |
||
4727 | for ( i = 0; i < sAggInfo.nColumn; i++ ) |
||
4728 | { |
||
4729 | AggInfo_col pCol = sAggInfo.aCol[i]; |
||
4730 | if ( pCol.iSorterColumn >= j ) |
||
4731 | { |
||
4732 | int r1 = j + regBase; |
||
4733 | int r2; |
||
4734 | r2 = sqlite3ExprCodeGetColumn( pParse, |
||
4735 | pCol.pTab, pCol.iColumn, pCol.iTable, r1 ); |
||
4736 | if ( r1 != r2 ) |
||
4737 | { |
||
4738 | sqlite3VdbeAddOp2( v, OP_SCopy, r2, r1 ); |
||
4739 | } |
||
4740 | j++; |
||
4741 | } |
||
4742 | } |
||
4743 | regRecord = sqlite3GetTempReg( pParse ); |
||
4744 | sqlite3VdbeAddOp3( v, OP_MakeRecord, regBase, nCol, regRecord ); |
||
4745 | sqlite3VdbeAddOp2( v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord ); |
||
4746 | sqlite3ReleaseTempReg( pParse, regRecord ); |
||
4747 | sqlite3ReleaseTempRange( pParse, regBase, nCol ); |
||
4748 | sqlite3WhereEnd( pWInfo ); |
||
4749 | sqlite3VdbeAddOp2( v, OP_Sort, sAggInfo.sortingIdx, addrEnd ); |
||
4750 | #if SQLITE_DEBUG |
||
4751 | VdbeComment( v, "GROUP BY sort" ); |
||
4752 | #endif |
||
4753 | sAggInfo.useSortingIdx = 1; |
||
4754 | sqlite3ExprCacheClear( pParse ); |
||
4755 | } |
||
4756 | |||
4757 | /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
||
4758 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
||
4759 | ** Then compare the current GROUP BY terms against the GROUP BY terms |
||
4760 | ** from the previous row currently stored in a0, a1, a2... |
||
4761 | */ |
||
4762 | addrTopOfLoop = sqlite3VdbeCurrentAddr( v ); |
||
4763 | sqlite3ExprCacheClear( pParse ); |
||
4764 | for ( j = 0; j < pGroupBy.nExpr; j++ ) |
||
4765 | { |
||
4766 | if ( groupBySort != 0 ) |
||
4767 | { |
||
4768 | sqlite3VdbeAddOp3( v, OP_Column, sAggInfo.sortingIdx, j, iBMem + j ); |
||
4769 | } |
||
4770 | else |
||
4771 | { |
||
4772 | sAggInfo.directMode = 1; |
||
4773 | sqlite3ExprCode( pParse, pGroupBy.a[j].pExpr, iBMem + j ); |
||
4774 | } |
||
4775 | } |
||
4776 | sqlite3VdbeAddOp4( v, OP_Compare, iAMem, iBMem, pGroupBy.nExpr, |
||
4777 | pKeyInfo, P4_KEYINFO ); |
||
4778 | j1 = sqlite3VdbeCurrentAddr( v ); |
||
4779 | sqlite3VdbeAddOp3( v, OP_Jump, j1 + 1, 0, j1 + 1 ); |
||
4780 | |||
4781 | /* Generate code that runs whenever the GROUP BY changes. |
||
4782 | ** Changes in the GROUP BY are detected by the previous code |
||
4783 | ** block. If there were no changes, this block is skipped. |
||
4784 | ** |
||
4785 | ** This code copies current group by terms in b0,b1,b2,... |
||
4786 | ** over to a0,a1,a2. It then calls the output subroutine |
||
4787 | ** and resets the aggregate accumulator registers in preparation |
||
4788 | ** for the next GROUP BY batch. |
||
4789 | */ |
||
4790 | sqlite3ExprCodeMove( pParse, iBMem, iAMem, pGroupBy.nExpr ); |
||
4791 | sqlite3VdbeAddOp2( v, OP_Gosub, regOutputRow, addrOutputRow ); |
||
4792 | #if SQLITE_DEBUG |
||
4793 | VdbeComment( v, "output one row" ); |
||
4794 | #endif |
||
4795 | sqlite3VdbeAddOp2( v, OP_IfPos, iAbortFlag, addrEnd ); |
||
4796 | #if SQLITE_DEBUG |
||
4797 | VdbeComment( v, "check abort flag" ); |
||
4798 | #endif |
||
4799 | sqlite3VdbeAddOp2( v, OP_Gosub, regReset, addrReset ); |
||
4800 | #if SQLITE_DEBUG |
||
4801 | VdbeComment( v, "reset accumulator" ); |
||
4802 | #endif |
||
4803 | |||
4804 | /* Update the aggregate accumulators based on the content of |
||
4805 | ** the current row |
||
4806 | */ |
||
4807 | sqlite3VdbeJumpHere( v, j1 ); |
||
4808 | updateAccumulator( pParse, sAggInfo ); |
||
4809 | sqlite3VdbeAddOp2( v, OP_Integer, 1, iUseFlag ); |
||
4810 | #if SQLITE_DEBUG |
||
4811 | VdbeComment( v, "indicate data in accumulator" ); |
||
4812 | #endif |
||
4813 | /* End of the loop |
||
4814 | */ |
||
4815 | if ( groupBySort != 0 ) |
||
4816 | { |
||
4817 | sqlite3VdbeAddOp2( v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop ); |
||
4818 | } |
||
4819 | else |
||
4820 | { |
||
4821 | sqlite3WhereEnd( pWInfo ); |
||
4822 | sqlite3VdbeChangeToNoop( v, addrSortingIdx, 1 ); |
||
4823 | } |
||
4824 | |||
4825 | /* Output the final row of result |
||
4826 | */ |
||
4827 | sqlite3VdbeAddOp2( v, OP_Gosub, regOutputRow, addrOutputRow ); |
||
4828 | #if SQLITE_DEBUG |
||
4829 | VdbeComment( v, "output final row" ); |
||
4830 | #endif |
||
4831 | /* Jump over the subroutines |
||
4832 | */ |
||
4833 | sqlite3VdbeAddOp2( v, OP_Goto, 0, addrEnd ); |
||
4834 | |||
4835 | /* Generate a subroutine that outputs a single row of the result |
||
4836 | ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
||
4837 | ** is less than or equal to zero, the subroutine is a no-op. If |
||
4838 | ** the processing calls for the query to abort, this subroutine |
||
4839 | ** increments the iAbortFlag memory location before returning in |
||
4840 | ** order to signal the caller to abort. |
||
4841 | */ |
||
4842 | addrSetAbort = sqlite3VdbeCurrentAddr( v ); |
||
4843 | sqlite3VdbeAddOp2( v, OP_Integer, 1, iAbortFlag ); |
||
4844 | VdbeComment( v, "set abort flag" ); |
||
4845 | sqlite3VdbeAddOp1( v, OP_Return, regOutputRow ); |
||
4846 | sqlite3VdbeResolveLabel( v, addrOutputRow ); |
||
4847 | addrOutputRow = sqlite3VdbeCurrentAddr( v ); |
||
4848 | sqlite3VdbeAddOp2( v, OP_IfPos, iUseFlag, addrOutputRow + 2 ); |
||
4849 | VdbeComment( v, "Groupby result generator entry point" ); |
||
4850 | sqlite3VdbeAddOp1( v, OP_Return, regOutputRow ); |
||
4851 | finalizeAggFunctions( pParse, sAggInfo ); |
||
4852 | sqlite3ExprIfFalse( pParse, pHaving, addrOutputRow + 1, SQLITE_JUMPIFNULL ); |
||
4853 | selectInnerLoop( pParse, p, p.pEList, 0, 0, pOrderBy, |
||
4854 | distinct, pDest, |
||
4855 | addrOutputRow + 1, addrSetAbort ); |
||
4856 | sqlite3VdbeAddOp1( v, OP_Return, regOutputRow ); |
||
4857 | VdbeComment( v, "end groupby result generator" ); |
||
4858 | |||
4859 | /* Generate a subroutine that will reset the group-by accumulator |
||
4860 | */ |
||
4861 | sqlite3VdbeResolveLabel( v, addrReset ); |
||
4862 | resetAccumulator( pParse, sAggInfo ); |
||
4863 | sqlite3VdbeAddOp1( v, OP_Return, regReset ); |
||
4864 | |||
4865 | } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ |
||
4866 | else |
||
4867 | { |
||
4868 | ExprList pDel = null; |
||
4869 | #if !SQLITE_OMIT_BTREECOUNT |
||
4870 | Table pTab; |
||
4871 | if ( ( pTab = isSimpleCount( p, sAggInfo ) ) != null ) |
||
4872 | { |
||
4873 | /* If isSimpleCount() returns a pointer to a Table structure, then |
||
4874 | ** the SQL statement is of the form: |
||
4875 | ** |
||
4876 | ** SELECT count() FROM <tbl> |
||
4877 | ** |
||
4878 | ** where the Table structure returned represents table <tbl>. |
||
4879 | ** |
||
4880 | ** This statement is so common that it is optimized specially. The |
||
4881 | ** OP_Count instruction is executed either on the intkey table that |
||
4882 | ** contains the data for table <tbl> or on one of its indexes. It |
||
4883 | ** is better to execute the op on an index, as indexes are almost |
||
4884 | ** always spread across less pages than their corresponding tables. |
||
4885 | */ |
||
4886 | int iDb = sqlite3SchemaToIndex( pParse.db, pTab.pSchema ); |
||
4887 | int iCsr = pParse.nTab++; /* Cursor to scan b-tree */ |
||
4888 | Index pIdx; /* Iterator variable */ |
||
4889 | KeyInfo pKeyInfo = null; /* Keyinfo for scanned index */ |
||
4890 | Index pBest = null; /* Best index found so far */ |
||
4891 | int iRoot = pTab.tnum; /* Root page of scanned b-tree */ |
||
4892 | |||
4893 | sqlite3CodeVerifySchema( pParse, iDb ); |
||
4894 | sqlite3TableLock( pParse, iDb, pTab.tnum, 0, pTab.zName ); |
||
4895 | |||
4896 | /* Search for the index that has the least amount of columns. If |
||
4897 | ** there is such an index, and it has less columns than the table |
||
4898 | ** does, then we can assume that it consumes less space on disk and |
||
4899 | ** will therefore be cheaper to scan to determine the query result. |
||
4900 | ** In this case set iRoot to the root page number of the index b-tree |
||
4901 | ** and pKeyInfo to the KeyInfo structure required to navigate the |
||
4902 | ** index. |
||
4903 | ** |
||
4904 | ** (2011-04-15) Do not do a full scan of an unordered index. |
||
4905 | ** |
||
4906 | ** In practice the KeyInfo structure will not be used. It is only |
||
4907 | ** passed to keep OP_OpenRead happy. |
||
4908 | */ |
||
4909 | for ( pIdx = pTab.pIndex; pIdx != null; pIdx = pIdx.pNext ) |
||
4910 | { |
||
4911 | if ( pIdx.bUnordered == 0 && ( null == pBest || pIdx.nColumn < pBest.nColumn ) ) |
||
4912 | { |
||
4913 | pBest = pIdx; |
||
4914 | } |
||
4915 | } |
||
4916 | if ( pBest != null && pBest.nColumn < pTab.nCol ) |
||
4917 | { |
||
4918 | iRoot = pBest.tnum; |
||
4919 | pKeyInfo = sqlite3IndexKeyinfo( pParse, pBest ); |
||
4920 | } |
||
4921 | |||
4922 | /* Open a read-only cursor, execute the OP_Count, close the cursor. */ |
||
4923 | sqlite3VdbeAddOp3( v, OP_OpenRead, iCsr, iRoot, iDb ); |
||
4924 | if ( pKeyInfo != null ) |
||
4925 | { |
||
4926 | sqlite3VdbeChangeP4( v, -1, pKeyInfo, P4_KEYINFO_HANDOFF ); |
||
4927 | } |
||
4928 | sqlite3VdbeAddOp2( v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem ); |
||
4929 | sqlite3VdbeAddOp1( v, OP_Close, iCsr ); |
||
4930 | explainSimpleCount( pParse, pTab, pBest ); |
||
4931 | } |
||
4932 | else |
||
4933 | #endif //* SQLITE_OMIT_BTREECOUNT */ |
||
4934 | { |
||
4935 | |||
4936 | /* Check if the query is of one of the following forms: |
||
4937 | ** |
||
4938 | ** SELECT min(x) FROM ... |
||
4939 | ** SELECT max(x) FROM ... |
||
4940 | ** |
||
4941 | ** If it is, then ask the code in where.c to attempt to sort results |
||
4942 | ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. |
||
4943 | ** If where.c is able to produce results sorted in this order, then |
||
4944 | ** add vdbe code to break out of the processing loop after the |
||
4945 | ** first iteration (since the first iteration of the loop is |
||
4946 | ** guaranteed to operate on the row with the minimum or maximum |
||
4947 | ** value of x, the only row required). |
||
4948 | ** |
||
4949 | ** A special flag must be passed to sqlite3WhereBegin() to slightly |
||
4950 | ** modify behavior as follows: |
||
4951 | ** |
||
4952 | ** + If the query is a "SELECT min(x)", then the loop coded by |
||
4953 | ** where.c should not iterate over any values with a NULL value |
||
4954 | ** for x. |
||
4955 | ** |
||
4956 | ** + The optimizer code in where.c (the thing that decides which |
||
4957 | ** index or indices to use) should place a different priority on |
||
4958 | ** satisfying the 'ORDER BY' clause than it does in other cases. |
||
4959 | ** Refer to code and comments in where.c for details. |
||
4960 | */ |
||
4961 | ExprList pMinMax = null; |
||
4962 | int flag = minMaxQuery( p ); |
||
4963 | if ( flag != 0 ) |
||
4964 | { |
||
4965 | Debug.Assert( !ExprHasProperty( p.pEList.a[0].pExpr, EP_xIsSelect ) ); |
||
4966 | pMinMax = sqlite3ExprListDup( db, p.pEList.a[0].pExpr.x.pList, 0 ); |
||
4967 | pDel = pMinMax; |
||
4968 | if ( pMinMax != null )///* && 0 == db.mallocFailed */ ) |
||
4969 | { |
||
4970 | pMinMax.a[0].sortOrder = (u8)( flag != WHERE_ORDERBY_MIN ? 1 : 0 ); |
||
4971 | pMinMax.a[0].pExpr.op = TK_COLUMN; |
||
4972 | } |
||
4973 | } |
||
4974 | |||
4975 | /* This case runs if the aggregate has no GROUP BY clause. The |
||
4976 | ** processing is much simpler since there is only a single row |
||
4977 | ** of output. |
||
4978 | */ |
||
4979 | resetAccumulator( pParse, sAggInfo ); |
||
4980 | pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, ref pMinMax, (byte)flag ); |
||
4981 | if ( pWInfo == null ) |
||
4982 | { |
||
4983 | sqlite3ExprListDelete( db, ref pDel ); |
||
4984 | goto select_end; |
||
4985 | } |
||
4986 | updateAccumulator( pParse, sAggInfo ); |
||
4987 | if ( pMinMax == null && flag != 0 ) |
||
4988 | { |
||
4989 | sqlite3VdbeAddOp2( v, OP_Goto, 0, pWInfo.iBreak ); |
||
4990 | #if SQLITE_DEBUG |
||
4991 | VdbeComment( v, "%s() by index", |
||
4992 | ( flag == WHERE_ORDERBY_MIN ? "min" : "max" ) ); |
||
4993 | #endif |
||
4994 | } |
||
4995 | sqlite3WhereEnd( pWInfo ); |
||
4996 | finalizeAggFunctions( pParse, sAggInfo ); |
||
4997 | } |
||
4998 | |||
4999 | pOrderBy = null; |
||
5000 | sqlite3ExprIfFalse( pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL ); |
||
5001 | selectInnerLoop( pParse, p, p.pEList, 0, 0, null, -1, |
||
5002 | pDest, addrEnd, addrEnd ); |
||
5003 | |||
5004 | sqlite3ExprListDelete( db, ref pDel ); |
||
5005 | } |
||
5006 | sqlite3VdbeResolveLabel( v, addrEnd ); |
||
5007 | |||
5008 | } /* endif aggregate query */ |
||
5009 | |||
5010 | if ( distinct >= 0 ) |
||
5011 | { |
||
5012 | explainTempTable( pParse, "DISTINCT" ); |
||
5013 | } |
||
5014 | |||
5015 | /* If there is an ORDER BY clause, then we need to sort the results |
||
5016 | ** and send them to the callback one by one. |
||
5017 | */ |
||
5018 | if ( pOrderBy != null ) |
||
5019 | { |
||
5020 | explainTempTable( pParse, "ORDER BY" ); |
||
5021 | generateSortTail( pParse, p, v, pEList.nExpr, pDest ); |
||
5022 | } |
||
5023 | |||
5024 | /* Jump here to skip this query |
||
5025 | */ |
||
5026 | sqlite3VdbeResolveLabel( v, iEnd ); |
||
5027 | |||
5028 | /* The SELECT was successfully coded. Set the return code to 0 |
||
5029 | ** to indicate no errors. |
||
5030 | */ |
||
5031 | rc = 0; |
||
5032 | |||
5033 | /* Control jumps to here if an error is encountered above, or upon |
||
5034 | ** successful coding of the SELECT. |
||
5035 | */ |
||
5036 | select_end: |
||
5037 | explainSetInteger( ref pParse.iSelectId, iRestoreSelectId ); |
||
5038 | |||
5039 | /* Identify column names if results of the SELECT are to be output. |
||
5040 | */ |
||
5041 | if ( rc == SQLITE_OK && pDest.eDest == SRT_Output ) |
||
5042 | { |
||
5043 | generateColumnNames( pParse, pTabList, pEList ); |
||
5044 | } |
||
5045 | |||
5046 | sqlite3DbFree( db, ref sAggInfo.aCol ); |
||
5047 | sqlite3DbFree( db, ref sAggInfo.aFunc ); |
||
5048 | return rc; |
||
5049 | } |
||
5050 | |||
5051 | #if SQLITE_DEBUG |
||
5052 | /* |
||
5053 | ******************************************************************************* |
||
5054 | ** The following code is used for testing and debugging only. The code |
||
5055 | ** that follows does not appear in normal builds. |
||
5056 | ** |
||
5057 | ** These routines are used to print out the content of all or part of a |
||
5058 | ** parse structures such as Select or Expr. Such printouts are useful |
||
5059 | ** for helping to understand what is happening inside the code generator |
||
5060 | ** during the execution of complex SELECT statements. |
||
5061 | ** |
||
5062 | ** These routine are not called anywhere from within the normal |
||
5063 | ** code base. Then are intended to be called from within the debugger |
||
5064 | ** or from temporary "printf" statements inserted for debugging. |
||
5065 | */ |
||
5066 | void sqlite3PrintExpr( Expr p ) |
||
5067 | { |
||
5068 | if ( !ExprHasProperty( p, EP_IntValue ) && p.u.zToken != null ) |
||
5069 | { |
||
5070 | sqlite3DebugPrintf( "(%s", p.u.zToken ); |
||
5071 | } |
||
5072 | else |
||
5073 | { |
||
5074 | sqlite3DebugPrintf( "(%d", p.op ); |
||
5075 | } |
||
5076 | if ( p.pLeft != null ) |
||
5077 | { |
||
5078 | sqlite3DebugPrintf( " " ); |
||
5079 | sqlite3PrintExpr( p.pLeft ); |
||
5080 | } |
||
5081 | if ( p.pRight != null ) |
||
5082 | { |
||
5083 | sqlite3DebugPrintf( " " ); |
||
5084 | sqlite3PrintExpr( p.pRight ); |
||
5085 | } |
||
5086 | sqlite3DebugPrintf( ")" ); |
||
5087 | } |
||
5088 | void sqlite3PrintExprList( ExprList pList ) |
||
5089 | { |
||
5090 | int i; |
||
5091 | for ( i = 0; i < pList.nExpr; i++ ) |
||
5092 | { |
||
5093 | sqlite3PrintExpr( pList.a[i].pExpr ); |
||
5094 | if ( i < pList.nExpr - 1 ) |
||
5095 | { |
||
5096 | sqlite3DebugPrintf( ", " ); |
||
5097 | } |
||
5098 | } |
||
5099 | } |
||
5100 | void sqlite3PrintSelect( Select p, int indent ) |
||
5101 | { |
||
5102 | sqlite3DebugPrintf( "%*sSELECT(%p) ", indent, string.Empty, p ); |
||
5103 | sqlite3PrintExprList( p.pEList ); |
||
5104 | sqlite3DebugPrintf( "\n" ); |
||
5105 | if ( p.pSrc != null ) |
||
5106 | { |
||
5107 | string zPrefix; |
||
5108 | int i; |
||
5109 | zPrefix = "FROM"; |
||
5110 | for ( i = 0; i < p.pSrc.nSrc; i++ ) |
||
5111 | { |
||
5112 | SrcList_item pItem = p.pSrc.a[i]; |
||
5113 | sqlite3DebugPrintf( "%*s ", indent + 6, zPrefix ); |
||
5114 | zPrefix = string.Empty; |
||
5115 | if ( pItem.pSelect != null ) |
||
5116 | { |
||
5117 | sqlite3DebugPrintf( "(\n" ); |
||
5118 | sqlite3PrintSelect( pItem.pSelect, indent + 10 ); |
||
5119 | sqlite3DebugPrintf( "%*s)", indent + 8, string.Empty ); |
||
5120 | } |
||
5121 | else if ( pItem.zName != null ) |
||
5122 | { |
||
5123 | sqlite3DebugPrintf( "%s", pItem.zName ); |
||
5124 | } |
||
5125 | if ( pItem.pTab != null ) |
||
5126 | { |
||
5127 | sqlite3DebugPrintf( "(vtable: %s)", pItem.pTab.zName ); |
||
5128 | } |
||
5129 | if ( pItem.zAlias != null ) |
||
5130 | { |
||
5131 | sqlite3DebugPrintf( " AS %s", pItem.zAlias ); |
||
5132 | } |
||
5133 | if ( i < p.pSrc.nSrc - 1 ) |
||
5134 | { |
||
5135 | sqlite3DebugPrintf( "," ); |
||
5136 | } |
||
5137 | sqlite3DebugPrintf( "\n" ); |
||
5138 | } |
||
5139 | } |
||
5140 | if ( p.pWhere != null ) |
||
5141 | { |
||
5142 | sqlite3DebugPrintf( "%*s WHERE ", indent, string.Empty ); |
||
5143 | sqlite3PrintExpr( p.pWhere ); |
||
5144 | sqlite3DebugPrintf( "\n" ); |
||
5145 | } |
||
5146 | if ( p.pGroupBy != null ) |
||
5147 | { |
||
5148 | sqlite3DebugPrintf( "%*s GROUP BY ", indent, string.Empty ); |
||
5149 | sqlite3PrintExprList( p.pGroupBy ); |
||
5150 | sqlite3DebugPrintf( "\n" ); |
||
5151 | } |
||
5152 | if ( p.pHaving != null ) |
||
5153 | { |
||
5154 | sqlite3DebugPrintf( "%*s HAVING ", indent, string.Empty ); |
||
5155 | sqlite3PrintExpr( p.pHaving ); |
||
5156 | sqlite3DebugPrintf( "\n" ); |
||
5157 | } |
||
5158 | if ( p.pOrderBy != null ) |
||
5159 | { |
||
5160 | sqlite3DebugPrintf( "%*s ORDER BY ", indent, string.Empty ); |
||
5161 | sqlite3PrintExprList( p.pOrderBy ); |
||
5162 | sqlite3DebugPrintf( "\n" ); |
||
5163 | } |
||
5164 | } |
||
5165 | /* End of the structure debug printing code |
||
5166 | *****************************************************************************/ |
||
5167 | #endif // * defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ |
||
5168 | } |
||
5169 | } |