nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* |
2 | * Copyright 2010 INRIA Saclay |
||
3 | * |
||
4 | * Use of this software is governed by the GNU LGPLv2.1 license |
||
5 | * |
||
6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
||
7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
||
8 | * 91893 Orsay, France |
||
9 | */ |
||
10 | |||
11 | #include <isl_ctx_private.h> |
||
12 | #include <isl_map_private.h> |
||
13 | #include <isl/map.h> |
||
14 | #include <isl/seq.h> |
||
15 | #include <isl_space_private.h> |
||
16 | #include <isl/lp.h> |
||
17 | #include <isl/union_map.h> |
||
18 | #include <isl_mat_private.h> |
||
19 | #include <isl_options_private.h> |
||
20 | |||
21 | int isl_map_is_transitively_closed(__isl_keep isl_map *map) |
||
22 | { |
||
23 | isl_map *map2; |
||
24 | int closed; |
||
25 | |||
26 | map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map)); |
||
27 | closed = isl_map_is_subset(map2, map); |
||
28 | isl_map_free(map2); |
||
29 | |||
30 | return closed; |
||
31 | } |
||
32 | |||
33 | int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap) |
||
34 | { |
||
35 | isl_union_map *umap2; |
||
36 | int closed; |
||
37 | |||
38 | umap2 = isl_union_map_apply_range(isl_union_map_copy(umap), |
||
39 | isl_union_map_copy(umap)); |
||
40 | closed = isl_union_map_is_subset(umap2, umap); |
||
41 | isl_union_map_free(umap2); |
||
42 | |||
43 | return closed; |
||
44 | } |
||
45 | |||
46 | /* Given a map that represents a path with the length of the path |
||
47 | * encoded as the difference between the last output coordindate |
||
48 | * and the last input coordinate, set this length to either |
||
49 | * exactly "length" (if "exactly" is set) or at least "length" |
||
50 | * (if "exactly" is not set). |
||
51 | */ |
||
52 | static __isl_give isl_map *set_path_length(__isl_take isl_map *map, |
||
53 | int exactly, int length) |
||
54 | { |
||
55 | isl_space *dim; |
||
56 | struct isl_basic_map *bmap; |
||
57 | unsigned d; |
||
58 | unsigned nparam; |
||
59 | int k; |
||
60 | isl_int *c; |
||
61 | |||
62 | if (!map) |
||
63 | return NULL; |
||
64 | |||
65 | dim = isl_map_get_space(map); |
||
66 | d = isl_space_dim(dim, isl_dim_in); |
||
67 | nparam = isl_space_dim(dim, isl_dim_param); |
||
68 | bmap = isl_basic_map_alloc_space(dim, 0, 1, 1); |
||
69 | if (exactly) { |
||
70 | k = isl_basic_map_alloc_equality(bmap); |
||
71 | c = bmap->eq[k]; |
||
72 | } else { |
||
73 | k = isl_basic_map_alloc_inequality(bmap); |
||
74 | c = bmap->ineq[k]; |
||
75 | } |
||
76 | if (k < 0) |
||
77 | goto error; |
||
78 | isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap)); |
||
79 | isl_int_set_si(c[0], -length); |
||
80 | isl_int_set_si(c[1 + nparam + d - 1], -1); |
||
81 | isl_int_set_si(c[1 + nparam + d + d - 1], 1); |
||
82 | |||
83 | bmap = isl_basic_map_finalize(bmap); |
||
84 | map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); |
||
85 | |||
86 | return map; |
||
87 | error: |
||
88 | isl_basic_map_free(bmap); |
||
89 | isl_map_free(map); |
||
90 | return NULL; |
||
91 | } |
||
92 | |||
93 | /* Check whether the overapproximation of the power of "map" is exactly |
||
94 | * the power of "map". Let R be "map" and A_k the overapproximation. |
||
95 | * The approximation is exact if |
||
96 | * |
||
97 | * A_1 = R |
||
98 | * A_k = A_{k-1} \circ R k >= 2 |
||
99 | * |
||
100 | * Since A_k is known to be an overapproximation, we only need to check |
||
101 | * |
||
102 | * A_1 \subset R |
||
103 | * A_k \subset A_{k-1} \circ R k >= 2 |
||
104 | * |
||
105 | * In practice, "app" has an extra input and output coordinate |
||
106 | * to encode the length of the path. So, we first need to add |
||
107 | * this coordinate to "map" and set the length of the path to |
||
108 | * one. |
||
109 | */ |
||
110 | static int check_power_exactness(__isl_take isl_map *map, |
||
111 | __isl_take isl_map *app) |
||
112 | { |
||
113 | int exact; |
||
114 | isl_map *app_1; |
||
115 | isl_map *app_2; |
||
116 | |||
117 | map = isl_map_add_dims(map, isl_dim_in, 1); |
||
118 | map = isl_map_add_dims(map, isl_dim_out, 1); |
||
119 | map = set_path_length(map, 1, 1); |
||
120 | |||
121 | app_1 = set_path_length(isl_map_copy(app), 1, 1); |
||
122 | |||
123 | exact = isl_map_is_subset(app_1, map); |
||
124 | isl_map_free(app_1); |
||
125 | |||
126 | if (!exact || exact < 0) { |
||
127 | isl_map_free(app); |
||
128 | isl_map_free(map); |
||
129 | return exact; |
||
130 | } |
||
131 | |||
132 | app_1 = set_path_length(isl_map_copy(app), 0, 1); |
||
133 | app_2 = set_path_length(app, 0, 2); |
||
134 | app_1 = isl_map_apply_range(map, app_1); |
||
135 | |||
136 | exact = isl_map_is_subset(app_2, app_1); |
||
137 | |||
138 | isl_map_free(app_1); |
||
139 | isl_map_free(app_2); |
||
140 | |||
141 | return exact; |
||
142 | } |
||
143 | |||
144 | /* Check whether the overapproximation of the power of "map" is exactly |
||
145 | * the power of "map", possibly after projecting out the power (if "project" |
||
146 | * is set). |
||
147 | * |
||
148 | * If "project" is set and if "steps" can only result in acyclic paths, |
||
149 | * then we check |
||
150 | * |
||
151 | * A = R \cup (A \circ R) |
||
152 | * |
||
153 | * where A is the overapproximation with the power projected out, i.e., |
||
154 | * an overapproximation of the transitive closure. |
||
155 | * More specifically, since A is known to be an overapproximation, we check |
||
156 | * |
||
157 | * A \subset R \cup (A \circ R) |
||
158 | * |
||
159 | * Otherwise, we check if the power is exact. |
||
160 | * |
||
161 | * Note that "app" has an extra input and output coordinate to encode |
||
162 | * the length of the part. If we are only interested in the transitive |
||
163 | * closure, then we can simply project out these coordinates first. |
||
164 | */ |
||
165 | static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app, |
||
166 | int project) |
||
167 | { |
||
168 | isl_map *test; |
||
169 | int exact; |
||
170 | unsigned d; |
||
171 | |||
172 | if (!project) |
||
173 | return check_power_exactness(map, app); |
||
174 | |||
175 | d = isl_map_dim(map, isl_dim_in); |
||
176 | app = set_path_length(app, 0, 1); |
||
177 | app = isl_map_project_out(app, isl_dim_in, d, 1); |
||
178 | app = isl_map_project_out(app, isl_dim_out, d, 1); |
||
179 | |||
180 | app = isl_map_reset_space(app, isl_map_get_space(map)); |
||
181 | |||
182 | test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app)); |
||
183 | test = isl_map_union(test, isl_map_copy(map)); |
||
184 | |||
185 | exact = isl_map_is_subset(app, test); |
||
186 | |||
187 | isl_map_free(app); |
||
188 | isl_map_free(test); |
||
189 | |||
190 | isl_map_free(map); |
||
191 | |||
192 | return exact; |
||
193 | } |
||
194 | |||
195 | /* |
||
196 | * The transitive closure implementation is based on the paper |
||
197 | * "Computing the Transitive Closure of a Union of Affine Integer |
||
198 | * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and |
||
199 | * Albert Cohen. |
||
200 | */ |
||
201 | |||
202 | /* Given a set of n offsets v_i (the rows of "steps"), construct a relation |
||
203 | * of the given dimension specification (Z^{n+1} -> Z^{n+1}) |
||
204 | * that maps an element x to any element that can be reached |
||
205 | * by taking a non-negative number of steps along any of |
||
206 | * the extended offsets v'_i = [v_i 1]. |
||
207 | * That is, construct |
||
208 | * |
||
209 | * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i } |
||
210 | * |
||
211 | * For any element in this relation, the number of steps taken |
||
212 | * is equal to the difference in the final coordinates. |
||
213 | */ |
||
214 | static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim, |
||
215 | __isl_keep isl_mat *steps) |
||
216 | { |
||
217 | int i, j, k; |
||
218 | struct isl_basic_map *path = NULL; |
||
219 | unsigned d; |
||
220 | unsigned n; |
||
221 | unsigned nparam; |
||
222 | |||
223 | if (!dim || !steps) |
||
224 | goto error; |
||
225 | |||
226 | d = isl_space_dim(dim, isl_dim_in); |
||
227 | n = steps->n_row; |
||
228 | nparam = isl_space_dim(dim, isl_dim_param); |
||
229 | |||
230 | path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n); |
||
231 | |||
232 | for (i = 0; i < n; ++i) { |
||
233 | k = isl_basic_map_alloc_div(path); |
||
234 | if (k < 0) |
||
235 | goto error; |
||
236 | isl_assert(steps->ctx, i == k, goto error); |
||
237 | isl_int_set_si(path->div[k][0], 0); |
||
238 | } |
||
239 | |||
240 | for (i = 0; i < d; ++i) { |
||
241 | k = isl_basic_map_alloc_equality(path); |
||
242 | if (k < 0) |
||
243 | goto error; |
||
244 | isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path)); |
||
245 | isl_int_set_si(path->eq[k][1 + nparam + i], 1); |
||
246 | isl_int_set_si(path->eq[k][1 + nparam + d + i], -1); |
||
247 | if (i == d - 1) |
||
248 | for (j = 0; j < n; ++j) |
||
249 | isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1); |
||
250 | else |
||
251 | for (j = 0; j < n; ++j) |
||
252 | isl_int_set(path->eq[k][1 + nparam + 2 * d + j], |
||
253 | steps->row[j][i]); |
||
254 | } |
||
255 | |||
256 | for (i = 0; i < n; ++i) { |
||
257 | k = isl_basic_map_alloc_inequality(path); |
||
258 | if (k < 0) |
||
259 | goto error; |
||
260 | isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path)); |
||
261 | isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1); |
||
262 | } |
||
263 | |||
264 | isl_space_free(dim); |
||
265 | |||
266 | path = isl_basic_map_simplify(path); |
||
267 | path = isl_basic_map_finalize(path); |
||
268 | return isl_map_from_basic_map(path); |
||
269 | error: |
||
270 | isl_space_free(dim); |
||
271 | isl_basic_map_free(path); |
||
272 | return NULL; |
||
273 | } |
||
274 | |||
275 | #define IMPURE 0 |
||
276 | #define PURE_PARAM 1 |
||
277 | #define PURE_VAR 2 |
||
278 | #define MIXED 3 |
||
279 | |||
280 | /* Check whether the parametric constant term of constraint c is never |
||
281 | * positive in "bset". |
||
282 | */ |
||
283 | static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset, |
||
284 | isl_int *c, int *div_purity) |
||
285 | { |
||
286 | unsigned d; |
||
287 | unsigned n_div; |
||
288 | unsigned nparam; |
||
289 | int i; |
||
290 | int k; |
||
291 | int empty; |
||
292 | |||
293 | n_div = isl_basic_set_dim(bset, isl_dim_div); |
||
294 | d = isl_basic_set_dim(bset, isl_dim_set); |
||
295 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
296 | |||
297 | bset = isl_basic_set_copy(bset); |
||
298 | bset = isl_basic_set_cow(bset); |
||
299 | bset = isl_basic_set_extend_constraints(bset, 0, 1); |
||
300 | k = isl_basic_set_alloc_inequality(bset); |
||
301 | if (k < 0) |
||
302 | goto error; |
||
303 | isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset)); |
||
304 | isl_seq_cpy(bset->ineq[k], c, 1 + nparam); |
||
305 | for (i = 0; i < n_div; ++i) { |
||
306 | if (div_purity[i] != PURE_PARAM) |
||
307 | continue; |
||
308 | isl_int_set(bset->ineq[k][1 + nparam + d + i], |
||
309 | c[1 + nparam + d + i]); |
||
310 | } |
||
311 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
||
312 | empty = isl_basic_set_is_empty(bset); |
||
313 | isl_basic_set_free(bset); |
||
314 | |||
315 | return empty; |
||
316 | error: |
||
317 | isl_basic_set_free(bset); |
||
318 | return -1; |
||
319 | } |
||
320 | |||
321 | /* Return PURE_PARAM if only the coefficients of the parameters are non-zero. |
||
322 | * Return PURE_VAR if only the coefficients of the set variables are non-zero. |
||
323 | * Return MIXED if only the coefficients of the parameters and the set |
||
324 | * variables are non-zero and if moreover the parametric constant |
||
325 | * can never attain positive values. |
||
326 | * Return IMPURE otherwise. |
||
327 | * |
||
328 | * If div_purity is NULL then we are dealing with a non-parametric set |
||
329 | * and so the constraint is obviously PURE_VAR. |
||
330 | */ |
||
331 | static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity, |
||
332 | int eq) |
||
333 | { |
||
334 | unsigned d; |
||
335 | unsigned n_div; |
||
336 | unsigned nparam; |
||
337 | int empty; |
||
338 | int i; |
||
339 | int p = 0, v = 0; |
||
340 | |||
341 | if (!div_purity) |
||
342 | return PURE_VAR; |
||
343 | |||
344 | n_div = isl_basic_set_dim(bset, isl_dim_div); |
||
345 | d = isl_basic_set_dim(bset, isl_dim_set); |
||
346 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
347 | |||
348 | for (i = 0; i < n_div; ++i) { |
||
349 | if (isl_int_is_zero(c[1 + nparam + d + i])) |
||
350 | continue; |
||
351 | switch (div_purity[i]) { |
||
352 | case PURE_PARAM: p = 1; break; |
||
353 | case PURE_VAR: v = 1; break; |
||
354 | default: return IMPURE; |
||
355 | } |
||
356 | } |
||
357 | if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1) |
||
358 | return PURE_VAR; |
||
359 | if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1) |
||
360 | return PURE_PARAM; |
||
361 | |||
362 | empty = parametric_constant_never_positive(bset, c, div_purity); |
||
363 | if (eq && empty >= 0 && !empty) { |
||
364 | isl_seq_neg(c, c, 1 + nparam + d + n_div); |
||
365 | empty = parametric_constant_never_positive(bset, c, div_purity); |
||
366 | } |
||
367 | |||
368 | return empty < 0 ? -1 : empty ? MIXED : IMPURE; |
||
369 | } |
||
370 | |||
371 | /* Return an array of integers indicating the type of each div in bset. |
||
372 | * If the div is (recursively) defined in terms of only the parameters, |
||
373 | * then the type is PURE_PARAM. |
||
374 | * If the div is (recursively) defined in terms of only the set variables, |
||
375 | * then the type is PURE_VAR. |
||
376 | * Otherwise, the type is IMPURE. |
||
377 | */ |
||
378 | static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset) |
||
379 | { |
||
380 | int i, j; |
||
381 | int *div_purity; |
||
382 | unsigned d; |
||
383 | unsigned n_div; |
||
384 | unsigned nparam; |
||
385 | |||
386 | if (!bset) |
||
387 | return NULL; |
||
388 | |||
389 | n_div = isl_basic_set_dim(bset, isl_dim_div); |
||
390 | d = isl_basic_set_dim(bset, isl_dim_set); |
||
391 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
392 | |||
393 | div_purity = isl_alloc_array(bset->ctx, int, n_div); |
||
394 | if (!div_purity) |
||
395 | return NULL; |
||
396 | |||
397 | for (i = 0; i < bset->n_div; ++i) { |
||
398 | int p = 0, v = 0; |
||
399 | if (isl_int_is_zero(bset->div[i][0])) { |
||
400 | div_purity[i] = IMPURE; |
||
401 | continue; |
||
402 | } |
||
403 | if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1) |
||
404 | p = 1; |
||
405 | if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1) |
||
406 | v = 1; |
||
407 | for (j = 0; j < i; ++j) { |
||
408 | if (isl_int_is_zero(bset->div[i][2 + nparam + d + j])) |
||
409 | continue; |
||
410 | switch (div_purity[j]) { |
||
411 | case PURE_PARAM: p = 1; break; |
||
412 | case PURE_VAR: v = 1; break; |
||
413 | default: p = v = 1; break; |
||
414 | } |
||
415 | } |
||
416 | div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM; |
||
417 | } |
||
418 | |||
419 | return div_purity; |
||
420 | } |
||
421 | |||
422 | /* Given a path with the as yet unconstrained length at position "pos", |
||
423 | * check if setting the length to zero results in only the identity |
||
424 | * mapping. |
||
425 | */ |
||
426 | static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos) |
||
427 | { |
||
428 | isl_basic_map *test = NULL; |
||
429 | isl_basic_map *id = NULL; |
||
430 | int k; |
||
431 | int is_id; |
||
432 | |||
433 | test = isl_basic_map_copy(path); |
||
434 | test = isl_basic_map_extend_constraints(test, 1, 0); |
||
435 | k = isl_basic_map_alloc_equality(test); |
||
436 | if (k < 0) |
||
437 | goto error; |
||
438 | isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test)); |
||
439 | isl_int_set_si(test->eq[k][pos], 1); |
||
440 | id = isl_basic_map_identity(isl_basic_map_get_space(path)); |
||
441 | is_id = isl_basic_map_is_equal(test, id); |
||
442 | isl_basic_map_free(test); |
||
443 | isl_basic_map_free(id); |
||
444 | return is_id; |
||
445 | error: |
||
446 | isl_basic_map_free(test); |
||
447 | return -1; |
||
448 | } |
||
449 | |||
450 | /* If any of the constraints is found to be impure then this function |
||
451 | * sets *impurity to 1. |
||
452 | */ |
||
453 | static __isl_give isl_basic_map *add_delta_constraints( |
||
454 | __isl_take isl_basic_map *path, |
||
455 | __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam, |
||
456 | unsigned d, int *div_purity, int eq, int *impurity) |
||
457 | { |
||
458 | int i, k; |
||
459 | int n = eq ? delta->n_eq : delta->n_ineq; |
||
460 | isl_int **delta_c = eq ? delta->eq : delta->ineq; |
||
461 | unsigned n_div; |
||
462 | |||
463 | n_div = isl_basic_set_dim(delta, isl_dim_div); |
||
464 | |||
465 | for (i = 0; i < n; ++i) { |
||
466 | isl_int *path_c; |
||
467 | int p = purity(delta, delta_c[i], div_purity, eq); |
||
468 | if (p < 0) |
||
469 | goto error; |
||
470 | if (p != PURE_VAR && p != PURE_PARAM && !*impurity) |
||
471 | *impurity = 1; |
||
472 | if (p == IMPURE) |
||
473 | continue; |
||
474 | if (eq && p != MIXED) { |
||
475 | k = isl_basic_map_alloc_equality(path); |
||
476 | path_c = path->eq[k]; |
||
477 | } else { |
||
478 | k = isl_basic_map_alloc_inequality(path); |
||
479 | path_c = path->ineq[k]; |
||
480 | } |
||
481 | if (k < 0) |
||
482 | goto error; |
||
483 | isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path)); |
||
484 | if (p == PURE_VAR) { |
||
485 | isl_seq_cpy(path_c + off, |
||
486 | delta_c[i] + 1 + nparam, d); |
||
487 | isl_int_set(path_c[off + d], delta_c[i][0]); |
||
488 | } else if (p == PURE_PARAM) { |
||
489 | isl_seq_cpy(path_c, delta_c[i], 1 + nparam); |
||
490 | } else { |
||
491 | isl_seq_cpy(path_c + off, |
||
492 | delta_c[i] + 1 + nparam, d); |
||
493 | isl_seq_cpy(path_c, delta_c[i], 1 + nparam); |
||
494 | } |
||
495 | isl_seq_cpy(path_c + off - n_div, |
||
496 | delta_c[i] + 1 + nparam + d, n_div); |
||
497 | } |
||
498 | |||
499 | return path; |
||
500 | error: |
||
501 | isl_basic_map_free(path); |
||
502 | return NULL; |
||
503 | } |
||
504 | |||
505 | /* Given a set of offsets "delta", construct a relation of the |
||
506 | * given dimension specification (Z^{n+1} -> Z^{n+1}) that |
||
507 | * is an overapproximation of the relations that |
||
508 | * maps an element x to any element that can be reached |
||
509 | * by taking a non-negative number of steps along any of |
||
510 | * the elements in "delta". |
||
511 | * That is, construct an approximation of |
||
512 | * |
||
513 | * { [x] -> [y] : exists f \in \delta, k \in Z : |
||
514 | * y = x + k [f, 1] and k >= 0 } |
||
515 | * |
||
516 | * For any element in this relation, the number of steps taken |
||
517 | * is equal to the difference in the final coordinates. |
||
518 | * |
||
519 | * In particular, let delta be defined as |
||
520 | * |
||
521 | * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and |
||
522 | * C x + C'p + c >= 0 and |
||
523 | * D x + D'p + d >= 0 } |
||
524 | * |
||
525 | * where the constraints C x + C'p + c >= 0 are such that the parametric |
||
526 | * constant term of each constraint j, "C_j x + C'_j p + c_j", |
||
527 | * can never attain positive values, then the relation is constructed as |
||
528 | * |
||
529 | * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and |
||
530 | * A f + k a >= 0 and B p + b >= 0 and |
||
531 | * C f + C'p + c >= 0 and k >= 1 } |
||
532 | * union { [x] -> [x] } |
||
533 | * |
||
534 | * If the zero-length paths happen to correspond exactly to the identity |
||
535 | * mapping, then we return |
||
536 | * |
||
537 | * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and |
||
538 | * A f + k a >= 0 and B p + b >= 0 and |
||
539 | * C f + C'p + c >= 0 and k >= 0 } |
||
540 | * |
||
541 | * instead. |
||
542 | * |
||
543 | * Existentially quantified variables in \delta are handled by |
||
544 | * classifying them as independent of the parameters, purely |
||
545 | * parameter dependent and others. Constraints containing |
||
546 | * any of the other existentially quantified variables are removed. |
||
547 | * This is safe, but leads to an additional overapproximation. |
||
548 | * |
||
549 | * If there are any impure constraints, then we also eliminate |
||
550 | * the parameters from \delta, resulting in a set |
||
551 | * |
||
552 | * \delta' = { [x] : E x + e >= 0 } |
||
553 | * |
||
554 | * and add the constraints |
||
555 | * |
||
556 | * E f + k e >= 0 |
||
557 | * |
||
558 | * to the constructed relation. |
||
559 | */ |
||
560 | static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim, |
||
561 | __isl_take isl_basic_set *delta) |
||
562 | { |
||
563 | isl_basic_map *path = NULL; |
||
564 | unsigned d; |
||
565 | unsigned n_div; |
||
566 | unsigned nparam; |
||
567 | unsigned off; |
||
568 | int i, k; |
||
569 | int is_id; |
||
570 | int *div_purity = NULL; |
||
571 | int impurity = 0; |
||
572 | |||
573 | if (!delta) |
||
574 | goto error; |
||
575 | n_div = isl_basic_set_dim(delta, isl_dim_div); |
||
576 | d = isl_basic_set_dim(delta, isl_dim_set); |
||
577 | nparam = isl_basic_set_dim(delta, isl_dim_param); |
||
578 | path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1, |
||
579 | d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1); |
||
580 | off = 1 + nparam + 2 * (d + 1) + n_div; |
||
581 | |||
582 | for (i = 0; i < n_div + d + 1; ++i) { |
||
583 | k = isl_basic_map_alloc_div(path); |
||
584 | if (k < 0) |
||
585 | goto error; |
||
586 | isl_int_set_si(path->div[k][0], 0); |
||
587 | } |
||
588 | |||
589 | for (i = 0; i < d + 1; ++i) { |
||
590 | k = isl_basic_map_alloc_equality(path); |
||
591 | if (k < 0) |
||
592 | goto error; |
||
593 | isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path)); |
||
594 | isl_int_set_si(path->eq[k][1 + nparam + i], 1); |
||
595 | isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1); |
||
596 | isl_int_set_si(path->eq[k][off + i], 1); |
||
597 | } |
||
598 | |||
599 | div_purity = get_div_purity(delta); |
||
600 | if (!div_purity) |
||
601 | goto error; |
||
602 | |||
603 | path = add_delta_constraints(path, delta, off, nparam, d, |
||
604 | div_purity, 1, &impurity); |
||
605 | path = add_delta_constraints(path, delta, off, nparam, d, |
||
606 | div_purity, 0, &impurity); |
||
607 | if (impurity) { |
||
608 | isl_space *dim = isl_basic_set_get_space(delta); |
||
609 | delta = isl_basic_set_project_out(delta, |
||
610 | isl_dim_param, 0, nparam); |
||
611 | delta = isl_basic_set_add(delta, isl_dim_param, nparam); |
||
612 | delta = isl_basic_set_reset_space(delta, dim); |
||
613 | if (!delta) |
||
614 | goto error; |
||
615 | path = isl_basic_map_extend_constraints(path, delta->n_eq, |
||
616 | delta->n_ineq + 1); |
||
617 | path = add_delta_constraints(path, delta, off, nparam, d, |
||
618 | NULL, 1, &impurity); |
||
619 | path = add_delta_constraints(path, delta, off, nparam, d, |
||
620 | NULL, 0, &impurity); |
||
621 | path = isl_basic_map_gauss(path, NULL); |
||
622 | } |
||
623 | |||
624 | is_id = empty_path_is_identity(path, off + d); |
||
625 | if (is_id < 0) |
||
626 | goto error; |
||
627 | |||
628 | k = isl_basic_map_alloc_inequality(path); |
||
629 | if (k < 0) |
||
630 | goto error; |
||
631 | isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path)); |
||
632 | if (!is_id) |
||
633 | isl_int_set_si(path->ineq[k][0], -1); |
||
634 | isl_int_set_si(path->ineq[k][off + d], 1); |
||
635 | |||
636 | free(div_purity); |
||
637 | isl_basic_set_free(delta); |
||
638 | path = isl_basic_map_finalize(path); |
||
639 | if (is_id) { |
||
640 | isl_space_free(dim); |
||
641 | return isl_map_from_basic_map(path); |
||
642 | } |
||
643 | return isl_basic_map_union(path, isl_basic_map_identity(dim)); |
||
644 | error: |
||
645 | free(div_purity); |
||
646 | isl_space_free(dim); |
||
647 | isl_basic_set_free(delta); |
||
648 | isl_basic_map_free(path); |
||
649 | return NULL; |
||
650 | } |
||
651 | |||
652 | /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param", |
||
653 | * construct a map that equates the parameter to the difference |
||
654 | * in the final coordinates and imposes that this difference is positive. |
||
655 | * That is, construct |
||
656 | * |
||
657 | * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 } |
||
658 | */ |
||
659 | static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim, |
||
660 | unsigned param) |
||
661 | { |
||
662 | struct isl_basic_map *bmap; |
||
663 | unsigned d; |
||
664 | unsigned nparam; |
||
665 | int k; |
||
666 | |||
667 | d = isl_space_dim(dim, isl_dim_in); |
||
668 | nparam = isl_space_dim(dim, isl_dim_param); |
||
669 | bmap = isl_basic_map_alloc_space(dim, 0, 1, 1); |
||
670 | k = isl_basic_map_alloc_equality(bmap); |
||
671 | if (k < 0) |
||
672 | goto error; |
||
673 | isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap)); |
||
674 | isl_int_set_si(bmap->eq[k][1 + param], -1); |
||
675 | isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1); |
||
676 | isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1); |
||
677 | |||
678 | k = isl_basic_map_alloc_inequality(bmap); |
||
679 | if (k < 0) |
||
680 | goto error; |
||
681 | isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap)); |
||
682 | isl_int_set_si(bmap->ineq[k][1 + param], 1); |
||
683 | isl_int_set_si(bmap->ineq[k][0], -1); |
||
684 | |||
685 | bmap = isl_basic_map_finalize(bmap); |
||
686 | return isl_map_from_basic_map(bmap); |
||
687 | error: |
||
688 | isl_basic_map_free(bmap); |
||
689 | return NULL; |
||
690 | } |
||
691 | |||
692 | /* Check whether "path" is acyclic, where the last coordinates of domain |
||
693 | * and range of path encode the number of steps taken. |
||
694 | * That is, check whether |
||
695 | * |
||
696 | * { d | d = y - x and (x,y) in path } |
||
697 | * |
||
698 | * does not contain any element with positive last coordinate (positive length) |
||
699 | * and zero remaining coordinates (cycle). |
||
700 | */ |
||
701 | static int is_acyclic(__isl_take isl_map *path) |
||
702 | { |
||
703 | int i; |
||
704 | int acyclic; |
||
705 | unsigned dim; |
||
706 | struct isl_set *delta; |
||
707 | |||
708 | delta = isl_map_deltas(path); |
||
709 | dim = isl_set_dim(delta, isl_dim_set); |
||
710 | for (i = 0; i < dim; ++i) { |
||
711 | if (i == dim -1) |
||
712 | delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1); |
||
713 | else |
||
714 | delta = isl_set_fix_si(delta, isl_dim_set, i, 0); |
||
715 | } |
||
716 | |||
717 | acyclic = isl_set_is_empty(delta); |
||
718 | isl_set_free(delta); |
||
719 | |||
720 | return acyclic; |
||
721 | } |
||
722 | |||
723 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D |
||
724 | * and a dimension specification (Z^{n+1} -> Z^{n+1}), |
||
725 | * construct a map that is an overapproximation of the map |
||
726 | * that takes an element from the space D \times Z to another |
||
727 | * element from the same space, such that the first n coordinates of the |
||
728 | * difference between them is a sum of differences between images |
||
729 | * and pre-images in one of the R_i and such that the last coordinate |
||
730 | * is equal to the number of steps taken. |
||
731 | * That is, let |
||
732 | * |
||
733 | * \Delta_i = { y - x | (x, y) in R_i } |
||
734 | * |
||
735 | * then the constructed map is an overapproximation of |
||
736 | * |
||
737 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
||
738 | * d = (\sum_i k_i \delta_i, \sum_i k_i) } |
||
739 | * |
||
740 | * The elements of the singleton \Delta_i's are collected as the |
||
741 | * rows of the steps matrix. For all these \Delta_i's together, |
||
742 | * a single path is constructed. |
||
743 | * For each of the other \Delta_i's, we compute an overapproximation |
||
744 | * of the paths along elements of \Delta_i. |
||
745 | * Since each of these paths performs an addition, composition is |
||
746 | * symmetric and we can simply compose all resulting paths in any order. |
||
747 | */ |
||
748 | static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim, |
||
749 | __isl_keep isl_map *map, int *project) |
||
750 | { |
||
751 | struct isl_mat *steps = NULL; |
||
752 | struct isl_map *path = NULL; |
||
753 | unsigned d; |
||
754 | int i, j, n; |
||
755 | |||
756 | d = isl_map_dim(map, isl_dim_in); |
||
757 | |||
758 | path = isl_map_identity(isl_space_copy(dim)); |
||
759 | |||
760 | steps = isl_mat_alloc(map->ctx, map->n, d); |
||
761 | if (!steps) |
||
762 | goto error; |
||
763 | |||
764 | n = 0; |
||
765 | for (i = 0; i < map->n; ++i) { |
||
766 | struct isl_basic_set *delta; |
||
767 | |||
768 | delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i])); |
||
769 | |||
770 | for (j = 0; j < d; ++j) { |
||
771 | int fixed; |
||
772 | |||
773 | fixed = isl_basic_set_plain_dim_is_fixed(delta, j, |
||
774 | &steps->row[n][j]); |
||
775 | if (fixed < 0) { |
||
776 | isl_basic_set_free(delta); |
||
777 | goto error; |
||
778 | } |
||
779 | if (!fixed) |
||
780 | break; |
||
781 | } |
||
782 | |||
783 | |||
784 | if (j < d) { |
||
785 | path = isl_map_apply_range(path, |
||
786 | path_along_delta(isl_space_copy(dim), delta)); |
||
787 | path = isl_map_coalesce(path); |
||
788 | } else { |
||
789 | isl_basic_set_free(delta); |
||
790 | ++n; |
||
791 | } |
||
792 | } |
||
793 | |||
794 | if (n > 0) { |
||
795 | steps->n_row = n; |
||
796 | path = isl_map_apply_range(path, |
||
797 | path_along_steps(isl_space_copy(dim), steps)); |
||
798 | } |
||
799 | |||
800 | if (project && *project) { |
||
801 | *project = is_acyclic(isl_map_copy(path)); |
||
802 | if (*project < 0) |
||
803 | goto error; |
||
804 | } |
||
805 | |||
806 | isl_space_free(dim); |
||
807 | isl_mat_free(steps); |
||
808 | return path; |
||
809 | error: |
||
810 | isl_space_free(dim); |
||
811 | isl_mat_free(steps); |
||
812 | isl_map_free(path); |
||
813 | return NULL; |
||
814 | } |
||
815 | |||
816 | static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2) |
||
817 | { |
||
818 | isl_set *i; |
||
819 | int no_overlap; |
||
820 | |||
821 | if (!isl_space_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set)) |
||
822 | return 0; |
||
823 | |||
824 | i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2)); |
||
825 | no_overlap = isl_set_is_empty(i); |
||
826 | isl_set_free(i); |
||
827 | |||
828 | return no_overlap < 0 ? -1 : !no_overlap; |
||
829 | } |
||
830 | |||
831 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D |
||
832 | * and a dimension specification (Z^{n+1} -> Z^{n+1}), |
||
833 | * construct a map that is an overapproximation of the map |
||
834 | * that takes an element from the dom R \times Z to an |
||
835 | * element from ran R \times Z, such that the first n coordinates of the |
||
836 | * difference between them is a sum of differences between images |
||
837 | * and pre-images in one of the R_i and such that the last coordinate |
||
838 | * is equal to the number of steps taken. |
||
839 | * That is, let |
||
840 | * |
||
841 | * \Delta_i = { y - x | (x, y) in R_i } |
||
842 | * |
||
843 | * then the constructed map is an overapproximation of |
||
844 | * |
||
845 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
||
846 | * d = (\sum_i k_i \delta_i, \sum_i k_i) and |
||
847 | * x in dom R and x + d in ran R and |
||
848 | * \sum_i k_i >= 1 } |
||
849 | */ |
||
850 | static __isl_give isl_map *construct_component(__isl_take isl_space *dim, |
||
851 | __isl_keep isl_map *map, int *exact, int project) |
||
852 | { |
||
853 | struct isl_set *domain = NULL; |
||
854 | struct isl_set *range = NULL; |
||
855 | struct isl_map *app = NULL; |
||
856 | struct isl_map *path = NULL; |
||
857 | |||
858 | domain = isl_map_domain(isl_map_copy(map)); |
||
859 | domain = isl_set_coalesce(domain); |
||
860 | range = isl_map_range(isl_map_copy(map)); |
||
861 | range = isl_set_coalesce(range); |
||
862 | if (!isl_set_overlaps(domain, range)) { |
||
863 | isl_set_free(domain); |
||
864 | isl_set_free(range); |
||
865 | isl_space_free(dim); |
||
866 | |||
867 | map = isl_map_copy(map); |
||
868 | map = isl_map_add_dims(map, isl_dim_in, 1); |
||
869 | map = isl_map_add_dims(map, isl_dim_out, 1); |
||
870 | map = set_path_length(map, 1, 1); |
||
871 | return map; |
||
872 | } |
||
873 | app = isl_map_from_domain_and_range(domain, range); |
||
874 | app = isl_map_add_dims(app, isl_dim_in, 1); |
||
875 | app = isl_map_add_dims(app, isl_dim_out, 1); |
||
876 | |||
877 | path = construct_extended_path(isl_space_copy(dim), map, |
||
878 | exact && *exact ? &project : NULL); |
||
879 | app = isl_map_intersect(app, path); |
||
880 | |||
881 | if (exact && *exact && |
||
882 | (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app), |
||
883 | project)) < 0) |
||
884 | goto error; |
||
885 | |||
886 | isl_space_free(dim); |
||
887 | app = set_path_length(app, 0, 1); |
||
888 | return app; |
||
889 | error: |
||
890 | isl_space_free(dim); |
||
891 | isl_map_free(app); |
||
892 | return NULL; |
||
893 | } |
||
894 | |||
895 | /* Call construct_component and, if "project" is set, project out |
||
896 | * the final coordinates. |
||
897 | */ |
||
898 | static __isl_give isl_map *construct_projected_component( |
||
899 | __isl_take isl_space *dim, |
||
900 | __isl_keep isl_map *map, int *exact, int project) |
||
901 | { |
||
902 | isl_map *app; |
||
903 | unsigned d; |
||
904 | |||
905 | if (!dim) |
||
906 | return NULL; |
||
907 | d = isl_space_dim(dim, isl_dim_in); |
||
908 | |||
909 | app = construct_component(dim, map, exact, project); |
||
910 | if (project) { |
||
911 | app = isl_map_project_out(app, isl_dim_in, d - 1, 1); |
||
912 | app = isl_map_project_out(app, isl_dim_out, d - 1, 1); |
||
913 | } |
||
914 | return app; |
||
915 | } |
||
916 | |||
917 | /* Compute an extended version, i.e., with path lengths, of |
||
918 | * an overapproximation of the transitive closure of "bmap" |
||
919 | * with path lengths greater than or equal to zero and with |
||
920 | * domain and range equal to "dom". |
||
921 | */ |
||
922 | static __isl_give isl_map *q_closure(__isl_take isl_space *dim, |
||
923 | __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact) |
||
924 | { |
||
925 | int project = 1; |
||
926 | isl_map *path; |
||
927 | isl_map *map; |
||
928 | isl_map *app; |
||
929 | |||
930 | dom = isl_set_add_dims(dom, isl_dim_set, 1); |
||
931 | app = isl_map_from_domain_and_range(dom, isl_set_copy(dom)); |
||
932 | map = isl_map_from_basic_map(isl_basic_map_copy(bmap)); |
||
933 | path = construct_extended_path(dim, map, &project); |
||
934 | app = isl_map_intersect(app, path); |
||
935 | |||
936 | if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0) |
||
937 | goto error; |
||
938 | |||
939 | return app; |
||
940 | error: |
||
941 | isl_map_free(app); |
||
942 | return NULL; |
||
943 | } |
||
944 | |||
945 | /* Check whether qc has any elements of length at least one |
||
946 | * with domain and/or range outside of dom and ran. |
||
947 | */ |
||
948 | static int has_spurious_elements(__isl_keep isl_map *qc, |
||
949 | __isl_keep isl_set *dom, __isl_keep isl_set *ran) |
||
950 | { |
||
951 | isl_set *s; |
||
952 | int subset; |
||
953 | unsigned d; |
||
954 | |||
955 | if (!qc || !dom || !ran) |
||
956 | return -1; |
||
957 | |||
958 | d = isl_map_dim(qc, isl_dim_in); |
||
959 | |||
960 | qc = isl_map_copy(qc); |
||
961 | qc = set_path_length(qc, 0, 1); |
||
962 | qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1); |
||
963 | qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1); |
||
964 | |||
965 | s = isl_map_domain(isl_map_copy(qc)); |
||
966 | subset = isl_set_is_subset(s, dom); |
||
967 | isl_set_free(s); |
||
968 | if (subset < 0) |
||
969 | goto error; |
||
970 | if (!subset) { |
||
971 | isl_map_free(qc); |
||
972 | return 1; |
||
973 | } |
||
974 | |||
975 | s = isl_map_range(qc); |
||
976 | subset = isl_set_is_subset(s, ran); |
||
977 | isl_set_free(s); |
||
978 | |||
979 | return subset < 0 ? -1 : !subset; |
||
980 | error: |
||
981 | isl_map_free(qc); |
||
982 | return -1; |
||
983 | } |
||
984 | |||
985 | #define LEFT 2 |
||
986 | #define RIGHT 1 |
||
987 | |||
988 | /* For each basic map in "map", except i, check whether it combines |
||
989 | * with the transitive closure that is reflexive on C combines |
||
990 | * to the left and to the right. |
||
991 | * |
||
992 | * In particular, if |
||
993 | * |
||
994 | * dom map_j \subseteq C |
||
995 | * |
||
996 | * then right[j] is set to 1. Otherwise, if |
||
997 | * |
||
998 | * ran map_i \cap dom map_j = \emptyset |
||
999 | * |
||
1000 | * then right[j] is set to 0. Otherwise, composing to the right |
||
1001 | * is impossible. |
||
1002 | * |
||
1003 | * Similar, for composing to the left, we have if |
||
1004 | * |
||
1005 | * ran map_j \subseteq C |
||
1006 | * |
||
1007 | * then left[j] is set to 1. Otherwise, if |
||
1008 | * |
||
1009 | * dom map_i \cap ran map_j = \emptyset |
||
1010 | * |
||
1011 | * then left[j] is set to 0. Otherwise, composing to the left |
||
1012 | * is impossible. |
||
1013 | * |
||
1014 | * The return value is or'd with LEFT if composing to the left |
||
1015 | * is possible and with RIGHT if composing to the right is possible. |
||
1016 | */ |
||
1017 | static int composability(__isl_keep isl_set *C, int i, |
||
1018 | isl_set **dom, isl_set **ran, int *left, int *right, |
||
1019 | __isl_keep isl_map *map) |
||
1020 | { |
||
1021 | int j; |
||
1022 | int ok; |
||
1023 | |||
1024 | ok = LEFT | RIGHT; |
||
1025 | for (j = 0; j < map->n && ok; ++j) { |
||
1026 | int overlaps, subset; |
||
1027 | if (j == i) |
||
1028 | continue; |
||
1029 | |||
1030 | if (ok & RIGHT) { |
||
1031 | if (!dom[j]) |
||
1032 | dom[j] = isl_set_from_basic_set( |
||
1033 | isl_basic_map_domain( |
||
1034 | isl_basic_map_copy(map->p[j]))); |
||
1035 | if (!dom[j]) |
||
1036 | return -1; |
||
1037 | overlaps = isl_set_overlaps(ran[i], dom[j]); |
||
1038 | if (overlaps < 0) |
||
1039 | return -1; |
||
1040 | if (!overlaps) |
||
1041 | right[j] = 0; |
||
1042 | else { |
||
1043 | subset = isl_set_is_subset(dom[j], C); |
||
1044 | if (subset < 0) |
||
1045 | return -1; |
||
1046 | if (subset) |
||
1047 | right[j] = 1; |
||
1048 | else |
||
1049 | ok &= ~RIGHT; |
||
1050 | } |
||
1051 | } |
||
1052 | |||
1053 | if (ok & LEFT) { |
||
1054 | if (!ran[j]) |
||
1055 | ran[j] = isl_set_from_basic_set( |
||
1056 | isl_basic_map_range( |
||
1057 | isl_basic_map_copy(map->p[j]))); |
||
1058 | if (!ran[j]) |
||
1059 | return -1; |
||
1060 | overlaps = isl_set_overlaps(dom[i], ran[j]); |
||
1061 | if (overlaps < 0) |
||
1062 | return -1; |
||
1063 | if (!overlaps) |
||
1064 | left[j] = 0; |
||
1065 | else { |
||
1066 | subset = isl_set_is_subset(ran[j], C); |
||
1067 | if (subset < 0) |
||
1068 | return -1; |
||
1069 | if (subset) |
||
1070 | left[j] = 1; |
||
1071 | else |
||
1072 | ok &= ~LEFT; |
||
1073 | } |
||
1074 | } |
||
1075 | } |
||
1076 | |||
1077 | return ok; |
||
1078 | } |
||
1079 | |||
1080 | static __isl_give isl_map *anonymize(__isl_take isl_map *map) |
||
1081 | { |
||
1082 | map = isl_map_reset(map, isl_dim_in); |
||
1083 | map = isl_map_reset(map, isl_dim_out); |
||
1084 | return map; |
||
1085 | } |
||
1086 | |||
1087 | /* Return a map that is a union of the basic maps in "map", except i, |
||
1088 | * composed to left and right with qc based on the entries of "left" |
||
1089 | * and "right". |
||
1090 | */ |
||
1091 | static __isl_give isl_map *compose(__isl_keep isl_map *map, int i, |
||
1092 | __isl_take isl_map *qc, int *left, int *right) |
||
1093 | { |
||
1094 | int j; |
||
1095 | isl_map *comp; |
||
1096 | |||
1097 | comp = isl_map_empty(isl_map_get_space(map)); |
||
1098 | for (j = 0; j < map->n; ++j) { |
||
1099 | isl_map *map_j; |
||
1100 | |||
1101 | if (j == i) |
||
1102 | continue; |
||
1103 | |||
1104 | map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j])); |
||
1105 | map_j = anonymize(map_j); |
||
1106 | if (left && left[j]) |
||
1107 | map_j = isl_map_apply_range(map_j, isl_map_copy(qc)); |
||
1108 | if (right && right[j]) |
||
1109 | map_j = isl_map_apply_range(isl_map_copy(qc), map_j); |
||
1110 | comp = isl_map_union(comp, map_j); |
||
1111 | } |
||
1112 | |||
1113 | comp = isl_map_compute_divs(comp); |
||
1114 | comp = isl_map_coalesce(comp); |
||
1115 | |||
1116 | isl_map_free(qc); |
||
1117 | |||
1118 | return comp; |
||
1119 | } |
||
1120 | |||
1121 | /* Compute the transitive closure of "map" incrementally by |
||
1122 | * computing |
||
1123 | * |
||
1124 | * map_i^+ \cup qc^+ |
||
1125 | * |
||
1126 | * or |
||
1127 | * |
||
1128 | * map_i^+ \cup ((id \cup map_i^) \circ qc^+) |
||
1129 | * |
||
1130 | * or |
||
1131 | * |
||
1132 | * map_i^+ \cup (qc^+ \circ (id \cup map_i^)) |
||
1133 | * |
||
1134 | * depending on whether left or right are NULL. |
||
1135 | */ |
||
1136 | static __isl_give isl_map *compute_incremental( |
||
1137 | __isl_take isl_space *dim, __isl_keep isl_map *map, |
||
1138 | int i, __isl_take isl_map *qc, int *left, int *right, int *exact) |
||
1139 | { |
||
1140 | isl_map *map_i; |
||
1141 | isl_map *tc; |
||
1142 | isl_map *rtc = NULL; |
||
1143 | |||
1144 | if (!map) |
||
1145 | goto error; |
||
1146 | isl_assert(map->ctx, left || right, goto error); |
||
1147 | |||
1148 | map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i])); |
||
1149 | tc = construct_projected_component(isl_space_copy(dim), map_i, |
||
1150 | exact, 1); |
||
1151 | isl_map_free(map_i); |
||
1152 | |||
1153 | if (*exact) |
||
1154 | qc = isl_map_transitive_closure(qc, exact); |
||
1155 | |||
1156 | if (!*exact) { |
||
1157 | isl_space_free(dim); |
||
1158 | isl_map_free(tc); |
||
1159 | isl_map_free(qc); |
||
1160 | return isl_map_universe(isl_map_get_space(map)); |
||
1161 | } |
||
1162 | |||
1163 | if (!left || !right) |
||
1164 | rtc = isl_map_union(isl_map_copy(tc), |
||
1165 | isl_map_identity(isl_map_get_space(tc))); |
||
1166 | if (!right) |
||
1167 | qc = isl_map_apply_range(rtc, qc); |
||
1168 | if (!left) |
||
1169 | qc = isl_map_apply_range(qc, rtc); |
||
1170 | qc = isl_map_union(tc, qc); |
||
1171 | |||
1172 | isl_space_free(dim); |
||
1173 | |||
1174 | return qc; |
||
1175 | error: |
||
1176 | isl_space_free(dim); |
||
1177 | isl_map_free(qc); |
||
1178 | return NULL; |
||
1179 | } |
||
1180 | |||
1181 | /* Given a map "map", try to find a basic map such that |
||
1182 | * map^+ can be computed as |
||
1183 | * |
||
1184 | * map^+ = map_i^+ \cup |
||
1185 | * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ |
||
1186 | * |
||
1187 | * with C the simple hull of the domain and range of the input map. |
||
1188 | * map_i^ \cup Id_C is computed by allowing the path lengths to be zero |
||
1189 | * and by intersecting domain and range with C. |
||
1190 | * Of course, we need to check that this is actually equal to map_i^ \cup Id_C. |
||
1191 | * Also, we only use the incremental computation if all the transitive |
||
1192 | * closures are exact and if the number of basic maps in the union, |
||
1193 | * after computing the integer divisions, is smaller than the number |
||
1194 | * of basic maps in the input map. |
||
1195 | */ |
||
1196 | static int incemental_on_entire_domain(__isl_keep isl_space *dim, |
||
1197 | __isl_keep isl_map *map, |
||
1198 | isl_set **dom, isl_set **ran, int *left, int *right, |
||
1199 | __isl_give isl_map **res) |
||
1200 | { |
||
1201 | int i; |
||
1202 | isl_set *C; |
||
1203 | unsigned d; |
||
1204 | |||
1205 | *res = NULL; |
||
1206 | |||
1207 | C = isl_set_union(isl_map_domain(isl_map_copy(map)), |
||
1208 | isl_map_range(isl_map_copy(map))); |
||
1209 | C = isl_set_from_basic_set(isl_set_simple_hull(C)); |
||
1210 | if (!C) |
||
1211 | return -1; |
||
1212 | if (C->n != 1) { |
||
1213 | isl_set_free(C); |
||
1214 | return 0; |
||
1215 | } |
||
1216 | |||
1217 | d = isl_map_dim(map, isl_dim_in); |
||
1218 | |||
1219 | for (i = 0; i < map->n; ++i) { |
||
1220 | isl_map *qc; |
||
1221 | int exact_i, spurious; |
||
1222 | int j; |
||
1223 | dom[i] = isl_set_from_basic_set(isl_basic_map_domain( |
||
1224 | isl_basic_map_copy(map->p[i]))); |
||
1225 | ran[i] = isl_set_from_basic_set(isl_basic_map_range( |
||
1226 | isl_basic_map_copy(map->p[i]))); |
||
1227 | qc = q_closure(isl_space_copy(dim), isl_set_copy(C), |
||
1228 | map->p[i], &exact_i); |
||
1229 | if (!qc) |
||
1230 | goto error; |
||
1231 | if (!exact_i) { |
||
1232 | isl_map_free(qc); |
||
1233 | continue; |
||
1234 | } |
||
1235 | spurious = has_spurious_elements(qc, dom[i], ran[i]); |
||
1236 | if (spurious) { |
||
1237 | isl_map_free(qc); |
||
1238 | if (spurious < 0) |
||
1239 | goto error; |
||
1240 | continue; |
||
1241 | } |
||
1242 | qc = isl_map_project_out(qc, isl_dim_in, d, 1); |
||
1243 | qc = isl_map_project_out(qc, isl_dim_out, d, 1); |
||
1244 | qc = isl_map_compute_divs(qc); |
||
1245 | for (j = 0; j < map->n; ++j) |
||
1246 | left[j] = right[j] = 1; |
||
1247 | qc = compose(map, i, qc, left, right); |
||
1248 | if (!qc) |
||
1249 | goto error; |
||
1250 | if (qc->n >= map->n) { |
||
1251 | isl_map_free(qc); |
||
1252 | continue; |
||
1253 | } |
||
1254 | *res = compute_incremental(isl_space_copy(dim), map, i, qc, |
||
1255 | left, right, &exact_i); |
||
1256 | if (!*res) |
||
1257 | goto error; |
||
1258 | if (exact_i) |
||
1259 | break; |
||
1260 | isl_map_free(*res); |
||
1261 | *res = NULL; |
||
1262 | } |
||
1263 | |||
1264 | isl_set_free(C); |
||
1265 | |||
1266 | return *res != NULL; |
||
1267 | error: |
||
1268 | isl_set_free(C); |
||
1269 | return -1; |
||
1270 | } |
||
1271 | |||
1272 | /* Try and compute the transitive closure of "map" as |
||
1273 | * |
||
1274 | * map^+ = map_i^+ \cup |
||
1275 | * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ |
||
1276 | * |
||
1277 | * with C either the simple hull of the domain and range of the entire |
||
1278 | * map or the simple hull of domain and range of map_i. |
||
1279 | */ |
||
1280 | static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim, |
||
1281 | __isl_keep isl_map *map, int *exact, int project) |
||
1282 | { |
||
1283 | int i; |
||
1284 | isl_set **dom = NULL; |
||
1285 | isl_set **ran = NULL; |
||
1286 | int *left = NULL; |
||
1287 | int *right = NULL; |
||
1288 | isl_set *C; |
||
1289 | unsigned d; |
||
1290 | isl_map *res = NULL; |
||
1291 | |||
1292 | if (!project) |
||
1293 | return construct_projected_component(dim, map, exact, project); |
||
1294 | |||
1295 | if (!map) |
||
1296 | goto error; |
||
1297 | if (map->n <= 1) |
||
1298 | return construct_projected_component(dim, map, exact, project); |
||
1299 | |||
1300 | d = isl_map_dim(map, isl_dim_in); |
||
1301 | |||
1302 | dom = isl_calloc_array(map->ctx, isl_set *, map->n); |
||
1303 | ran = isl_calloc_array(map->ctx, isl_set *, map->n); |
||
1304 | left = isl_calloc_array(map->ctx, int, map->n); |
||
1305 | right = isl_calloc_array(map->ctx, int, map->n); |
||
1306 | if (!ran || !dom || !left || !right) |
||
1307 | goto error; |
||
1308 | |||
1309 | if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0) |
||
1310 | goto error; |
||
1311 | |||
1312 | for (i = 0; !res && i < map->n; ++i) { |
||
1313 | isl_map *qc; |
||
1314 | int exact_i, spurious, comp; |
||
1315 | if (!dom[i]) |
||
1316 | dom[i] = isl_set_from_basic_set( |
||
1317 | isl_basic_map_domain( |
||
1318 | isl_basic_map_copy(map->p[i]))); |
||
1319 | if (!dom[i]) |
||
1320 | goto error; |
||
1321 | if (!ran[i]) |
||
1322 | ran[i] = isl_set_from_basic_set( |
||
1323 | isl_basic_map_range( |
||
1324 | isl_basic_map_copy(map->p[i]))); |
||
1325 | if (!ran[i]) |
||
1326 | goto error; |
||
1327 | C = isl_set_union(isl_set_copy(dom[i]), |
||
1328 | isl_set_copy(ran[i])); |
||
1329 | C = isl_set_from_basic_set(isl_set_simple_hull(C)); |
||
1330 | if (!C) |
||
1331 | goto error; |
||
1332 | if (C->n != 1) { |
||
1333 | isl_set_free(C); |
||
1334 | continue; |
||
1335 | } |
||
1336 | comp = composability(C, i, dom, ran, left, right, map); |
||
1337 | if (!comp || comp < 0) { |
||
1338 | isl_set_free(C); |
||
1339 | if (comp < 0) |
||
1340 | goto error; |
||
1341 | continue; |
||
1342 | } |
||
1343 | qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i); |
||
1344 | if (!qc) |
||
1345 | goto error; |
||
1346 | if (!exact_i) { |
||
1347 | isl_map_free(qc); |
||
1348 | continue; |
||
1349 | } |
||
1350 | spurious = has_spurious_elements(qc, dom[i], ran[i]); |
||
1351 | if (spurious) { |
||
1352 | isl_map_free(qc); |
||
1353 | if (spurious < 0) |
||
1354 | goto error; |
||
1355 | continue; |
||
1356 | } |
||
1357 | qc = isl_map_project_out(qc, isl_dim_in, d, 1); |
||
1358 | qc = isl_map_project_out(qc, isl_dim_out, d, 1); |
||
1359 | qc = isl_map_compute_divs(qc); |
||
1360 | qc = compose(map, i, qc, (comp & LEFT) ? left : NULL, |
||
1361 | (comp & RIGHT) ? right : NULL); |
||
1362 | if (!qc) |
||
1363 | goto error; |
||
1364 | if (qc->n >= map->n) { |
||
1365 | isl_map_free(qc); |
||
1366 | continue; |
||
1367 | } |
||
1368 | res = compute_incremental(isl_space_copy(dim), map, i, qc, |
||
1369 | (comp & LEFT) ? left : NULL, |
||
1370 | (comp & RIGHT) ? right : NULL, &exact_i); |
||
1371 | if (!res) |
||
1372 | goto error; |
||
1373 | if (exact_i) |
||
1374 | break; |
||
1375 | isl_map_free(res); |
||
1376 | res = NULL; |
||
1377 | } |
||
1378 | |||
1379 | for (i = 0; i < map->n; ++i) { |
||
1380 | isl_set_free(dom[i]); |
||
1381 | isl_set_free(ran[i]); |
||
1382 | } |
||
1383 | free(dom); |
||
1384 | free(ran); |
||
1385 | free(left); |
||
1386 | free(right); |
||
1387 | |||
1388 | if (res) { |
||
1389 | isl_space_free(dim); |
||
1390 | return res; |
||
1391 | } |
||
1392 | |||
1393 | return construct_projected_component(dim, map, exact, project); |
||
1394 | error: |
||
1395 | if (dom) |
||
1396 | for (i = 0; i < map->n; ++i) |
||
1397 | isl_set_free(dom[i]); |
||
1398 | free(dom); |
||
1399 | if (ran) |
||
1400 | for (i = 0; i < map->n; ++i) |
||
1401 | isl_set_free(ran[i]); |
||
1402 | free(ran); |
||
1403 | free(left); |
||
1404 | free(right); |
||
1405 | isl_space_free(dim); |
||
1406 | return NULL; |
||
1407 | } |
||
1408 | |||
1409 | /* Given an array of sets "set", add "dom" at position "pos" |
||
1410 | * and search for elements at earlier positions that overlap with "dom". |
||
1411 | * If any can be found, then merge all of them, together with "dom", into |
||
1412 | * a single set and assign the union to the first in the array, |
||
1413 | * which becomes the new group leader for all groups involved in the merge. |
||
1414 | * During the search, we only consider group leaders, i.e., those with |
||
1415 | * group[i] = i, as the other sets have already been combined |
||
1416 | * with one of the group leaders. |
||
1417 | */ |
||
1418 | static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos) |
||
1419 | { |
||
1420 | int i; |
||
1421 | |||
1422 | group[pos] = pos; |
||
1423 | set[pos] = isl_set_copy(dom); |
||
1424 | |||
1425 | for (i = pos - 1; i >= 0; --i) { |
||
1426 | int o; |
||
1427 | |||
1428 | if (group[i] != i) |
||
1429 | continue; |
||
1430 | |||
1431 | o = isl_set_overlaps(set[i], dom); |
||
1432 | if (o < 0) |
||
1433 | goto error; |
||
1434 | if (!o) |
||
1435 | continue; |
||
1436 | |||
1437 | set[i] = isl_set_union(set[i], set[group[pos]]); |
||
1438 | set[group[pos]] = NULL; |
||
1439 | if (!set[i]) |
||
1440 | goto error; |
||
1441 | group[group[pos]] = i; |
||
1442 | group[pos] = i; |
||
1443 | } |
||
1444 | |||
1445 | isl_set_free(dom); |
||
1446 | return 0; |
||
1447 | error: |
||
1448 | isl_set_free(dom); |
||
1449 | return -1; |
||
1450 | } |
||
1451 | |||
1452 | /* Replace each entry in the n by n grid of maps by the cross product |
||
1453 | * with the relation { [i] -> [i + 1] }. |
||
1454 | */ |
||
1455 | static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n) |
||
1456 | { |
||
1457 | int i, j, k; |
||
1458 | isl_space *dim; |
||
1459 | isl_basic_map *bstep; |
||
1460 | isl_map *step; |
||
1461 | unsigned nparam; |
||
1462 | |||
1463 | if (!map) |
||
1464 | return -1; |
||
1465 | |||
1466 | dim = isl_map_get_space(map); |
||
1467 | nparam = isl_space_dim(dim, isl_dim_param); |
||
1468 | dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in)); |
||
1469 | dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out)); |
||
1470 | dim = isl_space_add_dims(dim, isl_dim_in, 1); |
||
1471 | dim = isl_space_add_dims(dim, isl_dim_out, 1); |
||
1472 | bstep = isl_basic_map_alloc_space(dim, 0, 1, 0); |
||
1473 | k = isl_basic_map_alloc_equality(bstep); |
||
1474 | if (k < 0) { |
||
1475 | isl_basic_map_free(bstep); |
||
1476 | return -1; |
||
1477 | } |
||
1478 | isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep)); |
||
1479 | isl_int_set_si(bstep->eq[k][0], 1); |
||
1480 | isl_int_set_si(bstep->eq[k][1 + nparam], 1); |
||
1481 | isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1); |
||
1482 | bstep = isl_basic_map_finalize(bstep); |
||
1483 | step = isl_map_from_basic_map(bstep); |
||
1484 | |||
1485 | for (i = 0; i < n; ++i) |
||
1486 | for (j = 0; j < n; ++j) |
||
1487 | grid[i][j] = isl_map_product(grid[i][j], |
||
1488 | isl_map_copy(step)); |
||
1489 | |||
1490 | isl_map_free(step); |
||
1491 | |||
1492 | return 0; |
||
1493 | } |
||
1494 | |||
1495 | /* The core of the Floyd-Warshall algorithm. |
||
1496 | * Updates the given n x x matrix of relations in place. |
||
1497 | * |
||
1498 | * The algorithm iterates over all vertices. In each step, the whole |
||
1499 | * matrix is updated to include all paths that go to the current vertex, |
||
1500 | * possibly stay there a while (including passing through earlier vertices) |
||
1501 | * and then come back. At the start of each iteration, the diagonal |
||
1502 | * element corresponding to the current vertex is replaced by its |
||
1503 | * transitive closure to account for all indirect paths that stay |
||
1504 | * in the current vertex. |
||
1505 | */ |
||
1506 | static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact) |
||
1507 | { |
||
1508 | int r, p, q; |
||
1509 | |||
1510 | for (r = 0; r < n; ++r) { |
||
1511 | int r_exact; |
||
1512 | grid[r][r] = isl_map_transitive_closure(grid[r][r], |
||
1513 | (exact && *exact) ? &r_exact : NULL); |
||
1514 | if (exact && *exact && !r_exact) |
||
1515 | *exact = 0; |
||
1516 | |||
1517 | for (p = 0; p < n; ++p) |
||
1518 | for (q = 0; q < n; ++q) { |
||
1519 | isl_map *loop; |
||
1520 | if (p == r && q == r) |
||
1521 | continue; |
||
1522 | loop = isl_map_apply_range( |
||
1523 | isl_map_copy(grid[p][r]), |
||
1524 | isl_map_copy(grid[r][q])); |
||
1525 | grid[p][q] = isl_map_union(grid[p][q], loop); |
||
1526 | loop = isl_map_apply_range( |
||
1527 | isl_map_copy(grid[p][r]), |
||
1528 | isl_map_apply_range( |
||
1529 | isl_map_copy(grid[r][r]), |
||
1530 | isl_map_copy(grid[r][q]))); |
||
1531 | grid[p][q] = isl_map_union(grid[p][q], loop); |
||
1532 | grid[p][q] = isl_map_coalesce(grid[p][q]); |
||
1533 | } |
||
1534 | } |
||
1535 | } |
||
1536 | |||
1537 | /* Given a partition of the domains and ranges of the basic maps in "map", |
||
1538 | * apply the Floyd-Warshall algorithm with the elements in the partition |
||
1539 | * as vertices. |
||
1540 | * |
||
1541 | * In particular, there are "n" elements in the partition and "group" is |
||
1542 | * an array of length 2 * map->n with entries in [0,n-1]. |
||
1543 | * |
||
1544 | * We first construct a matrix of relations based on the partition information, |
||
1545 | * apply Floyd-Warshall on this matrix of relations and then take the |
||
1546 | * union of all entries in the matrix as the final result. |
||
1547 | * |
||
1548 | * If we are actually computing the power instead of the transitive closure, |
||
1549 | * i.e., when "project" is not set, then the result should have the |
||
1550 | * path lengths encoded as the difference between an extra pair of |
||
1551 | * coordinates. We therefore apply the nested transitive closures |
||
1552 | * to relations that include these lengths. In particular, we replace |
||
1553 | * the input relation by the cross product with the unit length relation |
||
1554 | * { [i] -> [i + 1] }. |
||
1555 | */ |
||
1556 | static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim, |
||
1557 | __isl_keep isl_map *map, int *exact, int project, int *group, int n) |
||
1558 | { |
||
1559 | int i, j, k; |
||
1560 | isl_map ***grid = NULL; |
||
1561 | isl_map *app; |
||
1562 | |||
1563 | if (!map) |
||
1564 | goto error; |
||
1565 | |||
1566 | if (n == 1) { |
||
1567 | free(group); |
||
1568 | return incremental_closure(dim, map, exact, project); |
||
1569 | } |
||
1570 | |||
1571 | grid = isl_calloc_array(map->ctx, isl_map **, n); |
||
1572 | if (!grid) |
||
1573 | goto error; |
||
1574 | for (i = 0; i < n; ++i) { |
||
1575 | grid[i] = isl_calloc_array(map->ctx, isl_map *, n); |
||
1576 | if (!grid[i]) |
||
1577 | goto error; |
||
1578 | for (j = 0; j < n; ++j) |
||
1579 | grid[i][j] = isl_map_empty(isl_map_get_space(map)); |
||
1580 | } |
||
1581 | |||
1582 | for (k = 0; k < map->n; ++k) { |
||
1583 | i = group[2 * k]; |
||
1584 | j = group[2 * k + 1]; |
||
1585 | grid[i][j] = isl_map_union(grid[i][j], |
||
1586 | isl_map_from_basic_map( |
||
1587 | isl_basic_map_copy(map->p[k]))); |
||
1588 | } |
||
1589 | |||
1590 | if (!project && add_length(map, grid, n) < 0) |
||
1591 | goto error; |
||
1592 | |||
1593 | floyd_warshall_iterate(grid, n, exact); |
||
1594 | |||
1595 | app = isl_map_empty(isl_map_get_space(map)); |
||
1596 | |||
1597 | for (i = 0; i < n; ++i) { |
||
1598 | for (j = 0; j < n; ++j) |
||
1599 | app = isl_map_union(app, grid[i][j]); |
||
1600 | free(grid[i]); |
||
1601 | } |
||
1602 | free(grid); |
||
1603 | |||
1604 | free(group); |
||
1605 | isl_space_free(dim); |
||
1606 | |||
1607 | return app; |
||
1608 | error: |
||
1609 | if (grid) |
||
1610 | for (i = 0; i < n; ++i) { |
||
1611 | if (!grid[i]) |
||
1612 | continue; |
||
1613 | for (j = 0; j < n; ++j) |
||
1614 | isl_map_free(grid[i][j]); |
||
1615 | free(grid[i]); |
||
1616 | } |
||
1617 | free(grid); |
||
1618 | free(group); |
||
1619 | isl_space_free(dim); |
||
1620 | return NULL; |
||
1621 | } |
||
1622 | |||
1623 | /* Partition the domains and ranges of the n basic relations in list |
||
1624 | * into disjoint cells. |
||
1625 | * |
||
1626 | * To find the partition, we simply consider all of the domains |
||
1627 | * and ranges in turn and combine those that overlap. |
||
1628 | * "set" contains the partition elements and "group" indicates |
||
1629 | * to which partition element a given domain or range belongs. |
||
1630 | * The domain of basic map i corresponds to element 2 * i in these arrays, |
||
1631 | * while the domain corresponds to element 2 * i + 1. |
||
1632 | * During the construction group[k] is either equal to k, |
||
1633 | * in which case set[k] contains the union of all the domains and |
||
1634 | * ranges in the corresponding group, or is equal to some l < k, |
||
1635 | * with l another domain or range in the same group. |
||
1636 | */ |
||
1637 | static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n, |
||
1638 | isl_set ***set, int *n_group) |
||
1639 | { |
||
1640 | int i; |
||
1641 | int *group = NULL; |
||
1642 | int g; |
||
1643 | |||
1644 | *set = isl_calloc_array(ctx, isl_set *, 2 * n); |
||
1645 | group = isl_alloc_array(ctx, int, 2 * n); |
||
1646 | |||
1647 | if (!*set || !group) |
||
1648 | goto error; |
||
1649 | |||
1650 | for (i = 0; i < n; ++i) { |
||
1651 | isl_set *dom; |
||
1652 | dom = isl_set_from_basic_set(isl_basic_map_domain( |
||
1653 | isl_basic_map_copy(list[i]))); |
||
1654 | if (merge(*set, group, dom, 2 * i) < 0) |
||
1655 | goto error; |
||
1656 | dom = isl_set_from_basic_set(isl_basic_map_range( |
||
1657 | isl_basic_map_copy(list[i]))); |
||
1658 | if (merge(*set, group, dom, 2 * i + 1) < 0) |
||
1659 | goto error; |
||
1660 | } |
||
1661 | |||
1662 | g = 0; |
||
1663 | for (i = 0; i < 2 * n; ++i) |
||
1664 | if (group[i] == i) { |
||
1665 | if (g != i) { |
||
1666 | (*set)[g] = (*set)[i]; |
||
1667 | (*set)[i] = NULL; |
||
1668 | } |
||
1669 | group[i] = g++; |
||
1670 | } else |
||
1671 | group[i] = group[group[i]]; |
||
1672 | |||
1673 | *n_group = g; |
||
1674 | |||
1675 | return group; |
||
1676 | error: |
||
1677 | if (*set) { |
||
1678 | for (i = 0; i < 2 * n; ++i) |
||
1679 | isl_set_free((*set)[i]); |
||
1680 | free(*set); |
||
1681 | *set = NULL; |
||
1682 | } |
||
1683 | free(group); |
||
1684 | return NULL; |
||
1685 | } |
||
1686 | |||
1687 | /* Check if the domains and ranges of the basic maps in "map" can |
||
1688 | * be partitioned, and if so, apply Floyd-Warshall on the elements |
||
1689 | * of the partition. Note that we also apply this algorithm |
||
1690 | * if we want to compute the power, i.e., when "project" is not set. |
||
1691 | * However, the results are unlikely to be exact since the recursive |
||
1692 | * calls inside the Floyd-Warshall algorithm typically result in |
||
1693 | * non-linear path lengths quite quickly. |
||
1694 | */ |
||
1695 | static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim, |
||
1696 | __isl_keep isl_map *map, int *exact, int project) |
||
1697 | { |
||
1698 | int i; |
||
1699 | isl_set **set = NULL; |
||
1700 | int *group = NULL; |
||
1701 | int n; |
||
1702 | |||
1703 | if (!map) |
||
1704 | goto error; |
||
1705 | if (map->n <= 1) |
||
1706 | return incremental_closure(dim, map, exact, project); |
||
1707 | |||
1708 | group = setup_groups(map->ctx, map->p, map->n, &set, &n); |
||
1709 | if (!group) |
||
1710 | goto error; |
||
1711 | |||
1712 | for (i = 0; i < 2 * map->n; ++i) |
||
1713 | isl_set_free(set[i]); |
||
1714 | |||
1715 | free(set); |
||
1716 | |||
1717 | return floyd_warshall_with_groups(dim, map, exact, project, group, n); |
||
1718 | error: |
||
1719 | isl_space_free(dim); |
||
1720 | return NULL; |
||
1721 | } |
||
1722 | |||
1723 | /* Structure for representing the nodes in the graph being traversed |
||
1724 | * using Tarjan's algorithm. |
||
1725 | * index represents the order in which nodes are visited. |
||
1726 | * min_index is the index of the root of a (sub)component. |
||
1727 | * on_stack indicates whether the node is currently on the stack. |
||
1728 | */ |
||
1729 | struct basic_map_sort_node { |
||
1730 | int index; |
||
1731 | int min_index; |
||
1732 | int on_stack; |
||
1733 | }; |
||
1734 | /* Structure for representing the graph being traversed |
||
1735 | * using Tarjan's algorithm. |
||
1736 | * len is the number of nodes |
||
1737 | * node is an array of nodes |
||
1738 | * stack contains the nodes on the path from the root to the current node |
||
1739 | * sp is the stack pointer |
||
1740 | * index is the index of the last node visited |
||
1741 | * order contains the elements of the components separated by -1 |
||
1742 | * op represents the current position in order |
||
1743 | * |
||
1744 | * check_closed is set if we may have used the fact that |
||
1745 | * a pair of basic maps can be interchanged |
||
1746 | */ |
||
1747 | struct basic_map_sort { |
||
1748 | int len; |
||
1749 | struct basic_map_sort_node *node; |
||
1750 | int *stack; |
||
1751 | int sp; |
||
1752 | int index; |
||
1753 | int *order; |
||
1754 | int op; |
||
1755 | int check_closed; |
||
1756 | }; |
||
1757 | |||
1758 | static void basic_map_sort_free(struct basic_map_sort *s) |
||
1759 | { |
||
1760 | if (!s) |
||
1761 | return; |
||
1762 | free(s->node); |
||
1763 | free(s->stack); |
||
1764 | free(s->order); |
||
1765 | free(s); |
||
1766 | } |
||
1767 | |||
1768 | static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len) |
||
1769 | { |
||
1770 | struct basic_map_sort *s; |
||
1771 | int i; |
||
1772 | |||
1773 | s = isl_calloc_type(ctx, struct basic_map_sort); |
||
1774 | if (!s) |
||
1775 | return NULL; |
||
1776 | s->len = len; |
||
1777 | s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len); |
||
1778 | if (!s->node) |
||
1779 | goto error; |
||
1780 | for (i = 0; i < len; ++i) |
||
1781 | s->node[i].index = -1; |
||
1782 | s->stack = isl_alloc_array(ctx, int, len); |
||
1783 | if (!s->stack) |
||
1784 | goto error; |
||
1785 | s->order = isl_alloc_array(ctx, int, 2 * len); |
||
1786 | if (!s->order) |
||
1787 | goto error; |
||
1788 | |||
1789 | s->sp = 0; |
||
1790 | s->index = 0; |
||
1791 | s->op = 0; |
||
1792 | |||
1793 | s->check_closed = 0; |
||
1794 | |||
1795 | return s; |
||
1796 | error: |
||
1797 | basic_map_sort_free(s); |
||
1798 | return NULL; |
||
1799 | } |
||
1800 | |||
1801 | /* Check whether in the computation of the transitive closure |
||
1802 | * "bmap1" (R_1) should follow (or be part of the same component as) |
||
1803 | * "bmap2" (R_2). |
||
1804 | * |
||
1805 | * That is check whether |
||
1806 | * |
||
1807 | * R_1 \circ R_2 |
||
1808 | * |
||
1809 | * is a subset of |
||
1810 | * |
||
1811 | * R_2 \circ R_1 |
||
1812 | * |
||
1813 | * If so, then there is no reason for R_1 to immediately follow R_2 |
||
1814 | * in any path. |
||
1815 | * |
||
1816 | * *check_closed is set if the subset relation holds while |
||
1817 | * R_1 \circ R_2 is not empty. |
||
1818 | */ |
||
1819 | static int basic_map_follows(__isl_keep isl_basic_map *bmap1, |
||
1820 | __isl_keep isl_basic_map *bmap2, int *check_closed) |
||
1821 | { |
||
1822 | struct isl_map *map12 = NULL; |
||
1823 | struct isl_map *map21 = NULL; |
||
1824 | int subset; |
||
1825 | |||
1826 | if (!isl_space_tuple_match(bmap1->dim, isl_dim_in, bmap2->dim, isl_dim_out)) |
||
1827 | return 0; |
||
1828 | |||
1829 | map21 = isl_map_from_basic_map( |
||
1830 | isl_basic_map_apply_range( |
||
1831 | isl_basic_map_copy(bmap2), |
||
1832 | isl_basic_map_copy(bmap1))); |
||
1833 | subset = isl_map_is_empty(map21); |
||
1834 | if (subset < 0) |
||
1835 | goto error; |
||
1836 | if (subset) { |
||
1837 | isl_map_free(map21); |
||
1838 | return 0; |
||
1839 | } |
||
1840 | |||
1841 | if (!isl_space_tuple_match(bmap1->dim, isl_dim_in, bmap1->dim, isl_dim_out) || |
||
1842 | !isl_space_tuple_match(bmap2->dim, isl_dim_in, bmap2->dim, isl_dim_out)) { |
||
1843 | isl_map_free(map21); |
||
1844 | return 1; |
||
1845 | } |
||
1846 | |||
1847 | map12 = isl_map_from_basic_map( |
||
1848 | isl_basic_map_apply_range( |
||
1849 | isl_basic_map_copy(bmap1), |
||
1850 | isl_basic_map_copy(bmap2))); |
||
1851 | |||
1852 | subset = isl_map_is_subset(map21, map12); |
||
1853 | |||
1854 | isl_map_free(map12); |
||
1855 | isl_map_free(map21); |
||
1856 | |||
1857 | if (subset) |
||
1858 | *check_closed = 1; |
||
1859 | |||
1860 | return subset < 0 ? -1 : !subset; |
||
1861 | error: |
||
1862 | isl_map_free(map21); |
||
1863 | return -1; |
||
1864 | } |
||
1865 | |||
1866 | /* Perform Tarjan's algorithm for computing the strongly connected components |
||
1867 | * in the graph with the disjuncts of "map" as vertices and with an |
||
1868 | * edge between any pair of disjuncts such that the first has |
||
1869 | * to be applied after the second. |
||
1870 | */ |
||
1871 | static int power_components_tarjan(struct basic_map_sort *s, |
||
1872 | __isl_keep isl_basic_map **list, int i) |
||
1873 | { |
||
1874 | int j; |
||
1875 | |||
1876 | s->node[i].index = s->index; |
||
1877 | s->node[i].min_index = s->index; |
||
1878 | s->node[i].on_stack = 1; |
||
1879 | s->index++; |
||
1880 | s->stack[s->sp++] = i; |
||
1881 | |||
1882 | for (j = s->len - 1; j >= 0; --j) { |
||
1883 | int f; |
||
1884 | |||
1885 | if (j == i) |
||
1886 | continue; |
||
1887 | if (s->node[j].index >= 0 && |
||
1888 | (!s->node[j].on_stack || |
||
1889 | s->node[j].index > s->node[i].min_index)) |
||
1890 | continue; |
||
1891 | |||
1892 | f = basic_map_follows(list[i], list[j], &s->check_closed); |
||
1893 | if (f < 0) |
||
1894 | return -1; |
||
1895 | if (!f) |
||
1896 | continue; |
||
1897 | |||
1898 | if (s->node[j].index < 0) { |
||
1899 | power_components_tarjan(s, list, j); |
||
1900 | if (s->node[j].min_index < s->node[i].min_index) |
||
1901 | s->node[i].min_index = s->node[j].min_index; |
||
1902 | } else if (s->node[j].index < s->node[i].min_index) |
||
1903 | s->node[i].min_index = s->node[j].index; |
||
1904 | } |
||
1905 | |||
1906 | if (s->node[i].index != s->node[i].min_index) |
||
1907 | return 0; |
||
1908 | |||
1909 | do { |
||
1910 | j = s->stack[--s->sp]; |
||
1911 | s->node[j].on_stack = 0; |
||
1912 | s->order[s->op++] = j; |
||
1913 | } while (j != i); |
||
1914 | s->order[s->op++] = -1; |
||
1915 | |||
1916 | return 0; |
||
1917 | } |
||
1918 | |||
1919 | /* Decompose the "len" basic relations in "list" into strongly connected |
||
1920 | * components. |
||
1921 | */ |
||
1922 | static struct basic_map_sort *basic_map_sort_init(isl_ctx *ctx, int len, |
||
1923 | __isl_keep isl_basic_map **list) |
||
1924 | { |
||
1925 | int i; |
||
1926 | struct basic_map_sort *s = NULL; |
||
1927 | |||
1928 | s = basic_map_sort_alloc(ctx, len); |
||
1929 | if (!s) |
||
1930 | return NULL; |
||
1931 | for (i = len - 1; i >= 0; --i) { |
||
1932 | if (s->node[i].index >= 0) |
||
1933 | continue; |
||
1934 | if (power_components_tarjan(s, list, i) < 0) |
||
1935 | goto error; |
||
1936 | } |
||
1937 | |||
1938 | return s; |
||
1939 | error: |
||
1940 | basic_map_sort_free(s); |
||
1941 | return NULL; |
||
1942 | } |
||
1943 | |||
1944 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D |
||
1945 | * and a dimension specification (Z^{n+1} -> Z^{n+1}), |
||
1946 | * construct a map that is an overapproximation of the map |
||
1947 | * that takes an element from the dom R \times Z to an |
||
1948 | * element from ran R \times Z, such that the first n coordinates of the |
||
1949 | * difference between them is a sum of differences between images |
||
1950 | * and pre-images in one of the R_i and such that the last coordinate |
||
1951 | * is equal to the number of steps taken. |
||
1952 | * If "project" is set, then these final coordinates are not included, |
||
1953 | * i.e., a relation of type Z^n -> Z^n is returned. |
||
1954 | * That is, let |
||
1955 | * |
||
1956 | * \Delta_i = { y - x | (x, y) in R_i } |
||
1957 | * |
||
1958 | * then the constructed map is an overapproximation of |
||
1959 | * |
||
1960 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
||
1961 | * d = (\sum_i k_i \delta_i, \sum_i k_i) and |
||
1962 | * x in dom R and x + d in ran R } |
||
1963 | * |
||
1964 | * or |
||
1965 | * |
||
1966 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
||
1967 | * d = (\sum_i k_i \delta_i) and |
||
1968 | * x in dom R and x + d in ran R } |
||
1969 | * |
||
1970 | * if "project" is set. |
||
1971 | * |
||
1972 | * We first split the map into strongly connected components, perform |
||
1973 | * the above on each component and then join the results in the correct |
||
1974 | * order, at each join also taking in the union of both arguments |
||
1975 | * to allow for paths that do not go through one of the two arguments. |
||
1976 | */ |
||
1977 | static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim, |
||
1978 | __isl_keep isl_map *map, int *exact, int project) |
||
1979 | { |
||
1980 | int i, n, c; |
||
1981 | struct isl_map *path = NULL; |
||
1982 | struct basic_map_sort *s = NULL; |
||
1983 | int *orig_exact; |
||
1984 | int local_exact; |
||
1985 | |||
1986 | if (!map) |
||
1987 | goto error; |
||
1988 | if (map->n <= 1) |
||
1989 | return floyd_warshall(dim, map, exact, project); |
||
1990 | |||
1991 | s = basic_map_sort_init(map->ctx, map->n, map->p); |
||
1992 | if (!s) |
||
1993 | goto error; |
||
1994 | |||
1995 | orig_exact = exact; |
||
1996 | if (s->check_closed && !exact) |
||
1997 | exact = &local_exact; |
||
1998 | |||
1999 | c = 0; |
||
2000 | i = 0; |
||
2001 | n = map->n; |
||
2002 | if (project) |
||
2003 | path = isl_map_empty(isl_map_get_space(map)); |
||
2004 | else |
||
2005 | path = isl_map_empty(isl_space_copy(dim)); |
||
2006 | path = anonymize(path); |
||
2007 | while (n) { |
||
2008 | struct isl_map *comp; |
||
2009 | isl_map *path_comp, *path_comb; |
||
2010 | comp = isl_map_alloc_space(isl_map_get_space(map), n, 0); |
||
2011 | while (s->order[i] != -1) { |
||
2012 | comp = isl_map_add_basic_map(comp, |
||
2013 | isl_basic_map_copy(map->p[s->order[i]])); |
||
2014 | --n; |
||
2015 | ++i; |
||
2016 | } |
||
2017 | path_comp = floyd_warshall(isl_space_copy(dim), |
||
2018 | comp, exact, project); |
||
2019 | path_comp = anonymize(path_comp); |
||
2020 | path_comb = isl_map_apply_range(isl_map_copy(path), |
||
2021 | isl_map_copy(path_comp)); |
||
2022 | path = isl_map_union(path, path_comp); |
||
2023 | path = isl_map_union(path, path_comb); |
||
2024 | isl_map_free(comp); |
||
2025 | ++i; |
||
2026 | ++c; |
||
2027 | } |
||
2028 | |||
2029 | if (c > 1 && s->check_closed && !*exact) { |
||
2030 | int closed; |
||
2031 | |||
2032 | closed = isl_map_is_transitively_closed(path); |
||
2033 | if (closed < 0) |
||
2034 | goto error; |
||
2035 | if (!closed) { |
||
2036 | basic_map_sort_free(s); |
||
2037 | isl_map_free(path); |
||
2038 | return floyd_warshall(dim, map, orig_exact, project); |
||
2039 | } |
||
2040 | } |
||
2041 | |||
2042 | basic_map_sort_free(s); |
||
2043 | isl_space_free(dim); |
||
2044 | |||
2045 | return path; |
||
2046 | error: |
||
2047 | basic_map_sort_free(s); |
||
2048 | isl_space_free(dim); |
||
2049 | isl_map_free(path); |
||
2050 | return NULL; |
||
2051 | } |
||
2052 | |||
2053 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D, |
||
2054 | * construct a map that is an overapproximation of the map |
||
2055 | * that takes an element from the space D to another |
||
2056 | * element from the same space, such that the difference between |
||
2057 | * them is a strictly positive sum of differences between images |
||
2058 | * and pre-images in one of the R_i. |
||
2059 | * The number of differences in the sum is equated to parameter "param". |
||
2060 | * That is, let |
||
2061 | * |
||
2062 | * \Delta_i = { y - x | (x, y) in R_i } |
||
2063 | * |
||
2064 | * then the constructed map is an overapproximation of |
||
2065 | * |
||
2066 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
||
2067 | * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 } |
||
2068 | * or |
||
2069 | * |
||
2070 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
||
2071 | * d = \sum_i k_i \delta_i and \sum_i k_i > 0 } |
||
2072 | * |
||
2073 | * if "project" is set. |
||
2074 | * |
||
2075 | * If "project" is not set, then |
||
2076 | * we construct an extended mapping with an extra coordinate |
||
2077 | * that indicates the number of steps taken. In particular, |
||
2078 | * the difference in the last coordinate is equal to the number |
||
2079 | * of steps taken to move from a domain element to the corresponding |
||
2080 | * image element(s). |
||
2081 | */ |
||
2082 | static __isl_give isl_map *construct_power(__isl_keep isl_map *map, |
||
2083 | int *exact, int project) |
||
2084 | { |
||
2085 | struct isl_map *app = NULL; |
||
2086 | isl_space *dim = NULL; |
||
2087 | unsigned d; |
||
2088 | |||
2089 | if (!map) |
||
2090 | return NULL; |
||
2091 | |||
2092 | dim = isl_map_get_space(map); |
||
2093 | |||
2094 | d = isl_space_dim(dim, isl_dim_in); |
||
2095 | dim = isl_space_add_dims(dim, isl_dim_in, 1); |
||
2096 | dim = isl_space_add_dims(dim, isl_dim_out, 1); |
||
2097 | |||
2098 | app = construct_power_components(isl_space_copy(dim), map, |
||
2099 | exact, project); |
||
2100 | |||
2101 | isl_space_free(dim); |
||
2102 | |||
2103 | return app; |
||
2104 | } |
||
2105 | |||
2106 | /* Compute the positive powers of "map", or an overapproximation. |
||
2107 | * If the result is exact, then *exact is set to 1. |
||
2108 | * |
||
2109 | * If project is set, then we are actually interested in the transitive |
||
2110 | * closure, so we can use a more relaxed exactness check. |
||
2111 | * The lengths of the paths are also projected out instead of being |
||
2112 | * encoded as the difference between an extra pair of final coordinates. |
||
2113 | */ |
||
2114 | static __isl_give isl_map *map_power(__isl_take isl_map *map, |
||
2115 | int *exact, int project) |
||
2116 | { |
||
2117 | struct isl_map *app = NULL; |
||
2118 | |||
2119 | if (exact) |
||
2120 | *exact = 1; |
||
2121 | |||
2122 | if (!map) |
||
2123 | return NULL; |
||
2124 | |||
2125 | isl_assert(map->ctx, |
||
2126 | isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out), |
||
2127 | goto error); |
||
2128 | |||
2129 | app = construct_power(map, exact, project); |
||
2130 | |||
2131 | isl_map_free(map); |
||
2132 | return app; |
||
2133 | error: |
||
2134 | isl_map_free(map); |
||
2135 | isl_map_free(app); |
||
2136 | return NULL; |
||
2137 | } |
||
2138 | |||
2139 | /* Compute the positive powers of "map", or an overapproximation. |
||
2140 | * The result maps the exponent to a nested copy of the corresponding power. |
||
2141 | * If the result is exact, then *exact is set to 1. |
||
2142 | * map_power constructs an extended relation with the path lengths |
||
2143 | * encoded as the difference between the final coordinates. |
||
2144 | * In the final step, this difference is equated to an extra parameter |
||
2145 | * and made positive. The extra coordinates are subsequently projected out |
||
2146 | * and the parameter is turned into the domain of the result. |
||
2147 | */ |
||
2148 | __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact) |
||
2149 | { |
||
2150 | isl_space *target_dim; |
||
2151 | isl_space *dim; |
||
2152 | isl_map *diff; |
||
2153 | unsigned d; |
||
2154 | unsigned param; |
||
2155 | |||
2156 | if (!map) |
||
2157 | return NULL; |
||
2158 | |||
2159 | d = isl_map_dim(map, isl_dim_in); |
||
2160 | param = isl_map_dim(map, isl_dim_param); |
||
2161 | |||
2162 | map = isl_map_compute_divs(map); |
||
2163 | map = isl_map_coalesce(map); |
||
2164 | |||
2165 | if (isl_map_plain_is_empty(map)) { |
||
2166 | map = isl_map_from_range(isl_map_wrap(map)); |
||
2167 | map = isl_map_add_dims(map, isl_dim_in, 1); |
||
2168 | map = isl_map_set_dim_name(map, isl_dim_in, 0, "k"); |
||
2169 | return map; |
||
2170 | } |
||
2171 | |||
2172 | target_dim = isl_map_get_space(map); |
||
2173 | target_dim = isl_space_from_range(isl_space_wrap(target_dim)); |
||
2174 | target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1); |
||
2175 | target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k"); |
||
2176 | |||
2177 | map = map_power(map, exact, 0); |
||
2178 | |||
2179 | map = isl_map_add_dims(map, isl_dim_param, 1); |
||
2180 | dim = isl_map_get_space(map); |
||
2181 | diff = equate_parameter_to_length(dim, param); |
||
2182 | map = isl_map_intersect(map, diff); |
||
2183 | map = isl_map_project_out(map, isl_dim_in, d, 1); |
||
2184 | map = isl_map_project_out(map, isl_dim_out, d, 1); |
||
2185 | map = isl_map_from_range(isl_map_wrap(map)); |
||
2186 | map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1); |
||
2187 | |||
2188 | map = isl_map_reset_space(map, target_dim); |
||
2189 | |||
2190 | return map; |
||
2191 | } |
||
2192 | |||
2193 | /* Compute a relation that maps each element in the range of the input |
||
2194 | * relation to the lengths of all paths composed of edges in the input |
||
2195 | * relation that end up in the given range element. |
||
2196 | * The result may be an overapproximation, in which case *exact is set to 0. |
||
2197 | * The resulting relation is very similar to the power relation. |
||
2198 | * The difference are that the domain has been projected out, the |
||
2199 | * range has become the domain and the exponent is the range instead |
||
2200 | * of a parameter. |
||
2201 | */ |
||
2202 | __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map, |
||
2203 | int *exact) |
||
2204 | { |
||
2205 | isl_space *dim; |
||
2206 | isl_map *diff; |
||
2207 | unsigned d; |
||
2208 | unsigned param; |
||
2209 | |||
2210 | if (!map) |
||
2211 | return NULL; |
||
2212 | |||
2213 | d = isl_map_dim(map, isl_dim_in); |
||
2214 | param = isl_map_dim(map, isl_dim_param); |
||
2215 | |||
2216 | map = isl_map_compute_divs(map); |
||
2217 | map = isl_map_coalesce(map); |
||
2218 | |||
2219 | if (isl_map_plain_is_empty(map)) { |
||
2220 | if (exact) |
||
2221 | *exact = 1; |
||
2222 | map = isl_map_project_out(map, isl_dim_out, 0, d); |
||
2223 | map = isl_map_add_dims(map, isl_dim_out, 1); |
||
2224 | return map; |
||
2225 | } |
||
2226 | |||
2227 | map = map_power(map, exact, 0); |
||
2228 | |||
2229 | map = isl_map_add_dims(map, isl_dim_param, 1); |
||
2230 | dim = isl_map_get_space(map); |
||
2231 | diff = equate_parameter_to_length(dim, param); |
||
2232 | map = isl_map_intersect(map, diff); |
||
2233 | map = isl_map_project_out(map, isl_dim_in, 0, d + 1); |
||
2234 | map = isl_map_project_out(map, isl_dim_out, d, 1); |
||
2235 | map = isl_map_reverse(map); |
||
2236 | map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1); |
||
2237 | |||
2238 | return map; |
||
2239 | } |
||
2240 | |||
2241 | /* Check whether equality i of bset is a pure stride constraint |
||
2242 | * on a single dimensions, i.e., of the form |
||
2243 | * |
||
2244 | * v = k e |
||
2245 | * |
||
2246 | * with k a constant and e an existentially quantified variable. |
||
2247 | */ |
||
2248 | static int is_eq_stride(__isl_keep isl_basic_set *bset, int i) |
||
2249 | { |
||
2250 | unsigned nparam; |
||
2251 | unsigned d; |
||
2252 | unsigned n_div; |
||
2253 | int pos1; |
||
2254 | int pos2; |
||
2255 | |||
2256 | if (!bset) |
||
2257 | return -1; |
||
2258 | |||
2259 | if (!isl_int_is_zero(bset->eq[i][0])) |
||
2260 | return 0; |
||
2261 | |||
2262 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
2263 | d = isl_basic_set_dim(bset, isl_dim_set); |
||
2264 | n_div = isl_basic_set_dim(bset, isl_dim_div); |
||
2265 | |||
2266 | if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1) |
||
2267 | return 0; |
||
2268 | pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d); |
||
2269 | if (pos1 == -1) |
||
2270 | return 0; |
||
2271 | if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1, |
||
2272 | d - pos1 - 1) != -1) |
||
2273 | return 0; |
||
2274 | |||
2275 | pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div); |
||
2276 | if (pos2 == -1) |
||
2277 | return 0; |
||
2278 | if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1, |
||
2279 | n_div - pos2 - 1) != -1) |
||
2280 | return 0; |
||
2281 | if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) && |
||
2282 | !isl_int_is_negone(bset->eq[i][1 + nparam + pos1])) |
||
2283 | return 0; |
||
2284 | |||
2285 | return 1; |
||
2286 | } |
||
2287 | |||
2288 | /* Given a map, compute the smallest superset of this map that is of the form |
||
2289 | * |
||
2290 | * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } |
||
2291 | * |
||
2292 | * (where p ranges over the (non-parametric) dimensions), |
||
2293 | * compute the transitive closure of this map, i.e., |
||
2294 | * |
||
2295 | * { i -> j : exists k > 0: |
||
2296 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
||
2297 | * |
||
2298 | * and intersect domain and range of this transitive closure with |
||
2299 | * the given domain and range. |
||
2300 | * |
||
2301 | * If with_id is set, then try to include as much of the identity mapping |
||
2302 | * as possible, by computing |
||
2303 | * |
||
2304 | * { i -> j : exists k >= 0: |
||
2305 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
||
2306 | * |
||
2307 | * instead (i.e., allow k = 0). |
||
2308 | * |
||
2309 | * In practice, we compute the difference set |
||
2310 | * |
||
2311 | * delta = { j - i | i -> j in map }, |
||
2312 | * |
||
2313 | * look for stride constraint on the individual dimensions and compute |
||
2314 | * (constant) lower and upper bounds for each individual dimension, |
||
2315 | * adding a constraint for each bound not equal to infinity. |
||
2316 | */ |
||
2317 | static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map, |
||
2318 | __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id) |
||
2319 | { |
||
2320 | int i; |
||
2321 | int k; |
||
2322 | unsigned d; |
||
2323 | unsigned nparam; |
||
2324 | unsigned total; |
||
2325 | isl_space *dim; |
||
2326 | isl_set *delta; |
||
2327 | isl_map *app = NULL; |
||
2328 | isl_basic_set *aff = NULL; |
||
2329 | isl_basic_map *bmap = NULL; |
||
2330 | isl_vec *obj = NULL; |
||
2331 | isl_int opt; |
||
2332 | |||
2333 | isl_int_init(opt); |
||
2334 | |||
2335 | delta = isl_map_deltas(isl_map_copy(map)); |
||
2336 | |||
2337 | aff = isl_set_affine_hull(isl_set_copy(delta)); |
||
2338 | if (!aff) |
||
2339 | goto error; |
||
2340 | dim = isl_map_get_space(map); |
||
2341 | d = isl_space_dim(dim, isl_dim_in); |
||
2342 | nparam = isl_space_dim(dim, isl_dim_param); |
||
2343 | total = isl_space_dim(dim, isl_dim_all); |
||
2344 | bmap = isl_basic_map_alloc_space(dim, |
||
2345 | aff->n_div + 1, aff->n_div, 2 * d + 1); |
||
2346 | for (i = 0; i < aff->n_div + 1; ++i) { |
||
2347 | k = isl_basic_map_alloc_div(bmap); |
||
2348 | if (k < 0) |
||
2349 | goto error; |
||
2350 | isl_int_set_si(bmap->div[k][0], 0); |
||
2351 | } |
||
2352 | for (i = 0; i < aff->n_eq; ++i) { |
||
2353 | if (!is_eq_stride(aff, i)) |
||
2354 | continue; |
||
2355 | k = isl_basic_map_alloc_equality(bmap); |
||
2356 | if (k < 0) |
||
2357 | goto error; |
||
2358 | isl_seq_clr(bmap->eq[k], 1 + nparam); |
||
2359 | isl_seq_cpy(bmap->eq[k] + 1 + nparam + d, |
||
2360 | aff->eq[i] + 1 + nparam, d); |
||
2361 | isl_seq_neg(bmap->eq[k] + 1 + nparam, |
||
2362 | aff->eq[i] + 1 + nparam, d); |
||
2363 | isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d, |
||
2364 | aff->eq[i] + 1 + nparam + d, aff->n_div); |
||
2365 | isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0); |
||
2366 | } |
||
2367 | obj = isl_vec_alloc(map->ctx, 1 + nparam + d); |
||
2368 | if (!obj) |
||
2369 | goto error; |
||
2370 | isl_seq_clr(obj->el, 1 + nparam + d); |
||
2371 | for (i = 0; i < d; ++ i) { |
||
2372 | enum isl_lp_result res; |
||
2373 | |||
2374 | isl_int_set_si(obj->el[1 + nparam + i], 1); |
||
2375 | |||
2376 | res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt, |
||
2377 | NULL, NULL); |
||
2378 | if (res == isl_lp_error) |
||
2379 | goto error; |
||
2380 | if (res == isl_lp_ok) { |
||
2381 | k = isl_basic_map_alloc_inequality(bmap); |
||
2382 | if (k < 0) |
||
2383 | goto error; |
||
2384 | isl_seq_clr(bmap->ineq[k], |
||
2385 | 1 + nparam + 2 * d + bmap->n_div); |
||
2386 | isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1); |
||
2387 | isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1); |
||
2388 | isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); |
||
2389 | } |
||
2390 | |||
2391 | res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt, |
||
2392 | NULL, NULL); |
||
2393 | if (res == isl_lp_error) |
||
2394 | goto error; |
||
2395 | if (res == isl_lp_ok) { |
||
2396 | k = isl_basic_map_alloc_inequality(bmap); |
||
2397 | if (k < 0) |
||
2398 | goto error; |
||
2399 | isl_seq_clr(bmap->ineq[k], |
||
2400 | 1 + nparam + 2 * d + bmap->n_div); |
||
2401 | isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1); |
||
2402 | isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1); |
||
2403 | isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); |
||
2404 | } |
||
2405 | |||
2406 | isl_int_set_si(obj->el[1 + nparam + i], 0); |
||
2407 | } |
||
2408 | k = isl_basic_map_alloc_inequality(bmap); |
||
2409 | if (k < 0) |
||
2410 | goto error; |
||
2411 | isl_seq_clr(bmap->ineq[k], |
||
2412 | 1 + nparam + 2 * d + bmap->n_div); |
||
2413 | if (!with_id) |
||
2414 | isl_int_set_si(bmap->ineq[k][0], -1); |
||
2415 | isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1); |
||
2416 | |||
2417 | app = isl_map_from_domain_and_range(dom, ran); |
||
2418 | |||
2419 | isl_vec_free(obj); |
||
2420 | isl_basic_set_free(aff); |
||
2421 | isl_map_free(map); |
||
2422 | bmap = isl_basic_map_finalize(bmap); |
||
2423 | isl_set_free(delta); |
||
2424 | isl_int_clear(opt); |
||
2425 | |||
2426 | map = isl_map_from_basic_map(bmap); |
||
2427 | map = isl_map_intersect(map, app); |
||
2428 | |||
2429 | return map; |
||
2430 | error: |
||
2431 | isl_vec_free(obj); |
||
2432 | isl_basic_map_free(bmap); |
||
2433 | isl_basic_set_free(aff); |
||
2434 | isl_set_free(dom); |
||
2435 | isl_set_free(ran); |
||
2436 | isl_map_free(map); |
||
2437 | isl_set_free(delta); |
||
2438 | isl_int_clear(opt); |
||
2439 | return NULL; |
||
2440 | } |
||
2441 | |||
2442 | /* Given a map, compute the smallest superset of this map that is of the form |
||
2443 | * |
||
2444 | * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } |
||
2445 | * |
||
2446 | * (where p ranges over the (non-parametric) dimensions), |
||
2447 | * compute the transitive closure of this map, i.e., |
||
2448 | * |
||
2449 | * { i -> j : exists k > 0: |
||
2450 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
||
2451 | * |
||
2452 | * and intersect domain and range of this transitive closure with |
||
2453 | * domain and range of the original map. |
||
2454 | */ |
||
2455 | static __isl_give isl_map *box_closure(__isl_take isl_map *map) |
||
2456 | { |
||
2457 | isl_set *domain; |
||
2458 | isl_set *range; |
||
2459 | |||
2460 | domain = isl_map_domain(isl_map_copy(map)); |
||
2461 | domain = isl_set_coalesce(domain); |
||
2462 | range = isl_map_range(isl_map_copy(map)); |
||
2463 | range = isl_set_coalesce(range); |
||
2464 | |||
2465 | return box_closure_on_domain(map, domain, range, 0); |
||
2466 | } |
||
2467 | |||
2468 | /* Given a map, compute the smallest superset of this map that is of the form |
||
2469 | * |
||
2470 | * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } |
||
2471 | * |
||
2472 | * (where p ranges over the (non-parametric) dimensions), |
||
2473 | * compute the transitive and partially reflexive closure of this map, i.e., |
||
2474 | * |
||
2475 | * { i -> j : exists k >= 0: |
||
2476 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
||
2477 | * |
||
2478 | * and intersect domain and range of this transitive closure with |
||
2479 | * the given domain. |
||
2480 | */ |
||
2481 | static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map, |
||
2482 | __isl_take isl_set *dom) |
||
2483 | { |
||
2484 | return box_closure_on_domain(map, dom, isl_set_copy(dom), 1); |
||
2485 | } |
||
2486 | |||
2487 | /* Check whether app is the transitive closure of map. |
||
2488 | * In particular, check that app is acyclic and, if so, |
||
2489 | * check that |
||
2490 | * |
||
2491 | * app \subset (map \cup (map \circ app)) |
||
2492 | */ |
||
2493 | static int check_exactness_omega(__isl_keep isl_map *map, |
||
2494 | __isl_keep isl_map *app) |
||
2495 | { |
||
2496 | isl_set *delta; |
||
2497 | int i; |
||
2498 | int is_empty, is_exact; |
||
2499 | unsigned d; |
||
2500 | isl_map *test; |
||
2501 | |||
2502 | delta = isl_map_deltas(isl_map_copy(app)); |
||
2503 | d = isl_set_dim(delta, isl_dim_set); |
||
2504 | for (i = 0; i < d; ++i) |
||
2505 | delta = isl_set_fix_si(delta, isl_dim_set, i, 0); |
||
2506 | is_empty = isl_set_is_empty(delta); |
||
2507 | isl_set_free(delta); |
||
2508 | if (is_empty < 0) |
||
2509 | return -1; |
||
2510 | if (!is_empty) |
||
2511 | return 0; |
||
2512 | |||
2513 | test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map)); |
||
2514 | test = isl_map_union(test, isl_map_copy(map)); |
||
2515 | is_exact = isl_map_is_subset(app, test); |
||
2516 | isl_map_free(test); |
||
2517 | |||
2518 | return is_exact; |
||
2519 | } |
||
2520 | |||
2521 | /* Check if basic map M_i can be combined with all the other |
||
2522 | * basic maps such that |
||
2523 | * |
||
2524 | * (\cup_j M_j)^+ |
||
2525 | * |
||
2526 | * can be computed as |
||
2527 | * |
||
2528 | * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ |
||
2529 | * |
||
2530 | * In particular, check if we can compute a compact representation |
||
2531 | * of |
||
2532 | * |
||
2533 | * M_i^* \circ M_j \circ M_i^* |
||
2534 | * |
||
2535 | * for each j != i. |
||
2536 | * Let M_i^? be an extension of M_i^+ that allows paths |
||
2537 | * of length zero, i.e., the result of box_closure(., 1). |
||
2538 | * The criterion, as proposed by Kelly et al., is that |
||
2539 | * id = M_i^? - M_i^+ can be represented as a basic map |
||
2540 | * and that |
||
2541 | * |
||
2542 | * id \circ M_j \circ id = M_j |
||
2543 | * |
||
2544 | * for each j != i. |
||
2545 | * |
||
2546 | * If this function returns 1, then tc and qc are set to |
||
2547 | * M_i^+ and M_i^?, respectively. |
||
2548 | */ |
||
2549 | static int can_be_split_off(__isl_keep isl_map *map, int i, |
||
2550 | __isl_give isl_map **tc, __isl_give isl_map **qc) |
||
2551 | { |
||
2552 | isl_map *map_i, *id = NULL; |
||
2553 | int j = -1; |
||
2554 | isl_set *C; |
||
2555 | |||
2556 | *tc = NULL; |
||
2557 | *qc = NULL; |
||
2558 | |||
2559 | C = isl_set_union(isl_map_domain(isl_map_copy(map)), |
||
2560 | isl_map_range(isl_map_copy(map))); |
||
2561 | C = isl_set_from_basic_set(isl_set_simple_hull(C)); |
||
2562 | if (!C) |
||
2563 | goto error; |
||
2564 | |||
2565 | map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i])); |
||
2566 | *tc = box_closure(isl_map_copy(map_i)); |
||
2567 | *qc = box_closure_with_identity(map_i, C); |
||
2568 | id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc)); |
||
2569 | |||
2570 | if (!id || !*qc) |
||
2571 | goto error; |
||
2572 | if (id->n != 1 || (*qc)->n != 1) |
||
2573 | goto done; |
||
2574 | |||
2575 | for (j = 0; j < map->n; ++j) { |
||
2576 | isl_map *map_j, *test; |
||
2577 | int is_ok; |
||
2578 | |||
2579 | if (i == j) |
||
2580 | continue; |
||
2581 | map_j = isl_map_from_basic_map( |
||
2582 | isl_basic_map_copy(map->p[j])); |
||
2583 | test = isl_map_apply_range(isl_map_copy(id), |
||
2584 | isl_map_copy(map_j)); |
||
2585 | test = isl_map_apply_range(test, isl_map_copy(id)); |
||
2586 | is_ok = isl_map_is_equal(test, map_j); |
||
2587 | isl_map_free(map_j); |
||
2588 | isl_map_free(test); |
||
2589 | if (is_ok < 0) |
||
2590 | goto error; |
||
2591 | if (!is_ok) |
||
2592 | break; |
||
2593 | } |
||
2594 | |||
2595 | done: |
||
2596 | isl_map_free(id); |
||
2597 | if (j == map->n) |
||
2598 | return 1; |
||
2599 | |||
2600 | isl_map_free(*qc); |
||
2601 | isl_map_free(*tc); |
||
2602 | *qc = NULL; |
||
2603 | *tc = NULL; |
||
2604 | |||
2605 | return 0; |
||
2606 | error: |
||
2607 | isl_map_free(id); |
||
2608 | isl_map_free(*qc); |
||
2609 | isl_map_free(*tc); |
||
2610 | *qc = NULL; |
||
2611 | *tc = NULL; |
||
2612 | return -1; |
||
2613 | } |
||
2614 | |||
2615 | static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map, |
||
2616 | int *exact) |
||
2617 | { |
||
2618 | isl_map *app; |
||
2619 | |||
2620 | app = box_closure(isl_map_copy(map)); |
||
2621 | if (exact) |
||
2622 | *exact = check_exactness_omega(map, app); |
||
2623 | |||
2624 | isl_map_free(map); |
||
2625 | return app; |
||
2626 | } |
||
2627 | |||
2628 | /* Compute an overapproximation of the transitive closure of "map" |
||
2629 | * using a variation of the algorithm from |
||
2630 | * "Transitive Closure of Infinite Graphs and its Applications" |
||
2631 | * by Kelly et al. |
||
2632 | * |
||
2633 | * We first check whether we can can split of any basic map M_i and |
||
2634 | * compute |
||
2635 | * |
||
2636 | * (\cup_j M_j)^+ |
||
2637 | * |
||
2638 | * as |
||
2639 | * |
||
2640 | * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ |
||
2641 | * |
||
2642 | * using a recursive call on the remaining map. |
||
2643 | * |
||
2644 | * If not, we simply call box_closure on the whole map. |
||
2645 | */ |
||
2646 | static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map, |
||
2647 | int *exact) |
||
2648 | { |
||
2649 | int i, j; |
||
2650 | int exact_i; |
||
2651 | isl_map *app; |
||
2652 | |||
2653 | if (!map) |
||
2654 | return NULL; |
||
2655 | if (map->n == 1) |
||
2656 | return box_closure_with_check(map, exact); |
||
2657 | |||
2658 | for (i = 0; i < map->n; ++i) { |
||
2659 | int ok; |
||
2660 | isl_map *qc, *tc; |
||
2661 | ok = can_be_split_off(map, i, &tc, &qc); |
||
2662 | if (ok < 0) |
||
2663 | goto error; |
||
2664 | if (!ok) |
||
2665 | continue; |
||
2666 | |||
2667 | app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0); |
||
2668 | |||
2669 | for (j = 0; j < map->n; ++j) { |
||
2670 | if (j == i) |
||
2671 | continue; |
||
2672 | app = isl_map_add_basic_map(app, |
||
2673 | isl_basic_map_copy(map->p[j])); |
||
2674 | } |
||
2675 | |||
2676 | app = isl_map_apply_range(isl_map_copy(qc), app); |
||
2677 | app = isl_map_apply_range(app, qc); |
||
2678 | |||
2679 | app = isl_map_union(tc, transitive_closure_omega(app, NULL)); |
||
2680 | exact_i = check_exactness_omega(map, app); |
||
2681 | if (exact_i == 1) { |
||
2682 | if (exact) |
||
2683 | *exact = exact_i; |
||
2684 | isl_map_free(map); |
||
2685 | return app; |
||
2686 | } |
||
2687 | isl_map_free(app); |
||
2688 | if (exact_i < 0) |
||
2689 | goto error; |
||
2690 | } |
||
2691 | |||
2692 | return box_closure_with_check(map, exact); |
||
2693 | error: |
||
2694 | isl_map_free(map); |
||
2695 | return NULL; |
||
2696 | } |
||
2697 | |||
2698 | /* Compute the transitive closure of "map", or an overapproximation. |
||
2699 | * If the result is exact, then *exact is set to 1. |
||
2700 | * Simply use map_power to compute the powers of map, but tell |
||
2701 | * it to project out the lengths of the paths instead of equating |
||
2702 | * the length to a parameter. |
||
2703 | */ |
||
2704 | __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map, |
||
2705 | int *exact) |
||
2706 | { |
||
2707 | isl_space *target_dim; |
||
2708 | int closed; |
||
2709 | |||
2710 | if (!map) |
||
2711 | goto error; |
||
2712 | |||
2713 | if (map->ctx->opt->closure == ISL_CLOSURE_BOX) |
||
2714 | return transitive_closure_omega(map, exact); |
||
2715 | |||
2716 | map = isl_map_compute_divs(map); |
||
2717 | map = isl_map_coalesce(map); |
||
2718 | closed = isl_map_is_transitively_closed(map); |
||
2719 | if (closed < 0) |
||
2720 | goto error; |
||
2721 | if (closed) { |
||
2722 | if (exact) |
||
2723 | *exact = 1; |
||
2724 | return map; |
||
2725 | } |
||
2726 | |||
2727 | target_dim = isl_map_get_space(map); |
||
2728 | map = map_power(map, exact, 1); |
||
2729 | map = isl_map_reset_space(map, target_dim); |
||
2730 | |||
2731 | return map; |
||
2732 | error: |
||
2733 | isl_map_free(map); |
||
2734 | return NULL; |
||
2735 | } |
||
2736 | |||
2737 | static int inc_count(__isl_take isl_map *map, void *user) |
||
2738 | { |
||
2739 | int *n = user; |
||
2740 | |||
2741 | *n += map->n; |
||
2742 | |||
2743 | isl_map_free(map); |
||
2744 | |||
2745 | return 0; |
||
2746 | } |
||
2747 | |||
2748 | static int collect_basic_map(__isl_take isl_map *map, void *user) |
||
2749 | { |
||
2750 | int i; |
||
2751 | isl_basic_map ***next = user; |
||
2752 | |||
2753 | for (i = 0; i < map->n; ++i) { |
||
2754 | **next = isl_basic_map_copy(map->p[i]); |
||
2755 | if (!**next) |
||
2756 | goto error; |
||
2757 | (*next)++; |
||
2758 | } |
||
2759 | |||
2760 | isl_map_free(map); |
||
2761 | return 0; |
||
2762 | error: |
||
2763 | isl_map_free(map); |
||
2764 | return -1; |
||
2765 | } |
||
2766 | |||
2767 | /* Perform Floyd-Warshall on the given list of basic relations. |
||
2768 | * The basic relations may live in different dimensions, |
||
2769 | * but basic relations that get assigned to the diagonal of the |
||
2770 | * grid have domains and ranges of the same dimension and so |
||
2771 | * the standard algorithm can be used because the nested transitive |
||
2772 | * closures are only applied to diagonal elements and because all |
||
2773 | * compositions are peformed on relations with compatible domains and ranges. |
||
2774 | */ |
||
2775 | static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx, |
||
2776 | __isl_keep isl_basic_map **list, int n, int *exact) |
||
2777 | { |
||
2778 | int i, j, k; |
||
2779 | int n_group; |
||
2780 | int *group = NULL; |
||
2781 | isl_set **set = NULL; |
||
2782 | isl_map ***grid = NULL; |
||
2783 | isl_union_map *app; |
||
2784 | |||
2785 | group = setup_groups(ctx, list, n, &set, &n_group); |
||
2786 | if (!group) |
||
2787 | goto error; |
||
2788 | |||
2789 | grid = isl_calloc_array(ctx, isl_map **, n_group); |
||
2790 | if (!grid) |
||
2791 | goto error; |
||
2792 | for (i = 0; i < n_group; ++i) { |
||
2793 | grid[i] = isl_calloc_array(ctx, isl_map *, n_group); |
||
2794 | if (!grid[i]) |
||
2795 | goto error; |
||
2796 | for (j = 0; j < n_group; ++j) { |
||
2797 | isl_space *dim1, *dim2, *dim; |
||
2798 | dim1 = isl_space_reverse(isl_set_get_space(set[i])); |
||
2799 | dim2 = isl_set_get_space(set[j]); |
||
2800 | dim = isl_space_join(dim1, dim2); |
||
2801 | grid[i][j] = isl_map_empty(dim); |
||
2802 | } |
||
2803 | } |
||
2804 | |||
2805 | for (k = 0; k < n; ++k) { |
||
2806 | i = group[2 * k]; |
||
2807 | j = group[2 * k + 1]; |
||
2808 | grid[i][j] = isl_map_union(grid[i][j], |
||
2809 | isl_map_from_basic_map( |
||
2810 | isl_basic_map_copy(list[k]))); |
||
2811 | } |
||
2812 | |||
2813 | floyd_warshall_iterate(grid, n_group, exact); |
||
2814 | |||
2815 | app = isl_union_map_empty(isl_map_get_space(grid[0][0])); |
||
2816 | |||
2817 | for (i = 0; i < n_group; ++i) { |
||
2818 | for (j = 0; j < n_group; ++j) |
||
2819 | app = isl_union_map_add_map(app, grid[i][j]); |
||
2820 | free(grid[i]); |
||
2821 | } |
||
2822 | free(grid); |
||
2823 | |||
2824 | for (i = 0; i < 2 * n; ++i) |
||
2825 | isl_set_free(set[i]); |
||
2826 | free(set); |
||
2827 | |||
2828 | free(group); |
||
2829 | return app; |
||
2830 | error: |
||
2831 | if (grid) |
||
2832 | for (i = 0; i < n_group; ++i) { |
||
2833 | if (!grid[i]) |
||
2834 | continue; |
||
2835 | for (j = 0; j < n_group; ++j) |
||
2836 | isl_map_free(grid[i][j]); |
||
2837 | free(grid[i]); |
||
2838 | } |
||
2839 | free(grid); |
||
2840 | if (set) { |
||
2841 | for (i = 0; i < 2 * n; ++i) |
||
2842 | isl_set_free(set[i]); |
||
2843 | free(set); |
||
2844 | } |
||
2845 | free(group); |
||
2846 | return NULL; |
||
2847 | } |
||
2848 | |||
2849 | /* Perform Floyd-Warshall on the given union relation. |
||
2850 | * The implementation is very similar to that for non-unions. |
||
2851 | * The main difference is that it is applied unconditionally. |
||
2852 | * We first extract a list of basic maps from the union map |
||
2853 | * and then perform the algorithm on this list. |
||
2854 | */ |
||
2855 | static __isl_give isl_union_map *union_floyd_warshall( |
||
2856 | __isl_take isl_union_map *umap, int *exact) |
||
2857 | { |
||
2858 | int i, n; |
||
2859 | isl_ctx *ctx; |
||
2860 | isl_basic_map **list = NULL; |
||
2861 | isl_basic_map **next; |
||
2862 | isl_union_map *res; |
||
2863 | |||
2864 | n = 0; |
||
2865 | if (isl_union_map_foreach_map(umap, inc_count, &n) < 0) |
||
2866 | goto error; |
||
2867 | |||
2868 | ctx = isl_union_map_get_ctx(umap); |
||
2869 | list = isl_calloc_array(ctx, isl_basic_map *, n); |
||
2870 | if (!list) |
||
2871 | goto error; |
||
2872 | |||
2873 | next = list; |
||
2874 | if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0) |
||
2875 | goto error; |
||
2876 | |||
2877 | res = union_floyd_warshall_on_list(ctx, list, n, exact); |
||
2878 | |||
2879 | if (list) { |
||
2880 | for (i = 0; i < n; ++i) |
||
2881 | isl_basic_map_free(list[i]); |
||
2882 | free(list); |
||
2883 | } |
||
2884 | |||
2885 | isl_union_map_free(umap); |
||
2886 | return res; |
||
2887 | error: |
||
2888 | if (list) { |
||
2889 | for (i = 0; i < n; ++i) |
||
2890 | isl_basic_map_free(list[i]); |
||
2891 | free(list); |
||
2892 | } |
||
2893 | isl_union_map_free(umap); |
||
2894 | return NULL; |
||
2895 | } |
||
2896 | |||
2897 | /* Decompose the give union relation into strongly connected components. |
||
2898 | * The implementation is essentially the same as that of |
||
2899 | * construct_power_components with the major difference that all |
||
2900 | * operations are performed on union maps. |
||
2901 | */ |
||
2902 | static __isl_give isl_union_map *union_components( |
||
2903 | __isl_take isl_union_map *umap, int *exact) |
||
2904 | { |
||
2905 | int i; |
||
2906 | int n; |
||
2907 | isl_ctx *ctx; |
||
2908 | isl_basic_map **list; |
||
2909 | isl_basic_map **next; |
||
2910 | isl_union_map *path = NULL; |
||
2911 | struct basic_map_sort *s = NULL; |
||
2912 | int c, l; |
||
2913 | int recheck = 0; |
||
2914 | |||
2915 | n = 0; |
||
2916 | if (isl_union_map_foreach_map(umap, inc_count, &n) < 0) |
||
2917 | goto error; |
||
2918 | |||
2919 | if (n <= 1) |
||
2920 | return union_floyd_warshall(umap, exact); |
||
2921 | |||
2922 | ctx = isl_union_map_get_ctx(umap); |
||
2923 | list = isl_calloc_array(ctx, isl_basic_map *, n); |
||
2924 | if (!list) |
||
2925 | goto error; |
||
2926 | |||
2927 | next = list; |
||
2928 | if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0) |
||
2929 | goto error; |
||
2930 | |||
2931 | s = basic_map_sort_init(ctx, n, list); |
||
2932 | if (!s) |
||
2933 | goto error; |
||
2934 | |||
2935 | c = 0; |
||
2936 | i = 0; |
||
2937 | l = n; |
||
2938 | path = isl_union_map_empty(isl_union_map_get_space(umap)); |
||
2939 | while (l) { |
||
2940 | isl_union_map *comp; |
||
2941 | isl_union_map *path_comp, *path_comb; |
||
2942 | comp = isl_union_map_empty(isl_union_map_get_space(umap)); |
||
2943 | while (s->order[i] != -1) { |
||
2944 | comp = isl_union_map_add_map(comp, |
||
2945 | isl_map_from_basic_map( |
||
2946 | isl_basic_map_copy(list[s->order[i]]))); |
||
2947 | --l; |
||
2948 | ++i; |
||
2949 | } |
||
2950 | path_comp = union_floyd_warshall(comp, exact); |
||
2951 | path_comb = isl_union_map_apply_range(isl_union_map_copy(path), |
||
2952 | isl_union_map_copy(path_comp)); |
||
2953 | path = isl_union_map_union(path, path_comp); |
||
2954 | path = isl_union_map_union(path, path_comb); |
||
2955 | ++i; |
||
2956 | ++c; |
||
2957 | } |
||
2958 | |||
2959 | if (c > 1 && s->check_closed && !*exact) { |
||
2960 | int closed; |
||
2961 | |||
2962 | closed = isl_union_map_is_transitively_closed(path); |
||
2963 | if (closed < 0) |
||
2964 | goto error; |
||
2965 | recheck = !closed; |
||
2966 | } |
||
2967 | |||
2968 | basic_map_sort_free(s); |
||
2969 | |||
2970 | for (i = 0; i < n; ++i) |
||
2971 | isl_basic_map_free(list[i]); |
||
2972 | free(list); |
||
2973 | |||
2974 | if (recheck) { |
||
2975 | isl_union_map_free(path); |
||
2976 | return union_floyd_warshall(umap, exact); |
||
2977 | } |
||
2978 | |||
2979 | isl_union_map_free(umap); |
||
2980 | |||
2981 | return path; |
||
2982 | error: |
||
2983 | basic_map_sort_free(s); |
||
2984 | if (list) { |
||
2985 | for (i = 0; i < n; ++i) |
||
2986 | isl_basic_map_free(list[i]); |
||
2987 | free(list); |
||
2988 | } |
||
2989 | isl_union_map_free(umap); |
||
2990 | isl_union_map_free(path); |
||
2991 | return NULL; |
||
2992 | } |
||
2993 | |||
2994 | /* Compute the transitive closure of "umap", or an overapproximation. |
||
2995 | * If the result is exact, then *exact is set to 1. |
||
2996 | */ |
||
2997 | __isl_give isl_union_map *isl_union_map_transitive_closure( |
||
2998 | __isl_take isl_union_map *umap, int *exact) |
||
2999 | { |
||
3000 | int closed; |
||
3001 | |||
3002 | if (!umap) |
||
3003 | return NULL; |
||
3004 | |||
3005 | if (exact) |
||
3006 | *exact = 1; |
||
3007 | |||
3008 | umap = isl_union_map_compute_divs(umap); |
||
3009 | umap = isl_union_map_coalesce(umap); |
||
3010 | closed = isl_union_map_is_transitively_closed(umap); |
||
3011 | if (closed < 0) |
||
3012 | goto error; |
||
3013 | if (closed) |
||
3014 | return umap; |
||
3015 | umap = union_components(umap, exact); |
||
3016 | return umap; |
||
3017 | error: |
||
3018 | isl_union_map_free(umap); |
||
3019 | return NULL; |
||
3020 | } |
||
3021 | |||
3022 | struct isl_union_power { |
||
3023 | isl_union_map *pow; |
||
3024 | int *exact; |
||
3025 | }; |
||
3026 | |||
3027 | static int power(__isl_take isl_map *map, void *user) |
||
3028 | { |
||
3029 | struct isl_union_power *up = user; |
||
3030 | |||
3031 | map = isl_map_power(map, up->exact); |
||
3032 | up->pow = isl_union_map_from_map(map); |
||
3033 | |||
3034 | return -1; |
||
3035 | } |
||
3036 | |||
3037 | /* Construct a map [x] -> [x+1], with parameters prescribed by "dim". |
||
3038 | */ |
||
3039 | static __isl_give isl_union_map *increment(__isl_take isl_space *dim) |
||
3040 | { |
||
3041 | int k; |
||
3042 | isl_basic_map *bmap; |
||
3043 | |||
3044 | dim = isl_space_add_dims(dim, isl_dim_in, 1); |
||
3045 | dim = isl_space_add_dims(dim, isl_dim_out, 1); |
||
3046 | bmap = isl_basic_map_alloc_space(dim, 0, 1, 0); |
||
3047 | k = isl_basic_map_alloc_equality(bmap); |
||
3048 | if (k < 0) |
||
3049 | goto error; |
||
3050 | isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap)); |
||
3051 | isl_int_set_si(bmap->eq[k][0], 1); |
||
3052 | isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1); |
||
3053 | isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1); |
||
3054 | return isl_union_map_from_map(isl_map_from_basic_map(bmap)); |
||
3055 | error: |
||
3056 | isl_basic_map_free(bmap); |
||
3057 | return NULL; |
||
3058 | } |
||
3059 | |||
3060 | /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim". |
||
3061 | */ |
||
3062 | static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim) |
||
3063 | { |
||
3064 | isl_basic_map *bmap; |
||
3065 | |||
3066 | dim = isl_space_add_dims(dim, isl_dim_in, 1); |
||
3067 | dim = isl_space_add_dims(dim, isl_dim_out, 1); |
||
3068 | bmap = isl_basic_map_universe(dim); |
||
3069 | bmap = isl_basic_map_deltas_map(bmap); |
||
3070 | |||
3071 | return isl_union_map_from_map(isl_map_from_basic_map(bmap)); |
||
3072 | } |
||
3073 | |||
3074 | /* Compute the positive powers of "map", or an overapproximation. |
||
3075 | * The result maps the exponent to a nested copy of the corresponding power. |
||
3076 | * If the result is exact, then *exact is set to 1. |
||
3077 | */ |
||
3078 | __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap, |
||
3079 | int *exact) |
||
3080 | { |
||
3081 | int n; |
||
3082 | isl_union_map *inc; |
||
3083 | isl_union_map *dm; |
||
3084 | |||
3085 | if (!umap) |
||
3086 | return NULL; |
||
3087 | n = isl_union_map_n_map(umap); |
||
3088 | if (n == 0) |
||
3089 | return umap; |
||
3090 | if (n == 1) { |
||
3091 | struct isl_union_power up = { NULL, exact }; |
||
3092 | isl_union_map_foreach_map(umap, &power, &up); |
||
3093 | isl_union_map_free(umap); |
||
3094 | return up.pow; |
||
3095 | } |
||
3096 | inc = increment(isl_union_map_get_space(umap)); |
||
3097 | umap = isl_union_map_product(inc, umap); |
||
3098 | umap = isl_union_map_transitive_closure(umap, exact); |
||
3099 | umap = isl_union_map_zip(umap); |
||
3100 | dm = deltas_map(isl_union_map_get_space(umap)); |
||
3101 | umap = isl_union_map_apply_domain(umap, dm); |
||
3102 | |||
3103 | return umap; |
||
3104 | } |
||
3105 | |||
3106 | #undef TYPE |
||
3107 | #define TYPE isl_map |
||
3108 | #include "isl_power_templ.c" |
||
3109 | |||
3110 | #undef TYPE |
||
3111 | #define TYPE isl_union_map |
||
3112 | #include "isl_power_templ.c" |