nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | #include <isl_ctx_private.h> |
2 | #include <isl/constraint.h> |
||
3 | #include <isl/set.h> |
||
4 | #include <isl_polynomial_private.h> |
||
5 | #include <isl_morph.h> |
||
6 | #include <isl_range.h> |
||
7 | |||
8 | struct range_data { |
||
9 | struct isl_bound *bound; |
||
10 | int *signs; |
||
11 | int sign; |
||
12 | int test_monotonicity; |
||
13 | int monotonicity; |
||
14 | int tight; |
||
15 | isl_qpolynomial *poly; |
||
16 | isl_pw_qpolynomial_fold *pwf; |
||
17 | isl_pw_qpolynomial_fold *pwf_tight; |
||
18 | }; |
||
19 | |||
20 | static int propagate_on_domain(__isl_take isl_basic_set *bset, |
||
21 | __isl_take isl_qpolynomial *poly, struct range_data *data); |
||
22 | |||
23 | /* Check whether the polynomial "poly" has sign "sign" over "bset", |
||
24 | * i.e., if sign == 1, check that the lower bound on the polynomial |
||
25 | * is non-negative and if sign == -1, check that the upper bound on |
||
26 | * the polynomial is non-positive. |
||
27 | */ |
||
28 | static int has_sign(__isl_keep isl_basic_set *bset, |
||
29 | __isl_keep isl_qpolynomial *poly, int sign, int *signs) |
||
30 | { |
||
31 | struct range_data data_m; |
||
32 | unsigned nvar; |
||
33 | unsigned nparam; |
||
34 | isl_space *dim; |
||
35 | isl_qpolynomial *opt; |
||
36 | int r; |
||
37 | enum isl_fold type; |
||
38 | |||
39 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
40 | nvar = isl_basic_set_dim(bset, isl_dim_set); |
||
41 | |||
42 | bset = isl_basic_set_copy(bset); |
||
43 | poly = isl_qpolynomial_copy(poly); |
||
44 | |||
45 | bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, |
||
46 | isl_dim_param, 0, nparam); |
||
47 | poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0, |
||
48 | isl_dim_param, 0, nparam); |
||
49 | |||
50 | dim = isl_qpolynomial_get_space(poly); |
||
51 | dim = isl_space_params(dim); |
||
52 | dim = isl_space_from_domain(dim); |
||
53 | dim = isl_space_add_dims(dim, isl_dim_out, 1); |
||
54 | |||
55 | data_m.test_monotonicity = 0; |
||
56 | data_m.signs = signs; |
||
57 | data_m.sign = -sign; |
||
58 | type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; |
||
59 | data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type); |
||
60 | data_m.tight = 0; |
||
61 | data_m.pwf_tight = NULL; |
||
62 | |||
63 | if (propagate_on_domain(bset, poly, &data_m) < 0) |
||
64 | goto error; |
||
65 | |||
66 | if (sign > 0) |
||
67 | opt = isl_pw_qpolynomial_fold_min(data_m.pwf); |
||
68 | else |
||
69 | opt = isl_pw_qpolynomial_fold_max(data_m.pwf); |
||
70 | |||
71 | if (!opt) |
||
72 | r = -1; |
||
73 | else if (isl_qpolynomial_is_nan(opt) || |
||
74 | isl_qpolynomial_is_infty(opt) || |
||
75 | isl_qpolynomial_is_neginfty(opt)) |
||
76 | r = 0; |
||
77 | else |
||
78 | r = sign * isl_qpolynomial_sgn(opt) >= 0; |
||
79 | |||
80 | isl_qpolynomial_free(opt); |
||
81 | |||
82 | return r; |
||
83 | error: |
||
84 | isl_pw_qpolynomial_fold_free(data_m.pwf); |
||
85 | return -1; |
||
86 | } |
||
87 | |||
88 | /* Return 1 if poly is monotonically increasing in the last set variable, |
||
89 | * -1 if poly is monotonically decreasing in the last set variable, |
||
90 | * 0 if no conclusion, |
||
91 | * -2 on error. |
||
92 | * |
||
93 | * We simply check the sign of p(x+1)-p(x) |
||
94 | */ |
||
95 | static int monotonicity(__isl_keep isl_basic_set *bset, |
||
96 | __isl_keep isl_qpolynomial *poly, struct range_data *data) |
||
97 | { |
||
98 | isl_ctx *ctx; |
||
99 | isl_space *dim; |
||
100 | isl_qpolynomial *sub = NULL; |
||
101 | isl_qpolynomial *diff = NULL; |
||
102 | int result = 0; |
||
103 | int s; |
||
104 | unsigned nvar; |
||
105 | |||
106 | ctx = isl_qpolynomial_get_ctx(poly); |
||
107 | dim = isl_qpolynomial_get_domain_space(poly); |
||
108 | |||
109 | nvar = isl_basic_set_dim(bset, isl_dim_set); |
||
110 | |||
111 | sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1); |
||
112 | sub = isl_qpolynomial_add(sub, |
||
113 | isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one)); |
||
114 | |||
115 | diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), |
||
116 | isl_dim_in, nvar - 1, 1, &sub); |
||
117 | diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); |
||
118 | |||
119 | s = has_sign(bset, diff, 1, data->signs); |
||
120 | if (s < 0) |
||
121 | goto error; |
||
122 | if (s) |
||
123 | result = 1; |
||
124 | else { |
||
125 | s = has_sign(bset, diff, -1, data->signs); |
||
126 | if (s < 0) |
||
127 | goto error; |
||
128 | if (s) |
||
129 | result = -1; |
||
130 | } |
||
131 | |||
132 | isl_qpolynomial_free(diff); |
||
133 | isl_qpolynomial_free(sub); |
||
134 | |||
135 | return result; |
||
136 | error: |
||
137 | isl_qpolynomial_free(diff); |
||
138 | isl_qpolynomial_free(sub); |
||
139 | return -2; |
||
140 | } |
||
141 | |||
142 | static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, |
||
143 | __isl_take isl_space *dim, unsigned pos, int sign) |
||
144 | { |
||
145 | if (!bound) { |
||
146 | if (sign > 0) |
||
147 | return isl_qpolynomial_infty_on_domain(dim); |
||
148 | else |
||
149 | return isl_qpolynomial_neginfty_on_domain(dim); |
||
150 | } |
||
151 | isl_space_free(dim); |
||
152 | return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); |
||
153 | } |
||
154 | |||
155 | static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos) |
||
156 | { |
||
157 | isl_int c; |
||
158 | int is_int; |
||
159 | |||
160 | if (!bound) |
||
161 | return 1; |
||
162 | |||
163 | isl_int_init(c); |
||
164 | isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); |
||
165 | is_int = isl_int_is_one(c) || isl_int_is_negone(c); |
||
166 | isl_int_clear(c); |
||
167 | |||
168 | return is_int; |
||
169 | } |
||
170 | |||
171 | struct isl_fixed_sign_data { |
||
172 | int *signs; |
||
173 | int sign; |
||
174 | isl_qpolynomial *poly; |
||
175 | }; |
||
176 | |||
177 | /* Add term "term" to data->poly if it has sign data->sign. |
||
178 | * The sign is determined based on the signs of the parameters |
||
179 | * and variables in data->signs. The integer divisions, if |
||
180 | * any, are assumed to be non-negative. |
||
181 | */ |
||
182 | static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user) |
||
183 | { |
||
184 | struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; |
||
185 | isl_int n; |
||
186 | int i; |
||
187 | int sign; |
||
188 | unsigned nparam; |
||
189 | unsigned nvar; |
||
190 | |||
191 | if (!term) |
||
192 | return -1; |
||
193 | |||
194 | nparam = isl_term_dim(term, isl_dim_param); |
||
195 | nvar = isl_term_dim(term, isl_dim_set); |
||
196 | |||
197 | isl_int_init(n); |
||
198 | |||
199 | isl_term_get_num(term, &n); |
||
200 | |||
201 | sign = isl_int_sgn(n); |
||
202 | for (i = 0; i < nparam; ++i) { |
||
203 | if (data->signs[i] > 0) |
||
204 | continue; |
||
205 | if (isl_term_get_exp(term, isl_dim_param, i) % 2) |
||
206 | sign = -sign; |
||
207 | } |
||
208 | for (i = 0; i < nvar; ++i) { |
||
209 | if (data->signs[nparam + i] > 0) |
||
210 | continue; |
||
211 | if (isl_term_get_exp(term, isl_dim_set, i) % 2) |
||
212 | sign = -sign; |
||
213 | } |
||
214 | |||
215 | if (sign == data->sign) { |
||
216 | isl_qpolynomial *t = isl_qpolynomial_from_term(term); |
||
217 | |||
218 | data->poly = isl_qpolynomial_add(data->poly, t); |
||
219 | } else |
||
220 | isl_term_free(term); |
||
221 | |||
222 | isl_int_clear(n); |
||
223 | |||
224 | return 0; |
||
225 | } |
||
226 | |||
227 | /* Construct and return a polynomial that consists of the terms |
||
228 | * in "poly" that have sign "sign". The integer divisions, if |
||
229 | * any, are assumed to be non-negative. |
||
230 | */ |
||
231 | __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( |
||
232 | __isl_keep isl_qpolynomial *poly, int *signs, int sign) |
||
233 | { |
||
234 | isl_space *space; |
||
235 | struct isl_fixed_sign_data data = { signs, sign }; |
||
236 | |||
237 | space = isl_qpolynomial_get_domain_space(poly); |
||
238 | data.poly = isl_qpolynomial_zero_on_domain(space); |
||
239 | |||
240 | if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) |
||
241 | goto error; |
||
242 | |||
243 | return data.poly; |
||
244 | error: |
||
245 | isl_qpolynomial_free(data.poly); |
||
246 | return NULL; |
||
247 | } |
||
248 | |||
249 | /* Helper function to add a guarded polynomial to either pwf_tight or pwf, |
||
250 | * depending on whether the result has been determined to be tight. |
||
251 | */ |
||
252 | static int add_guarded_poly(__isl_take isl_basic_set *bset, |
||
253 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
||
254 | { |
||
255 | enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; |
||
256 | isl_set *set; |
||
257 | isl_qpolynomial_fold *fold; |
||
258 | isl_pw_qpolynomial_fold *pwf; |
||
259 | |||
260 | bset = isl_basic_set_params(bset); |
||
261 | poly = isl_qpolynomial_project_domain_on_params(poly); |
||
262 | |||
263 | fold = isl_qpolynomial_fold_alloc(type, poly); |
||
264 | set = isl_set_from_basic_set(bset); |
||
265 | pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); |
||
266 | if (data->tight) |
||
267 | data->pwf_tight = isl_pw_qpolynomial_fold_fold( |
||
268 | data->pwf_tight, pwf); |
||
269 | else |
||
270 | data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); |
||
271 | |||
272 | return 0; |
||
273 | } |
||
274 | |||
275 | /* Given a lower and upper bound on the final variable and constraints |
||
276 | * on the remaining variables where these bounds are active, |
||
277 | * eliminate the variable from data->poly based on these bounds. |
||
278 | * If the polynomial has been determined to be monotonic |
||
279 | * in the variable, then simply plug in the appropriate bound. |
||
280 | * If the current polynomial is tight and if this bound is integer, |
||
281 | * then the result is still tight. In all other cases, the results |
||
282 | * may not be tight. |
||
283 | * Otherwise, plug in the largest bound (in absolute value) in |
||
284 | * the positive terms (if an upper bound is wanted) or the negative terms |
||
285 | * (if a lower bounded is wanted) and the other bound in the other terms. |
||
286 | * |
||
287 | * If all variables have been eliminated, then record the result. |
||
288 | * Ohterwise, recurse on the next variable. |
||
289 | */ |
||
290 | static int propagate_on_bound_pair(__isl_take isl_constraint *lower, |
||
291 | __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, |
||
292 | void *user) |
||
293 | { |
||
294 | struct range_data *data = (struct range_data *)user; |
||
295 | int save_tight = data->tight; |
||
296 | isl_qpolynomial *poly; |
||
297 | int r; |
||
298 | unsigned nvar; |
||
299 | |||
300 | nvar = isl_basic_set_dim(bset, isl_dim_set); |
||
301 | |||
302 | if (data->monotonicity) { |
||
303 | isl_qpolynomial *sub; |
||
304 | isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); |
||
305 | if (data->monotonicity * data->sign > 0) { |
||
306 | if (data->tight) |
||
307 | data->tight = bound_is_integer(upper, nvar); |
||
308 | sub = bound2poly(upper, dim, nvar, 1); |
||
309 | isl_constraint_free(lower); |
||
310 | } else { |
||
311 | if (data->tight) |
||
312 | data->tight = bound_is_integer(lower, nvar); |
||
313 | sub = bound2poly(lower, dim, nvar, -1); |
||
314 | isl_constraint_free(upper); |
||
315 | } |
||
316 | poly = isl_qpolynomial_copy(data->poly); |
||
317 | poly = isl_qpolynomial_substitute(poly, isl_dim_in, nvar, 1, &sub); |
||
318 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); |
||
319 | |||
320 | isl_qpolynomial_free(sub); |
||
321 | } else { |
||
322 | isl_qpolynomial *l, *u; |
||
323 | isl_qpolynomial *pos, *neg; |
||
324 | isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); |
||
325 | unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
326 | int sign = data->sign * data->signs[nparam + nvar]; |
||
327 | |||
328 | data->tight = 0; |
||
329 | |||
330 | u = bound2poly(upper, isl_space_copy(dim), nvar, 1); |
||
331 | l = bound2poly(lower, dim, nvar, -1); |
||
332 | |||
333 | pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); |
||
334 | neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); |
||
335 | |||
336 | pos = isl_qpolynomial_substitute(pos, isl_dim_in, nvar, 1, &u); |
||
337 | neg = isl_qpolynomial_substitute(neg, isl_dim_in, nvar, 1, &l); |
||
338 | |||
339 | poly = isl_qpolynomial_add(pos, neg); |
||
340 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); |
||
341 | |||
342 | isl_qpolynomial_free(u); |
||
343 | isl_qpolynomial_free(l); |
||
344 | } |
||
345 | |||
346 | if (isl_basic_set_dim(bset, isl_dim_set) == 0) |
||
347 | r = add_guarded_poly(bset, poly, data); |
||
348 | else |
||
349 | r = propagate_on_domain(bset, poly, data); |
||
350 | |||
351 | data->tight = save_tight; |
||
352 | |||
353 | return r; |
||
354 | } |
||
355 | |||
356 | /* Recursively perform range propagation on the polynomial "poly" |
||
357 | * defined over the basic set "bset" and collect the results in "data". |
||
358 | */ |
||
359 | static int propagate_on_domain(__isl_take isl_basic_set *bset, |
||
360 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
||
361 | { |
||
362 | isl_ctx *ctx; |
||
363 | isl_qpolynomial *save_poly = data->poly; |
||
364 | int save_monotonicity = data->monotonicity; |
||
365 | unsigned d; |
||
366 | |||
367 | if (!bset || !poly) |
||
368 | goto error; |
||
369 | |||
370 | ctx = isl_basic_set_get_ctx(bset); |
||
371 | d = isl_basic_set_dim(bset, isl_dim_set); |
||
372 | isl_assert(ctx, d >= 1, goto error); |
||
373 | |||
374 | if (isl_qpolynomial_is_cst(poly, NULL, NULL)) { |
||
375 | bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); |
||
376 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d); |
||
377 | return add_guarded_poly(bset, poly, data); |
||
378 | } |
||
379 | |||
380 | if (data->test_monotonicity) |
||
381 | data->monotonicity = monotonicity(bset, poly, data); |
||
382 | else |
||
383 | data->monotonicity = 0; |
||
384 | if (data->monotonicity < -1) |
||
385 | goto error; |
||
386 | |||
387 | data->poly = poly; |
||
388 | if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, |
||
389 | &propagate_on_bound_pair, data) < 0) |
||
390 | goto error; |
||
391 | |||
392 | isl_basic_set_free(bset); |
||
393 | isl_qpolynomial_free(poly); |
||
394 | data->monotonicity = save_monotonicity; |
||
395 | data->poly = save_poly; |
||
396 | |||
397 | return 0; |
||
398 | error: |
||
399 | isl_basic_set_free(bset); |
||
400 | isl_qpolynomial_free(poly); |
||
401 | data->monotonicity = save_monotonicity; |
||
402 | data->poly = save_poly; |
||
403 | return -1; |
||
404 | } |
||
405 | |||
406 | static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user) |
||
407 | { |
||
408 | struct range_data *data = (struct range_data *)user; |
||
409 | isl_ctx *ctx; |
||
410 | unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
411 | unsigned dim = isl_basic_set_dim(bset, isl_dim_set); |
||
412 | int r; |
||
413 | |||
414 | data->signs = NULL; |
||
415 | |||
416 | ctx = isl_basic_set_get_ctx(bset); |
||
417 | data->signs = isl_alloc_array(ctx, int, |
||
418 | isl_basic_set_dim(bset, isl_dim_all)); |
||
419 | |||
420 | if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, |
||
421 | data->signs + nparam) < 0) |
||
422 | goto error; |
||
423 | if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, |
||
424 | data->signs) < 0) |
||
425 | goto error; |
||
426 | |||
427 | r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); |
||
428 | |||
429 | free(data->signs); |
||
430 | |||
431 | return r; |
||
432 | error: |
||
433 | free(data->signs); |
||
434 | isl_basic_set_free(bset); |
||
435 | return -1; |
||
436 | } |
||
437 | |||
438 | static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
||
439 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
||
440 | { |
||
441 | unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
442 | unsigned nvar = isl_basic_set_dim(bset, isl_dim_set); |
||
443 | isl_set *set; |
||
444 | |||
445 | if (!bset) |
||
446 | goto error; |
||
447 | |||
448 | if (nvar == 0) |
||
449 | return add_guarded_poly(bset, poly, data); |
||
450 | |||
451 | set = isl_set_from_basic_set(bset); |
||
452 | set = isl_set_split_dims(set, isl_dim_param, 0, nparam); |
||
453 | set = isl_set_split_dims(set, isl_dim_set, 0, nvar); |
||
454 | |||
455 | data->poly = poly; |
||
456 | |||
457 | data->test_monotonicity = 1; |
||
458 | if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) |
||
459 | goto error; |
||
460 | |||
461 | isl_set_free(set); |
||
462 | isl_qpolynomial_free(poly); |
||
463 | |||
464 | return 0; |
||
465 | error: |
||
466 | isl_set_free(set); |
||
467 | isl_qpolynomial_free(poly); |
||
468 | return -1; |
||
469 | } |
||
470 | |||
471 | int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
||
472 | __isl_take isl_qpolynomial *poly, struct isl_bound *bound) |
||
473 | { |
||
474 | struct range_data data; |
||
475 | int r; |
||
476 | |||
477 | data.pwf = bound->pwf; |
||
478 | data.pwf_tight = bound->pwf_tight; |
||
479 | data.tight = bound->check_tight; |
||
480 | if (bound->type == isl_fold_min) |
||
481 | data.sign = -1; |
||
482 | else |
||
483 | data.sign = 1; |
||
484 | |||
485 | r = qpolynomial_bound_on_domain_range(bset, poly, &data); |
||
486 | |||
487 | bound->pwf = data.pwf; |
||
488 | bound->pwf_tight = data.pwf_tight; |
||
489 | |||
490 | return r; |
||
491 | } |