nexmon – Blame information for rev 1

Subversion Repositories:
Rev:
Rev Author Line No. Line
1 office 1 /*
2 * Copyright 2010 INRIA Saclay
3 *
4 * Use of this software is governed by the GNU LGPLv2.1 license
5 *
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
10  
11 #include <stdlib.h>
12 #define ISL_DIM_H
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
16 #include <isl/lp.h>
17 #include <isl/seq.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
28  
29 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
30 {
31 switch (type) {
32 case isl_dim_param: return 0;
33 case isl_dim_in: return dim->nparam;
34 case isl_dim_out: return dim->nparam + dim->n_in;
35 default: return 0;
36 }
37 }
38  
39 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
40 {
41 if (!up)
42 return -1;
43  
44 return up->var < 0;
45 }
46  
47 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
48 {
49 if (!up)
50 return NULL;
51  
52 isl_assert(up->ctx, up->var < 0, return NULL);
53  
54 return (struct isl_upoly_cst *)up;
55 }
56  
57 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
58 {
59 if (!up)
60 return NULL;
61  
62 isl_assert(up->ctx, up->var >= 0, return NULL);
63  
64 return (struct isl_upoly_rec *)up;
65 }
66  
67 int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
68 __isl_keep struct isl_upoly *up2)
69 {
70 int i;
71 struct isl_upoly_rec *rec1, *rec2;
72  
73 if (!up1 || !up2)
74 return -1;
75 if (up1 == up2)
76 return 1;
77 if (up1->var != up2->var)
78 return 0;
79 if (isl_upoly_is_cst(up1)) {
80 struct isl_upoly_cst *cst1, *cst2;
81 cst1 = isl_upoly_as_cst(up1);
82 cst2 = isl_upoly_as_cst(up2);
83 if (!cst1 || !cst2)
84 return -1;
85 return isl_int_eq(cst1->n, cst2->n) &&
86 isl_int_eq(cst1->d, cst2->d);
87 }
88  
89 rec1 = isl_upoly_as_rec(up1);
90 rec2 = isl_upoly_as_rec(up2);
91 if (!rec1 || !rec2)
92 return -1;
93  
94 if (rec1->n != rec2->n)
95 return 0;
96  
97 for (i = 0; i < rec1->n; ++i) {
98 int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
99 if (eq < 0 || !eq)
100 return eq;
101 }
102  
103 return 1;
104 }
105  
106 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
107 {
108 struct isl_upoly_cst *cst;
109  
110 if (!up)
111 return -1;
112 if (!isl_upoly_is_cst(up))
113 return 0;
114  
115 cst = isl_upoly_as_cst(up);
116 if (!cst)
117 return -1;
118  
119 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
120 }
121  
122 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
123 {
124 struct isl_upoly_cst *cst;
125  
126 if (!up)
127 return 0;
128 if (!isl_upoly_is_cst(up))
129 return 0;
130  
131 cst = isl_upoly_as_cst(up);
132 if (!cst)
133 return 0;
134  
135 return isl_int_sgn(cst->n);
136 }
137  
138 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
139 {
140 struct isl_upoly_cst *cst;
141  
142 if (!up)
143 return -1;
144 if (!isl_upoly_is_cst(up))
145 return 0;
146  
147 cst = isl_upoly_as_cst(up);
148 if (!cst)
149 return -1;
150  
151 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
152 }
153  
154 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
155 {
156 struct isl_upoly_cst *cst;
157  
158 if (!up)
159 return -1;
160 if (!isl_upoly_is_cst(up))
161 return 0;
162  
163 cst = isl_upoly_as_cst(up);
164 if (!cst)
165 return -1;
166  
167 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
168 }
169  
170 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
171 {
172 struct isl_upoly_cst *cst;
173  
174 if (!up)
175 return -1;
176 if (!isl_upoly_is_cst(up))
177 return 0;
178  
179 cst = isl_upoly_as_cst(up);
180 if (!cst)
181 return -1;
182  
183 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
184 }
185  
186 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
187 {
188 struct isl_upoly_cst *cst;
189  
190 if (!up)
191 return -1;
192 if (!isl_upoly_is_cst(up))
193 return 0;
194  
195 cst = isl_upoly_as_cst(up);
196 if (!cst)
197 return -1;
198  
199 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
200 }
201  
202 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
203 {
204 struct isl_upoly_cst *cst;
205  
206 if (!up)
207 return -1;
208 if (!isl_upoly_is_cst(up))
209 return 0;
210  
211 cst = isl_upoly_as_cst(up);
212 if (!cst)
213 return -1;
214  
215 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
216 }
217  
218 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
219 {
220 struct isl_upoly_cst *cst;
221  
222 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
223 if (!cst)
224 return NULL;
225  
226 cst->up.ref = 1;
227 cst->up.ctx = ctx;
228 isl_ctx_ref(ctx);
229 cst->up.var = -1;
230  
231 isl_int_init(cst->n);
232 isl_int_init(cst->d);
233  
234 return cst;
235 }
236  
237 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
238 {
239 struct isl_upoly_cst *cst;
240  
241 cst = isl_upoly_cst_alloc(ctx);
242 if (!cst)
243 return NULL;
244  
245 isl_int_set_si(cst->n, 0);
246 isl_int_set_si(cst->d, 1);
247  
248 return &cst->up;
249 }
250  
251 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
252 {
253 struct isl_upoly_cst *cst;
254  
255 cst = isl_upoly_cst_alloc(ctx);
256 if (!cst)
257 return NULL;
258  
259 isl_int_set_si(cst->n, 1);
260 isl_int_set_si(cst->d, 1);
261  
262 return &cst->up;
263 }
264  
265 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
266 {
267 struct isl_upoly_cst *cst;
268  
269 cst = isl_upoly_cst_alloc(ctx);
270 if (!cst)
271 return NULL;
272  
273 isl_int_set_si(cst->n, 1);
274 isl_int_set_si(cst->d, 0);
275  
276 return &cst->up;
277 }
278  
279 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
280 {
281 struct isl_upoly_cst *cst;
282  
283 cst = isl_upoly_cst_alloc(ctx);
284 if (!cst)
285 return NULL;
286  
287 isl_int_set_si(cst->n, -1);
288 isl_int_set_si(cst->d, 0);
289  
290 return &cst->up;
291 }
292  
293 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
294 {
295 struct isl_upoly_cst *cst;
296  
297 cst = isl_upoly_cst_alloc(ctx);
298 if (!cst)
299 return NULL;
300  
301 isl_int_set_si(cst->n, 0);
302 isl_int_set_si(cst->d, 0);
303  
304 return &cst->up;
305 }
306  
307 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
308 isl_int n, isl_int d)
309 {
310 struct isl_upoly_cst *cst;
311  
312 cst = isl_upoly_cst_alloc(ctx);
313 if (!cst)
314 return NULL;
315  
316 isl_int_set(cst->n, n);
317 isl_int_set(cst->d, d);
318  
319 return &cst->up;
320 }
321  
322 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
323 int var, int size)
324 {
325 struct isl_upoly_rec *rec;
326  
327 isl_assert(ctx, var >= 0, return NULL);
328 isl_assert(ctx, size >= 0, return NULL);
329 rec = isl_calloc(ctx, struct isl_upoly_rec,
330 sizeof(struct isl_upoly_rec) +
331 size * sizeof(struct isl_upoly *));
332 if (!rec)
333 return NULL;
334  
335 rec->up.ref = 1;
336 rec->up.ctx = ctx;
337 isl_ctx_ref(ctx);
338 rec->up.var = var;
339  
340 rec->n = 0;
341 rec->size = size;
342  
343 return rec;
344 }
345  
346 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
347 __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
348 {
349 qp = isl_qpolynomial_cow(qp);
350 if (!qp || !dim)
351 goto error;
352  
353 isl_space_free(qp->dim);
354 qp->dim = dim;
355  
356 return qp;
357 error:
358 isl_qpolynomial_free(qp);
359 isl_space_free(dim);
360 return NULL;
361 }
362  
363 /* Reset the space of "qp". This function is called from isl_pw_templ.c
364 * and doesn't know if the space of an element object is represented
365 * directly or through its domain. It therefore passes along both.
366 */
367 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
368 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
369 __isl_take isl_space *domain)
370 {
371 isl_space_free(space);
372 return isl_qpolynomial_reset_domain_space(qp, domain);
373 }
374  
375 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
376 {
377 return qp ? qp->dim->ctx : NULL;
378 }
379  
380 __isl_give isl_space *isl_qpolynomial_get_domain_space(
381 __isl_keep isl_qpolynomial *qp)
382 {
383 return qp ? isl_space_copy(qp->dim) : NULL;
384 }
385  
386 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
387 {
388 isl_space *space;
389 if (!qp)
390 return NULL;
391 space = isl_space_copy(qp->dim);
392 space = isl_space_from_domain(space);
393 space = isl_space_add_dims(space, isl_dim_out, 1);
394 return space;
395 }
396  
397 /* Externally, an isl_qpolynomial has a map space, but internally, the
398 * ls field corresponds to the domain of that space.
399 */
400 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
401 enum isl_dim_type type)
402 {
403 if (!qp)
404 return 0;
405 if (type == isl_dim_out)
406 return 1;
407 if (type == isl_dim_in)
408 type = isl_dim_set;
409 return isl_space_dim(qp->dim, type);
410 }
411  
412 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
413 {
414 return qp ? isl_upoly_is_zero(qp->upoly) : -1;
415 }
416  
417 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
418 {
419 return qp ? isl_upoly_is_one(qp->upoly) : -1;
420 }
421  
422 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
423 {
424 return qp ? isl_upoly_is_nan(qp->upoly) : -1;
425 }
426  
427 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
428 {
429 return qp ? isl_upoly_is_infty(qp->upoly) : -1;
430 }
431  
432 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
433 {
434 return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
435 }
436  
437 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
438 {
439 return qp ? isl_upoly_sgn(qp->upoly) : 0;
440 }
441  
442 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
443 {
444 isl_int_clear(cst->n);
445 isl_int_clear(cst->d);
446 }
447  
448 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
449 {
450 int i;
451  
452 for (i = 0; i < rec->n; ++i)
453 isl_upoly_free(rec->p[i]);
454 }
455  
456 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
457 {
458 if (!up)
459 return NULL;
460  
461 up->ref++;
462 return up;
463 }
464  
465 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
466 {
467 struct isl_upoly_cst *cst;
468 struct isl_upoly_cst *dup;
469  
470 cst = isl_upoly_as_cst(up);
471 if (!cst)
472 return NULL;
473  
474 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
475 if (!dup)
476 return NULL;
477 isl_int_set(dup->n, cst->n);
478 isl_int_set(dup->d, cst->d);
479  
480 return &dup->up;
481 }
482  
483 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
484 {
485 int i;
486 struct isl_upoly_rec *rec;
487 struct isl_upoly_rec *dup;
488  
489 rec = isl_upoly_as_rec(up);
490 if (!rec)
491 return NULL;
492  
493 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
494 if (!dup)
495 return NULL;
496  
497 for (i = 0; i < rec->n; ++i) {
498 dup->p[i] = isl_upoly_copy(rec->p[i]);
499 if (!dup->p[i])
500 goto error;
501 dup->n++;
502 }
503  
504 return &dup->up;
505 error:
506 isl_upoly_free(&dup->up);
507 return NULL;
508 }
509  
510 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
511 {
512 if (!up)
513 return NULL;
514  
515 if (isl_upoly_is_cst(up))
516 return isl_upoly_dup_cst(up);
517 else
518 return isl_upoly_dup_rec(up);
519 }
520  
521 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
522 {
523 if (!up)
524 return NULL;
525  
526 if (up->ref == 1)
527 return up;
528 up->ref--;
529 return isl_upoly_dup(up);
530 }
531  
532 void isl_upoly_free(__isl_take struct isl_upoly *up)
533 {
534 if (!up)
535 return;
536  
537 if (--up->ref > 0)
538 return;
539  
540 if (up->var < 0)
541 upoly_free_cst((struct isl_upoly_cst *)up);
542 else
543 upoly_free_rec((struct isl_upoly_rec *)up);
544  
545 isl_ctx_deref(up->ctx);
546 free(up);
547 }
548  
549 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
550 {
551 isl_int gcd;
552  
553 isl_int_init(gcd);
554 isl_int_gcd(gcd, cst->n, cst->d);
555 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
556 isl_int_divexact(cst->n, cst->n, gcd);
557 isl_int_divexact(cst->d, cst->d, gcd);
558 }
559 isl_int_clear(gcd);
560 }
561  
562 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
563 __isl_take struct isl_upoly *up2)
564 {
565 struct isl_upoly_cst *cst1;
566 struct isl_upoly_cst *cst2;
567  
568 up1 = isl_upoly_cow(up1);
569 if (!up1 || !up2)
570 goto error;
571  
572 cst1 = isl_upoly_as_cst(up1);
573 cst2 = isl_upoly_as_cst(up2);
574  
575 if (isl_int_eq(cst1->d, cst2->d))
576 isl_int_add(cst1->n, cst1->n, cst2->n);
577 else {
578 isl_int_mul(cst1->n, cst1->n, cst2->d);
579 isl_int_addmul(cst1->n, cst2->n, cst1->d);
580 isl_int_mul(cst1->d, cst1->d, cst2->d);
581 }
582  
583 isl_upoly_cst_reduce(cst1);
584  
585 isl_upoly_free(up2);
586 return up1;
587 error:
588 isl_upoly_free(up1);
589 isl_upoly_free(up2);
590 return NULL;
591 }
592  
593 static __isl_give struct isl_upoly *replace_by_zero(
594 __isl_take struct isl_upoly *up)
595 {
596 struct isl_ctx *ctx;
597  
598 if (!up)
599 return NULL;
600 ctx = up->ctx;
601 isl_upoly_free(up);
602 return isl_upoly_zero(ctx);
603 }
604  
605 static __isl_give struct isl_upoly *replace_by_constant_term(
606 __isl_take struct isl_upoly *up)
607 {
608 struct isl_upoly_rec *rec;
609 struct isl_upoly *cst;
610  
611 if (!up)
612 return NULL;
613  
614 rec = isl_upoly_as_rec(up);
615 if (!rec)
616 goto error;
617 cst = isl_upoly_copy(rec->p[0]);
618 isl_upoly_free(up);
619 return cst;
620 error:
621 isl_upoly_free(up);
622 return NULL;
623 }
624  
625 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
626 __isl_take struct isl_upoly *up2)
627 {
628 int i;
629 struct isl_upoly_rec *rec1, *rec2;
630  
631 if (!up1 || !up2)
632 goto error;
633  
634 if (isl_upoly_is_nan(up1)) {
635 isl_upoly_free(up2);
636 return up1;
637 }
638  
639 if (isl_upoly_is_nan(up2)) {
640 isl_upoly_free(up1);
641 return up2;
642 }
643  
644 if (isl_upoly_is_zero(up1)) {
645 isl_upoly_free(up1);
646 return up2;
647 }
648  
649 if (isl_upoly_is_zero(up2)) {
650 isl_upoly_free(up2);
651 return up1;
652 }
653  
654 if (up1->var < up2->var)
655 return isl_upoly_sum(up2, up1);
656  
657 if (up2->var < up1->var) {
658 struct isl_upoly_rec *rec;
659 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
660 isl_upoly_free(up1);
661 return up2;
662 }
663 up1 = isl_upoly_cow(up1);
664 rec = isl_upoly_as_rec(up1);
665 if (!rec)
666 goto error;
667 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
668 if (rec->n == 1)
669 up1 = replace_by_constant_term(up1);
670 return up1;
671 }
672  
673 if (isl_upoly_is_cst(up1))
674 return isl_upoly_sum_cst(up1, up2);
675  
676 rec1 = isl_upoly_as_rec(up1);
677 rec2 = isl_upoly_as_rec(up2);
678 if (!rec1 || !rec2)
679 goto error;
680  
681 if (rec1->n < rec2->n)
682 return isl_upoly_sum(up2, up1);
683  
684 up1 = isl_upoly_cow(up1);
685 rec1 = isl_upoly_as_rec(up1);
686 if (!rec1)
687 goto error;
688  
689 for (i = rec2->n - 1; i >= 0; --i) {
690 rec1->p[i] = isl_upoly_sum(rec1->p[i],
691 isl_upoly_copy(rec2->p[i]));
692 if (!rec1->p[i])
693 goto error;
694 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
695 isl_upoly_free(rec1->p[i]);
696 rec1->n--;
697 }
698 }
699  
700 if (rec1->n == 0)
701 up1 = replace_by_zero(up1);
702 else if (rec1->n == 1)
703 up1 = replace_by_constant_term(up1);
704  
705 isl_upoly_free(up2);
706  
707 return up1;
708 error:
709 isl_upoly_free(up1);
710 isl_upoly_free(up2);
711 return NULL;
712 }
713  
714 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
715 __isl_take struct isl_upoly *up, isl_int v)
716 {
717 struct isl_upoly_cst *cst;
718  
719 up = isl_upoly_cow(up);
720 if (!up)
721 return NULL;
722  
723 cst = isl_upoly_as_cst(up);
724  
725 isl_int_addmul(cst->n, cst->d, v);
726  
727 return up;
728 }
729  
730 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
731 __isl_take struct isl_upoly *up, isl_int v)
732 {
733 struct isl_upoly_rec *rec;
734  
735 if (!up)
736 return NULL;
737  
738 if (isl_upoly_is_cst(up))
739 return isl_upoly_cst_add_isl_int(up, v);
740  
741 up = isl_upoly_cow(up);
742 rec = isl_upoly_as_rec(up);
743 if (!rec)
744 goto error;
745  
746 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
747 if (!rec->p[0])
748 goto error;
749  
750 return up;
751 error:
752 isl_upoly_free(up);
753 return NULL;
754 }
755  
756 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
757 __isl_take struct isl_upoly *up, isl_int v)
758 {
759 struct isl_upoly_cst *cst;
760  
761 if (isl_upoly_is_zero(up))
762 return up;
763  
764 up = isl_upoly_cow(up);
765 if (!up)
766 return NULL;
767  
768 cst = isl_upoly_as_cst(up);
769  
770 isl_int_mul(cst->n, cst->n, v);
771  
772 return up;
773 }
774  
775 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
776 __isl_take struct isl_upoly *up, isl_int v)
777 {
778 int i;
779 struct isl_upoly_rec *rec;
780  
781 if (!up)
782 return NULL;
783  
784 if (isl_upoly_is_cst(up))
785 return isl_upoly_cst_mul_isl_int(up, v);
786  
787 up = isl_upoly_cow(up);
788 rec = isl_upoly_as_rec(up);
789 if (!rec)
790 goto error;
791  
792 for (i = 0; i < rec->n; ++i) {
793 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
794 if (!rec->p[i])
795 goto error;
796 }
797  
798 return up;
799 error:
800 isl_upoly_free(up);
801 return NULL;
802 }
803  
804 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
805 __isl_take struct isl_upoly *up2)
806 {
807 struct isl_upoly_cst *cst1;
808 struct isl_upoly_cst *cst2;
809  
810 up1 = isl_upoly_cow(up1);
811 if (!up1 || !up2)
812 goto error;
813  
814 cst1 = isl_upoly_as_cst(up1);
815 cst2 = isl_upoly_as_cst(up2);
816  
817 isl_int_mul(cst1->n, cst1->n, cst2->n);
818 isl_int_mul(cst1->d, cst1->d, cst2->d);
819  
820 isl_upoly_cst_reduce(cst1);
821  
822 isl_upoly_free(up2);
823 return up1;
824 error:
825 isl_upoly_free(up1);
826 isl_upoly_free(up2);
827 return NULL;
828 }
829  
830 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
831 __isl_take struct isl_upoly *up2)
832 {
833 struct isl_upoly_rec *rec1;
834 struct isl_upoly_rec *rec2;
835 struct isl_upoly_rec *res = NULL;
836 int i, j;
837 int size;
838  
839 rec1 = isl_upoly_as_rec(up1);
840 rec2 = isl_upoly_as_rec(up2);
841 if (!rec1 || !rec2)
842 goto error;
843 size = rec1->n + rec2->n - 1;
844 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
845 if (!res)
846 goto error;
847  
848 for (i = 0; i < rec1->n; ++i) {
849 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
850 isl_upoly_copy(rec1->p[i]));
851 if (!res->p[i])
852 goto error;
853 res->n++;
854 }
855 for (; i < size; ++i) {
856 res->p[i] = isl_upoly_zero(up1->ctx);
857 if (!res->p[i])
858 goto error;
859 res->n++;
860 }
861 for (i = 0; i < rec1->n; ++i) {
862 for (j = 1; j < rec2->n; ++j) {
863 struct isl_upoly *up;
864 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
865 isl_upoly_copy(rec1->p[i]));
866 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
867 if (!res->p[i + j])
868 goto error;
869 }
870 }
871  
872 isl_upoly_free(up1);
873 isl_upoly_free(up2);
874  
875 return &res->up;
876 error:
877 isl_upoly_free(up1);
878 isl_upoly_free(up2);
879 isl_upoly_free(&res->up);
880 return NULL;
881 }
882  
883 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
884 __isl_take struct isl_upoly *up2)
885 {
886 if (!up1 || !up2)
887 goto error;
888  
889 if (isl_upoly_is_nan(up1)) {
890 isl_upoly_free(up2);
891 return up1;
892 }
893  
894 if (isl_upoly_is_nan(up2)) {
895 isl_upoly_free(up1);
896 return up2;
897 }
898  
899 if (isl_upoly_is_zero(up1)) {
900 isl_upoly_free(up2);
901 return up1;
902 }
903  
904 if (isl_upoly_is_zero(up2)) {
905 isl_upoly_free(up1);
906 return up2;
907 }
908  
909 if (isl_upoly_is_one(up1)) {
910 isl_upoly_free(up1);
911 return up2;
912 }
913  
914 if (isl_upoly_is_one(up2)) {
915 isl_upoly_free(up2);
916 return up1;
917 }
918  
919 if (up1->var < up2->var)
920 return isl_upoly_mul(up2, up1);
921  
922 if (up2->var < up1->var) {
923 int i;
924 struct isl_upoly_rec *rec;
925 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
926 isl_ctx *ctx = up1->ctx;
927 isl_upoly_free(up1);
928 isl_upoly_free(up2);
929 return isl_upoly_nan(ctx);
930 }
931 up1 = isl_upoly_cow(up1);
932 rec = isl_upoly_as_rec(up1);
933 if (!rec)
934 goto error;
935  
936 for (i = 0; i < rec->n; ++i) {
937 rec->p[i] = isl_upoly_mul(rec->p[i],
938 isl_upoly_copy(up2));
939 if (!rec->p[i])
940 goto error;
941 }
942 isl_upoly_free(up2);
943 return up1;
944 }
945  
946 if (isl_upoly_is_cst(up1))
947 return isl_upoly_mul_cst(up1, up2);
948  
949 return isl_upoly_mul_rec(up1, up2);
950 error:
951 isl_upoly_free(up1);
952 isl_upoly_free(up2);
953 return NULL;
954 }
955  
956 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
957 unsigned power)
958 {
959 struct isl_upoly *res;
960  
961 if (!up)
962 return NULL;
963 if (power == 1)
964 return up;
965  
966 if (power % 2)
967 res = isl_upoly_copy(up);
968 else
969 res = isl_upoly_one(up->ctx);
970  
971 while (power >>= 1) {
972 up = isl_upoly_mul(up, isl_upoly_copy(up));
973 if (power % 2)
974 res = isl_upoly_mul(res, isl_upoly_copy(up));
975 }
976  
977 isl_upoly_free(up);
978 return res;
979 }
980  
981 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
982 unsigned n_div, __isl_take struct isl_upoly *up)
983 {
984 struct isl_qpolynomial *qp = NULL;
985 unsigned total;
986  
987 if (!dim || !up)
988 goto error;
989  
990 if (!isl_space_is_set(dim))
991 isl_die(isl_space_get_ctx(dim), isl_error_invalid,
992 "domain of polynomial should be a set", goto error);
993  
994 total = isl_space_dim(dim, isl_dim_all);
995  
996 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
997 if (!qp)
998 goto error;
999  
1000 qp->ref = 1;
1001 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
1002 if (!qp->div)
1003 goto error;
1004  
1005 qp->dim = dim;
1006 qp->upoly = up;
1007  
1008 return qp;
1009 error:
1010 isl_space_free(dim);
1011 isl_upoly_free(up);
1012 isl_qpolynomial_free(qp);
1013 return NULL;
1014 }
1015  
1016 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1017 {
1018 if (!qp)
1019 return NULL;
1020  
1021 qp->ref++;
1022 return qp;
1023 }
1024  
1025 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1026 {
1027 struct isl_qpolynomial *dup;
1028  
1029 if (!qp)
1030 return NULL;
1031  
1032 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1033 isl_upoly_copy(qp->upoly));
1034 if (!dup)
1035 return NULL;
1036 isl_mat_free(dup->div);
1037 dup->div = isl_mat_copy(qp->div);
1038 if (!dup->div)
1039 goto error;
1040  
1041 return dup;
1042 error:
1043 isl_qpolynomial_free(dup);
1044 return NULL;
1045 }
1046  
1047 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1048 {
1049 if (!qp)
1050 return NULL;
1051  
1052 if (qp->ref == 1)
1053 return qp;
1054 qp->ref--;
1055 return isl_qpolynomial_dup(qp);
1056 }
1057  
1058 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
1059 {
1060 if (!qp)
1061 return NULL;
1062  
1063 if (--qp->ref > 0)
1064 return NULL;
1065  
1066 isl_space_free(qp->dim);
1067 isl_mat_free(qp->div);
1068 isl_upoly_free(qp->upoly);
1069  
1070 free(qp);
1071 return NULL;
1072 }
1073  
1074 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1075 {
1076 int i;
1077 struct isl_upoly_rec *rec;
1078 struct isl_upoly_cst *cst;
1079  
1080 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1081 if (!rec)
1082 return NULL;
1083 for (i = 0; i < 1 + power; ++i) {
1084 rec->p[i] = isl_upoly_zero(ctx);
1085 if (!rec->p[i])
1086 goto error;
1087 rec->n++;
1088 }
1089 cst = isl_upoly_as_cst(rec->p[power]);
1090 isl_int_set_si(cst->n, 1);
1091  
1092 return &rec->up;
1093 error:
1094 isl_upoly_free(&rec->up);
1095 return NULL;
1096 }
1097  
1098 /* r array maps original positions to new positions.
1099 */
1100 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1101 int *r)
1102 {
1103 int i;
1104 struct isl_upoly_rec *rec;
1105 struct isl_upoly *base;
1106 struct isl_upoly *res;
1107  
1108 if (isl_upoly_is_cst(up))
1109 return up;
1110  
1111 rec = isl_upoly_as_rec(up);
1112 if (!rec)
1113 goto error;
1114  
1115 isl_assert(up->ctx, rec->n >= 1, goto error);
1116  
1117 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1118 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1119  
1120 for (i = rec->n - 2; i >= 0; --i) {
1121 res = isl_upoly_mul(res, isl_upoly_copy(base));
1122 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1123 }
1124  
1125 isl_upoly_free(base);
1126 isl_upoly_free(up);
1127  
1128 return res;
1129 error:
1130 isl_upoly_free(up);
1131 return NULL;
1132 }
1133  
1134 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1135 {
1136 int n_row, n_col;
1137 int equal;
1138  
1139 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1140 div1->n_col >= div2->n_col, return -1);
1141  
1142 if (div1->n_row == div2->n_row)
1143 return isl_mat_is_equal(div1, div2);
1144  
1145 n_row = div1->n_row;
1146 n_col = div1->n_col;
1147 div1->n_row = div2->n_row;
1148 div1->n_col = div2->n_col;
1149  
1150 equal = isl_mat_is_equal(div1, div2);
1151  
1152 div1->n_row = n_row;
1153 div1->n_col = n_col;
1154  
1155 return equal;
1156 }
1157  
1158 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1159 {
1160 int li, lj;
1161  
1162 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1163 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1164  
1165 if (li != lj)
1166 return li - lj;
1167  
1168 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1169 }
1170  
1171 struct isl_div_sort_info {
1172 isl_mat *div;
1173 int row;
1174 };
1175  
1176 static int div_sort_cmp(const void *p1, const void *p2)
1177 {
1178 const struct isl_div_sort_info *i1, *i2;
1179 i1 = (const struct isl_div_sort_info *) p1;
1180 i2 = (const struct isl_div_sort_info *) p2;
1181  
1182 return cmp_row(i1->div, i1->row, i2->row);
1183 }
1184  
1185 /* Sort divs and remove duplicates.
1186 */
1187 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1188 {
1189 int i;
1190 int skip;
1191 int len;
1192 struct isl_div_sort_info *array = NULL;
1193 int *pos = NULL, *at = NULL;
1194 int *reordering = NULL;
1195 unsigned div_pos;
1196  
1197 if (!qp)
1198 return NULL;
1199 if (qp->div->n_row <= 1)
1200 return qp;
1201  
1202 div_pos = isl_space_dim(qp->dim, isl_dim_all);
1203  
1204 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1205 qp->div->n_row);
1206 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1207 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1208 len = qp->div->n_col - 2;
1209 reordering = isl_alloc_array(qp->div->ctx, int, len);
1210 if (!array || !pos || !at || !reordering)
1211 goto error;
1212  
1213 for (i = 0; i < qp->div->n_row; ++i) {
1214 array[i].div = qp->div;
1215 array[i].row = i;
1216 pos[i] = i;
1217 at[i] = i;
1218 }
1219  
1220 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1221 div_sort_cmp);
1222  
1223 for (i = 0; i < div_pos; ++i)
1224 reordering[i] = i;
1225  
1226 for (i = 0; i < qp->div->n_row; ++i) {
1227 if (pos[array[i].row] == i)
1228 continue;
1229 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1230 pos[at[i]] = pos[array[i].row];
1231 at[pos[array[i].row]] = at[i];
1232 at[i] = array[i].row;
1233 pos[array[i].row] = i;
1234 }
1235  
1236 skip = 0;
1237 for (i = 0; i < len - div_pos; ++i) {
1238 if (i > 0 &&
1239 isl_seq_eq(qp->div->row[i - skip - 1],
1240 qp->div->row[i - skip], qp->div->n_col)) {
1241 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1242 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1243 2 + div_pos + i - skip);
1244 qp->div = isl_mat_drop_cols(qp->div,
1245 2 + div_pos + i - skip, 1);
1246 skip++;
1247 }
1248 reordering[div_pos + array[i].row] = div_pos + i - skip;
1249 }
1250  
1251 qp->upoly = reorder(qp->upoly, reordering);
1252  
1253 if (!qp->upoly || !qp->div)
1254 goto error;
1255  
1256 free(at);
1257 free(pos);
1258 free(array);
1259 free(reordering);
1260  
1261 return qp;
1262 error:
1263 free(at);
1264 free(pos);
1265 free(array);
1266 free(reordering);
1267 isl_qpolynomial_free(qp);
1268 return NULL;
1269 }
1270  
1271 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1272 int *exp, int first)
1273 {
1274 int i;
1275 struct isl_upoly_rec *rec;
1276  
1277 if (isl_upoly_is_cst(up))
1278 return up;
1279  
1280 if (up->var < first)
1281 return up;
1282  
1283 if (exp[up->var - first] == up->var - first)
1284 return up;
1285  
1286 up = isl_upoly_cow(up);
1287 if (!up)
1288 goto error;
1289  
1290 up->var = exp[up->var - first] + first;
1291  
1292 rec = isl_upoly_as_rec(up);
1293 if (!rec)
1294 goto error;
1295  
1296 for (i = 0; i < rec->n; ++i) {
1297 rec->p[i] = expand(rec->p[i], exp, first);
1298 if (!rec->p[i])
1299 goto error;
1300 }
1301  
1302 return up;
1303 error:
1304 isl_upoly_free(up);
1305 return NULL;
1306 }
1307  
1308 static __isl_give isl_qpolynomial *with_merged_divs(
1309 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1310 __isl_take isl_qpolynomial *qp2),
1311 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1312 {
1313 int *exp1 = NULL;
1314 int *exp2 = NULL;
1315 isl_mat *div = NULL;
1316  
1317 qp1 = isl_qpolynomial_cow(qp1);
1318 qp2 = isl_qpolynomial_cow(qp2);
1319  
1320 if (!qp1 || !qp2)
1321 goto error;
1322  
1323 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1324 qp1->div->n_col >= qp2->div->n_col, goto error);
1325  
1326 exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
1327 exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
1328 if (!exp1 || !exp2)
1329 goto error;
1330  
1331 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1332 if (!div)
1333 goto error;
1334  
1335 isl_mat_free(qp1->div);
1336 qp1->div = isl_mat_copy(div);
1337 isl_mat_free(qp2->div);
1338 qp2->div = isl_mat_copy(div);
1339  
1340 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1341 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1342  
1343 if (!qp1->upoly || !qp2->upoly)
1344 goto error;
1345  
1346 isl_mat_free(div);
1347 free(exp1);
1348 free(exp2);
1349  
1350 return fn(qp1, qp2);
1351 error:
1352 isl_mat_free(div);
1353 free(exp1);
1354 free(exp2);
1355 isl_qpolynomial_free(qp1);
1356 isl_qpolynomial_free(qp2);
1357 return NULL;
1358 }
1359  
1360 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1361 __isl_take isl_qpolynomial *qp2)
1362 {
1363 qp1 = isl_qpolynomial_cow(qp1);
1364  
1365 if (!qp1 || !qp2)
1366 goto error;
1367  
1368 if (qp1->div->n_row < qp2->div->n_row)
1369 return isl_qpolynomial_add(qp2, qp1);
1370  
1371 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1372 if (!compatible_divs(qp1->div, qp2->div))
1373 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1374  
1375 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1376 if (!qp1->upoly)
1377 goto error;
1378  
1379 isl_qpolynomial_free(qp2);
1380  
1381 return qp1;
1382 error:
1383 isl_qpolynomial_free(qp1);
1384 isl_qpolynomial_free(qp2);
1385 return NULL;
1386 }
1387  
1388 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1389 __isl_keep isl_set *dom,
1390 __isl_take isl_qpolynomial *qp1,
1391 __isl_take isl_qpolynomial *qp2)
1392 {
1393 qp1 = isl_qpolynomial_add(qp1, qp2);
1394 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1395 return qp1;
1396 }
1397  
1398 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1399 __isl_take isl_qpolynomial *qp2)
1400 {
1401 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1402 }
1403  
1404 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1405 __isl_take isl_qpolynomial *qp, isl_int v)
1406 {
1407 if (isl_int_is_zero(v))
1408 return qp;
1409  
1410 qp = isl_qpolynomial_cow(qp);
1411 if (!qp)
1412 return NULL;
1413  
1414 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1415 if (!qp->upoly)
1416 goto error;
1417  
1418 return qp;
1419 error:
1420 isl_qpolynomial_free(qp);
1421 return NULL;
1422  
1423 }
1424  
1425 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1426 {
1427 if (!qp)
1428 return NULL;
1429  
1430 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1431 }
1432  
1433 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1434 __isl_take isl_qpolynomial *qp, isl_int v)
1435 {
1436 if (isl_int_is_one(v))
1437 return qp;
1438  
1439 if (qp && isl_int_is_zero(v)) {
1440 isl_qpolynomial *zero;
1441 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1442 isl_qpolynomial_free(qp);
1443 return zero;
1444 }
1445  
1446 qp = isl_qpolynomial_cow(qp);
1447 if (!qp)
1448 return NULL;
1449  
1450 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1451 if (!qp->upoly)
1452 goto error;
1453  
1454 return qp;
1455 error:
1456 isl_qpolynomial_free(qp);
1457 return NULL;
1458 }
1459  
1460 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1461 __isl_take isl_qpolynomial *qp, isl_int v)
1462 {
1463 return isl_qpolynomial_mul_isl_int(qp, v);
1464 }
1465  
1466 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1467 __isl_take isl_qpolynomial *qp2)
1468 {
1469 qp1 = isl_qpolynomial_cow(qp1);
1470  
1471 if (!qp1 || !qp2)
1472 goto error;
1473  
1474 if (qp1->div->n_row < qp2->div->n_row)
1475 return isl_qpolynomial_mul(qp2, qp1);
1476  
1477 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1478 if (!compatible_divs(qp1->div, qp2->div))
1479 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1480  
1481 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1482 if (!qp1->upoly)
1483 goto error;
1484  
1485 isl_qpolynomial_free(qp2);
1486  
1487 return qp1;
1488 error:
1489 isl_qpolynomial_free(qp1);
1490 isl_qpolynomial_free(qp2);
1491 return NULL;
1492 }
1493  
1494 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1495 unsigned power)
1496 {
1497 qp = isl_qpolynomial_cow(qp);
1498  
1499 if (!qp)
1500 return NULL;
1501  
1502 qp->upoly = isl_upoly_pow(qp->upoly, power);
1503 if (!qp->upoly)
1504 goto error;
1505  
1506 return qp;
1507 error:
1508 isl_qpolynomial_free(qp);
1509 return NULL;
1510 }
1511  
1512 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1513 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1514 {
1515 int i;
1516  
1517 if (power == 1)
1518 return pwqp;
1519  
1520 pwqp = isl_pw_qpolynomial_cow(pwqp);
1521 if (!pwqp)
1522 return NULL;
1523  
1524 for (i = 0; i < pwqp->n; ++i) {
1525 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1526 if (!pwqp->p[i].qp)
1527 return isl_pw_qpolynomial_free(pwqp);
1528 }
1529  
1530 return pwqp;
1531 }
1532  
1533 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1534 __isl_take isl_space *dim)
1535 {
1536 if (!dim)
1537 return NULL;
1538 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1539 }
1540  
1541 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1542 __isl_take isl_space *dim)
1543 {
1544 if (!dim)
1545 return NULL;
1546 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1547 }
1548  
1549 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1550 __isl_take isl_space *dim)
1551 {
1552 if (!dim)
1553 return NULL;
1554 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1555 }
1556  
1557 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1558 __isl_take isl_space *dim)
1559 {
1560 if (!dim)
1561 return NULL;
1562 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1563 }
1564  
1565 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1566 __isl_take isl_space *dim)
1567 {
1568 if (!dim)
1569 return NULL;
1570 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1571 }
1572  
1573 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1574 __isl_take isl_space *dim,
1575 isl_int v)
1576 {
1577 struct isl_qpolynomial *qp;
1578 struct isl_upoly_cst *cst;
1579  
1580 if (!dim)
1581 return NULL;
1582  
1583 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1584 if (!qp)
1585 return NULL;
1586  
1587 cst = isl_upoly_as_cst(qp->upoly);
1588 isl_int_set(cst->n, v);
1589  
1590 return qp;
1591 }
1592  
1593 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1594 isl_int *n, isl_int *d)
1595 {
1596 struct isl_upoly_cst *cst;
1597  
1598 if (!qp)
1599 return -1;
1600  
1601 if (!isl_upoly_is_cst(qp->upoly))
1602 return 0;
1603  
1604 cst = isl_upoly_as_cst(qp->upoly);
1605 if (!cst)
1606 return -1;
1607  
1608 if (n)
1609 isl_int_set(*n, cst->n);
1610 if (d)
1611 isl_int_set(*d, cst->d);
1612  
1613 return 1;
1614 }
1615  
1616 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1617 {
1618 int is_cst;
1619 struct isl_upoly_rec *rec;
1620  
1621 if (!up)
1622 return -1;
1623  
1624 if (up->var < 0)
1625 return 1;
1626  
1627 rec = isl_upoly_as_rec(up);
1628 if (!rec)
1629 return -1;
1630  
1631 if (rec->n > 2)
1632 return 0;
1633  
1634 isl_assert(up->ctx, rec->n > 1, return -1);
1635  
1636 is_cst = isl_upoly_is_cst(rec->p[1]);
1637 if (is_cst < 0)
1638 return -1;
1639 if (!is_cst)
1640 return 0;
1641  
1642 return isl_upoly_is_affine(rec->p[0]);
1643 }
1644  
1645 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1646 {
1647 if (!qp)
1648 return -1;
1649  
1650 if (qp->div->n_row > 0)
1651 return 0;
1652  
1653 return isl_upoly_is_affine(qp->upoly);
1654 }
1655  
1656 static void update_coeff(__isl_keep isl_vec *aff,
1657 __isl_keep struct isl_upoly_cst *cst, int pos)
1658 {
1659 isl_int gcd;
1660 isl_int f;
1661  
1662 if (isl_int_is_zero(cst->n))
1663 return;
1664  
1665 isl_int_init(gcd);
1666 isl_int_init(f);
1667 isl_int_gcd(gcd, cst->d, aff->el[0]);
1668 isl_int_divexact(f, cst->d, gcd);
1669 isl_int_divexact(gcd, aff->el[0], gcd);
1670 isl_seq_scale(aff->el, aff->el, f, aff->size);
1671 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1672 isl_int_clear(gcd);
1673 isl_int_clear(f);
1674 }
1675  
1676 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1677 __isl_keep isl_vec *aff)
1678 {
1679 struct isl_upoly_cst *cst;
1680 struct isl_upoly_rec *rec;
1681  
1682 if (!up || !aff)
1683 return -1;
1684  
1685 if (up->var < 0) {
1686 struct isl_upoly_cst *cst;
1687  
1688 cst = isl_upoly_as_cst(up);
1689 if (!cst)
1690 return -1;
1691 update_coeff(aff, cst, 0);
1692 return 0;
1693 }
1694  
1695 rec = isl_upoly_as_rec(up);
1696 if (!rec)
1697 return -1;
1698 isl_assert(up->ctx, rec->n == 2, return -1);
1699  
1700 cst = isl_upoly_as_cst(rec->p[1]);
1701 if (!cst)
1702 return -1;
1703 update_coeff(aff, cst, 1 + up->var);
1704  
1705 return isl_upoly_update_affine(rec->p[0], aff);
1706 }
1707  
1708 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1709 __isl_keep isl_qpolynomial *qp)
1710 {
1711 isl_vec *aff;
1712 unsigned d;
1713  
1714 if (!qp)
1715 return NULL;
1716  
1717 d = isl_space_dim(qp->dim, isl_dim_all);
1718 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1719 if (!aff)
1720 return NULL;
1721  
1722 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1723 isl_int_set_si(aff->el[0], 1);
1724  
1725 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1726 goto error;
1727  
1728 return aff;
1729 error:
1730 isl_vec_free(aff);
1731 return NULL;
1732 }
1733  
1734 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
1735 __isl_keep isl_qpolynomial *qp2)
1736 {
1737 int equal;
1738  
1739 if (!qp1 || !qp2)
1740 return -1;
1741  
1742 equal = isl_space_is_equal(qp1->dim, qp2->dim);
1743 if (equal < 0 || !equal)
1744 return equal;
1745  
1746 equal = isl_mat_is_equal(qp1->div, qp2->div);
1747 if (equal < 0 || !equal)
1748 return equal;
1749  
1750 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
1751 }
1752  
1753 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
1754 {
1755 int i;
1756 struct isl_upoly_rec *rec;
1757  
1758 if (isl_upoly_is_cst(up)) {
1759 struct isl_upoly_cst *cst;
1760 cst = isl_upoly_as_cst(up);
1761 if (!cst)
1762 return;
1763 isl_int_lcm(*d, *d, cst->d);
1764 return;
1765 }
1766  
1767 rec = isl_upoly_as_rec(up);
1768 if (!rec)
1769 return;
1770  
1771 for (i = 0; i < rec->n; ++i)
1772 upoly_update_den(rec->p[i], d);
1773 }
1774  
1775 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
1776 {
1777 isl_int_set_si(*d, 1);
1778 if (!qp)
1779 return;
1780 upoly_update_den(qp->upoly, d);
1781 }
1782  
1783 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
1784 __isl_take isl_space *dim, int pos, int power)
1785 {
1786 struct isl_ctx *ctx;
1787  
1788 if (!dim)
1789 return NULL;
1790  
1791 ctx = dim->ctx;
1792  
1793 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
1794 }
1795  
1796 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
1797 enum isl_dim_type type, unsigned pos)
1798 {
1799 if (!dim)
1800 return NULL;
1801  
1802 isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
1803 isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
1804  
1805 if (type == isl_dim_set)
1806 pos += isl_space_dim(dim, isl_dim_param);
1807  
1808 return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
1809 error:
1810 isl_space_free(dim);
1811 return NULL;
1812 }
1813  
1814 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
1815 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
1816 {
1817 int i;
1818 struct isl_upoly_rec *rec;
1819 struct isl_upoly *base, *res;
1820  
1821 if (!up)
1822 return NULL;
1823  
1824 if (isl_upoly_is_cst(up))
1825 return up;
1826  
1827 if (up->var < first)
1828 return up;
1829  
1830 rec = isl_upoly_as_rec(up);
1831 if (!rec)
1832 goto error;
1833  
1834 isl_assert(up->ctx, rec->n >= 1, goto error);
1835  
1836 if (up->var >= first + n)
1837 base = isl_upoly_var_pow(up->ctx, up->var, 1);
1838 else
1839 base = isl_upoly_copy(subs[up->var - first]);
1840  
1841 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
1842 for (i = rec->n - 2; i >= 0; --i) {
1843 struct isl_upoly *t;
1844 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
1845 res = isl_upoly_mul(res, isl_upoly_copy(base));
1846 res = isl_upoly_sum(res, t);
1847 }
1848  
1849 isl_upoly_free(base);
1850 isl_upoly_free(up);
1851  
1852 return res;
1853 error:
1854 isl_upoly_free(up);
1855 return NULL;
1856 }
1857  
1858 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
1859 isl_int denom, unsigned len)
1860 {
1861 int i;
1862 struct isl_upoly *up;
1863  
1864 isl_assert(ctx, len >= 1, return NULL);
1865  
1866 up = isl_upoly_rat_cst(ctx, f[0], denom);
1867 for (i = 0; i < len - 1; ++i) {
1868 struct isl_upoly *t;
1869 struct isl_upoly *c;
1870  
1871 if (isl_int_is_zero(f[1 + i]))
1872 continue;
1873  
1874 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
1875 t = isl_upoly_var_pow(ctx, i, 1);
1876 t = isl_upoly_mul(c, t);
1877 up = isl_upoly_sum(up, t);
1878 }
1879  
1880 return up;
1881 }
1882  
1883 /* Remove common factor of non-constant terms and denominator.
1884 */
1885 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
1886 {
1887 isl_ctx *ctx = qp->div->ctx;
1888 unsigned total = qp->div->n_col - 2;
1889  
1890 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
1891 isl_int_gcd(ctx->normalize_gcd,
1892 ctx->normalize_gcd, qp->div->row[div][0]);
1893 if (isl_int_is_one(ctx->normalize_gcd))
1894 return;
1895  
1896 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
1897 ctx->normalize_gcd, total);
1898 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
1899 ctx->normalize_gcd);
1900 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
1901 ctx->normalize_gcd);
1902 }
1903  
1904 /* Replace the integer division identified by "div" by the polynomial "s".
1905 * The integer division is assumed not to appear in the definition
1906 * of any other integer divisions.
1907 */
1908 static __isl_give isl_qpolynomial *substitute_div(
1909 __isl_take isl_qpolynomial *qp,
1910 int div, __isl_take struct isl_upoly *s)
1911 {
1912 int i;
1913 int total;
1914 int *reordering;
1915  
1916 if (!qp || !s)
1917 goto error;
1918  
1919 qp = isl_qpolynomial_cow(qp);
1920 if (!qp)
1921 goto error;
1922  
1923 total = isl_space_dim(qp->dim, isl_dim_all);
1924 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
1925 if (!qp->upoly)
1926 goto error;
1927  
1928 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
1929 if (!reordering)
1930 goto error;
1931 for (i = 0; i < total + div; ++i)
1932 reordering[i] = i;
1933 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
1934 reordering[i] = i - 1;
1935 qp->div = isl_mat_drop_rows(qp->div, div, 1);
1936 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
1937 qp->upoly = reorder(qp->upoly, reordering);
1938 free(reordering);
1939  
1940 if (!qp->upoly || !qp->div)
1941 goto error;
1942  
1943 isl_upoly_free(s);
1944 return qp;
1945 error:
1946 isl_qpolynomial_free(qp);
1947 isl_upoly_free(s);
1948 return NULL;
1949 }
1950  
1951 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1952 * divisions because d is equal to 1 by their definition, i.e., e.
1953 */
1954 static __isl_give isl_qpolynomial *substitute_non_divs(
1955 __isl_take isl_qpolynomial *qp)
1956 {
1957 int i, j;
1958 int total;
1959 struct isl_upoly *s;
1960  
1961 if (!qp)
1962 return NULL;
1963  
1964 total = isl_space_dim(qp->dim, isl_dim_all);
1965 for (i = 0; qp && i < qp->div->n_row; ++i) {
1966 if (!isl_int_is_one(qp->div->row[i][0]))
1967 continue;
1968 for (j = i + 1; j < qp->div->n_row; ++j) {
1969 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
1970 continue;
1971 isl_seq_combine(qp->div->row[j] + 1,
1972 qp->div->ctx->one, qp->div->row[j] + 1,
1973 qp->div->row[j][2 + total + i],
1974 qp->div->row[i] + 1, 1 + total + i);
1975 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
1976 normalize_div(qp, j);
1977 }
1978 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
1979 qp->div->row[i][0], qp->div->n_col - 1);
1980 qp = substitute_div(qp, i, s);
1981 --i;
1982 }
1983  
1984 return qp;
1985 }
1986  
1987 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1988 * with d the denominator. When replacing the coefficient e of x by
1989 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1990 * inside the division, so we need to add floor(e/d) * x outside.
1991 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1992 * to adjust the coefficient of x in each later div that depends on the
1993 * current div "div" and also in the affine expression "aff"
1994 * (if it too depends on "div").
1995 */
1996 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
1997 __isl_keep isl_vec *aff)
1998 {
1999 int i, j;
2000 isl_int v;
2001 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2002  
2003 isl_int_init(v);
2004 for (i = 0; i < 1 + total + div; ++i) {
2005 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2006 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2007 continue;
2008 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2009 isl_int_fdiv_r(qp->div->row[div][1 + i],
2010 qp->div->row[div][1 + i], qp->div->row[div][0]);
2011 if (!isl_int_is_zero(aff->el[1 + total + div]))
2012 isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
2013 for (j = div + 1; j < qp->div->n_row; ++j) {
2014 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2015 continue;
2016 isl_int_addmul(qp->div->row[j][1 + i],
2017 v, qp->div->row[j][2 + total + div]);
2018 }
2019 }
2020 isl_int_clear(v);
2021 }
2022  
2023 /* Check if the last non-zero coefficient is bigger that half of the
2024 * denominator. If so, we will invert the div to further reduce the number
2025 * of distinct divs that may appear.
2026 * If the last non-zero coefficient is exactly half the denominator,
2027 * then we continue looking for earlier coefficients that are bigger
2028 * than half the denominator.
2029 */
2030 static int needs_invert(__isl_keep isl_mat *div, int row)
2031 {
2032 int i;
2033 int cmp;
2034  
2035 for (i = div->n_col - 1; i >= 1; --i) {
2036 if (isl_int_is_zero(div->row[row][i]))
2037 continue;
2038 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2039 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2040 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2041 if (cmp)
2042 return cmp > 0;
2043 if (i == 1)
2044 return 1;
2045 }
2046  
2047 return 0;
2048 }
2049  
2050 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2051 * We only invert the coefficients of e (and the coefficient of q in
2052 * later divs and in "aff"). After calling this function, the
2053 * coefficients of e should be reduced again.
2054 */
2055 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2056 __isl_keep isl_vec *aff)
2057 {
2058 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2059  
2060 isl_seq_neg(qp->div->row[div] + 1,
2061 qp->div->row[div] + 1, qp->div->n_col - 1);
2062 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2063 isl_int_add(qp->div->row[div][1],
2064 qp->div->row[div][1], qp->div->row[div][0]);
2065 if (!isl_int_is_zero(aff->el[1 + total + div]))
2066 isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
2067 isl_mat_col_mul(qp->div, 2 + total + div,
2068 qp->div->ctx->negone, 2 + total + div);
2069 }
2070  
2071 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2072 * in the interval [0, d-1], with d the denominator and such that the
2073 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2074 *
2075 * After the reduction, some divs may have become redundant or identical,
2076 * so we call substitute_non_divs and sort_divs. If these functions
2077 * eliminate divs or merge two or more divs into one, the coefficients
2078 * of the enclosing divs may have to be reduced again, so we call
2079 * ourselves recursively if the number of divs decreases.
2080 */
2081 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2082 {
2083 int i;
2084 isl_vec *aff = NULL;
2085 struct isl_upoly *s;
2086 unsigned n_div;
2087  
2088 if (!qp)
2089 return NULL;
2090  
2091 aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
2092 aff = isl_vec_clr(aff);
2093 if (!aff)
2094 goto error;
2095  
2096 isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
2097  
2098 for (i = 0; i < qp->div->n_row; ++i) {
2099 normalize_div(qp, i);
2100 reduce_div(qp, i, aff);
2101 if (needs_invert(qp->div, i)) {
2102 invert_div(qp, i, aff);
2103 reduce_div(qp, i, aff);
2104 }
2105 }
2106  
2107 s = isl_upoly_from_affine(qp->div->ctx, aff->el,
2108 qp->div->ctx->one, aff->size);
2109 qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
2110 isl_upoly_free(s);
2111 if (!qp->upoly)
2112 goto error;
2113  
2114 isl_vec_free(aff);
2115  
2116 n_div = qp->div->n_row;
2117 qp = substitute_non_divs(qp);
2118 qp = sort_divs(qp);
2119 if (qp && qp->div->n_row < n_div)
2120 return reduce_divs(qp);
2121  
2122 return qp;
2123 error:
2124 isl_qpolynomial_free(qp);
2125 isl_vec_free(aff);
2126 return NULL;
2127 }
2128  
2129 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2130 __isl_take isl_space *dim, const isl_int n, const isl_int d)
2131 {
2132 struct isl_qpolynomial *qp;
2133 struct isl_upoly_cst *cst;
2134  
2135 if (!dim)
2136 return NULL;
2137  
2138 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2139 if (!qp)
2140 return NULL;
2141  
2142 cst = isl_upoly_as_cst(qp->upoly);
2143 isl_int_set(cst->n, n);
2144 isl_int_set(cst->d, d);
2145  
2146 return qp;
2147 }
2148  
2149 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2150 {
2151 struct isl_upoly_rec *rec;
2152 int i;
2153  
2154 if (!up)
2155 return -1;
2156  
2157 if (isl_upoly_is_cst(up))
2158 return 0;
2159  
2160 if (up->var < d)
2161 active[up->var] = 1;
2162  
2163 rec = isl_upoly_as_rec(up);
2164 for (i = 0; i < rec->n; ++i)
2165 if (up_set_active(rec->p[i], active, d) < 0)
2166 return -1;
2167  
2168 return 0;
2169 }
2170  
2171 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2172 {
2173 int i, j;
2174 int d = isl_space_dim(qp->dim, isl_dim_all);
2175  
2176 if (!qp || !active)
2177 return -1;
2178  
2179 for (i = 0; i < d; ++i)
2180 for (j = 0; j < qp->div->n_row; ++j) {
2181 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2182 continue;
2183 active[i] = 1;
2184 break;
2185 }
2186  
2187 return up_set_active(qp->upoly, active, d);
2188 }
2189  
2190 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2191 enum isl_dim_type type, unsigned first, unsigned n)
2192 {
2193 int i;
2194 int *active = NULL;
2195 int involves = 0;
2196  
2197 if (!qp)
2198 return -1;
2199 if (n == 0)
2200 return 0;
2201  
2202 isl_assert(qp->dim->ctx,
2203 first + n <= isl_qpolynomial_dim(qp, type), return -1);
2204 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2205 type == isl_dim_in, return -1);
2206  
2207 active = isl_calloc_array(qp->dim->ctx, int,
2208 isl_space_dim(qp->dim, isl_dim_all));
2209 if (set_active(qp, active) < 0)
2210 goto error;
2211  
2212 if (type == isl_dim_in)
2213 first += isl_space_dim(qp->dim, isl_dim_param);
2214 for (i = 0; i < n; ++i)
2215 if (active[first + i]) {
2216 involves = 1;
2217 break;
2218 }
2219  
2220 free(active);
2221  
2222 return involves;
2223 error:
2224 free(active);
2225 return -1;
2226 }
2227  
2228 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2229 * of the divs that do appear in the quasi-polynomial.
2230 */
2231 static __isl_give isl_qpolynomial *remove_redundant_divs(
2232 __isl_take isl_qpolynomial *qp)
2233 {
2234 int i, j;
2235 int d;
2236 int len;
2237 int skip;
2238 int *active = NULL;
2239 int *reordering = NULL;
2240 int redundant = 0;
2241 int n_div;
2242 isl_ctx *ctx;
2243  
2244 if (!qp)
2245 return NULL;
2246 if (qp->div->n_row == 0)
2247 return qp;
2248  
2249 d = isl_space_dim(qp->dim, isl_dim_all);
2250 len = qp->div->n_col - 2;
2251 ctx = isl_qpolynomial_get_ctx(qp);
2252 active = isl_calloc_array(ctx, int, len);
2253 if (!active)
2254 goto error;
2255  
2256 if (up_set_active(qp->upoly, active, len) < 0)
2257 goto error;
2258  
2259 for (i = qp->div->n_row - 1; i >= 0; --i) {
2260 if (!active[d + i]) {
2261 redundant = 1;
2262 continue;
2263 }
2264 for (j = 0; j < i; ++j) {
2265 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2266 continue;
2267 active[d + j] = 1;
2268 break;
2269 }
2270 }
2271  
2272 if (!redundant) {
2273 free(active);
2274 return qp;
2275 }
2276  
2277 reordering = isl_alloc_array(qp->div->ctx, int, len);
2278 if (!reordering)
2279 goto error;
2280  
2281 for (i = 0; i < d; ++i)
2282 reordering[i] = i;
2283  
2284 skip = 0;
2285 n_div = qp->div->n_row;
2286 for (i = 0; i < n_div; ++i) {
2287 if (!active[d + i]) {
2288 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2289 qp->div = isl_mat_drop_cols(qp->div,
2290 2 + d + i - skip, 1);
2291 skip++;
2292 }
2293 reordering[d + i] = d + i - skip;
2294 }
2295  
2296 qp->upoly = reorder(qp->upoly, reordering);
2297  
2298 if (!qp->upoly || !qp->div)
2299 goto error;
2300  
2301 free(active);
2302 free(reordering);
2303  
2304 return qp;
2305 error:
2306 free(active);
2307 free(reordering);
2308 isl_qpolynomial_free(qp);
2309 return NULL;
2310 }
2311  
2312 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2313 unsigned first, unsigned n)
2314 {
2315 int i;
2316 struct isl_upoly_rec *rec;
2317  
2318 if (!up)
2319 return NULL;
2320 if (n == 0 || up->var < 0 || up->var < first)
2321 return up;
2322 if (up->var < first + n) {
2323 up = replace_by_constant_term(up);
2324 return isl_upoly_drop(up, first, n);
2325 }
2326 up = isl_upoly_cow(up);
2327 if (!up)
2328 return NULL;
2329 up->var -= n;
2330 rec = isl_upoly_as_rec(up);
2331 if (!rec)
2332 goto error;
2333  
2334 for (i = 0; i < rec->n; ++i) {
2335 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2336 if (!rec->p[i])
2337 goto error;
2338 }
2339  
2340 return up;
2341 error:
2342 isl_upoly_free(up);
2343 return NULL;
2344 }
2345  
2346 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2347 __isl_take isl_qpolynomial *qp,
2348 enum isl_dim_type type, unsigned pos, const char *s)
2349 {
2350 qp = isl_qpolynomial_cow(qp);
2351 if (!qp)
2352 return NULL;
2353 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2354 if (!qp->dim)
2355 goto error;
2356 return qp;
2357 error:
2358 isl_qpolynomial_free(qp);
2359 return NULL;
2360 }
2361  
2362 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2363 __isl_take isl_qpolynomial *qp,
2364 enum isl_dim_type type, unsigned first, unsigned n)
2365 {
2366 if (!qp)
2367 return NULL;
2368 if (type == isl_dim_out)
2369 isl_die(qp->dim->ctx, isl_error_invalid,
2370 "cannot drop output/set dimension",
2371 goto error);
2372 if (type == isl_dim_in)
2373 type = isl_dim_set;
2374 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2375 return qp;
2376  
2377 qp = isl_qpolynomial_cow(qp);
2378 if (!qp)
2379 return NULL;
2380  
2381 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2382 goto error);
2383 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2384 type == isl_dim_set, goto error);
2385  
2386 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2387 if (!qp->dim)
2388 goto error;
2389  
2390 if (type == isl_dim_set)
2391 first += isl_space_dim(qp->dim, isl_dim_param);
2392  
2393 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2394 if (!qp->div)
2395 goto error;
2396  
2397 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2398 if (!qp->upoly)
2399 goto error;
2400  
2401 return qp;
2402 error:
2403 isl_qpolynomial_free(qp);
2404 return NULL;
2405 }
2406  
2407 /* Project the domain of the quasi-polynomial onto its parameter space.
2408 * The quasi-polynomial may not involve any of the domain dimensions.
2409 */
2410 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2411 __isl_take isl_qpolynomial *qp)
2412 {
2413 isl_space *space;
2414 unsigned n;
2415 int involves;
2416  
2417 n = isl_qpolynomial_dim(qp, isl_dim_in);
2418 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2419 if (involves < 0)
2420 return isl_qpolynomial_free(qp);
2421 if (involves)
2422 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2423 "polynomial involves some of the domain dimensions",
2424 return isl_qpolynomial_free(qp));
2425 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2426 space = isl_qpolynomial_get_domain_space(qp);
2427 space = isl_space_params(space);
2428 qp = isl_qpolynomial_reset_domain_space(qp, space);
2429 return qp;
2430 }
2431  
2432 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2433 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2434 {
2435 int i, j, k;
2436 isl_int denom;
2437 unsigned total;
2438 unsigned n_div;
2439 struct isl_upoly *up;
2440  
2441 if (!eq)
2442 goto error;
2443 if (eq->n_eq == 0) {
2444 isl_basic_set_free(eq);
2445 return qp;
2446 }
2447  
2448 qp = isl_qpolynomial_cow(qp);
2449 if (!qp)
2450 goto error;
2451 qp->div = isl_mat_cow(qp->div);
2452 if (!qp->div)
2453 goto error;
2454  
2455 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2456 n_div = eq->n_div;
2457 isl_int_init(denom);
2458 for (i = 0; i < eq->n_eq; ++i) {
2459 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2460 if (j < 0 || j == 0 || j >= total)
2461 continue;
2462  
2463 for (k = 0; k < qp->div->n_row; ++k) {
2464 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2465 continue;
2466 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2467 &qp->div->row[k][0]);
2468 normalize_div(qp, k);
2469 }
2470  
2471 if (isl_int_is_pos(eq->eq[i][j]))
2472 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2473 isl_int_abs(denom, eq->eq[i][j]);
2474 isl_int_set_si(eq->eq[i][j], 0);
2475  
2476 up = isl_upoly_from_affine(qp->dim->ctx,
2477 eq->eq[i], denom, total);
2478 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2479 isl_upoly_free(up);
2480 }
2481 isl_int_clear(denom);
2482  
2483 if (!qp->upoly)
2484 goto error;
2485  
2486 isl_basic_set_free(eq);
2487  
2488 qp = substitute_non_divs(qp);
2489 qp = sort_divs(qp);
2490  
2491 return qp;
2492 error:
2493 isl_basic_set_free(eq);
2494 isl_qpolynomial_free(qp);
2495 return NULL;
2496 }
2497  
2498 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2499 */
2500 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2501 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2502 {
2503 if (!qp || !eq)
2504 goto error;
2505 if (qp->div->n_row > 0)
2506 eq = isl_basic_set_add(eq, isl_dim_set, qp->div->n_row);
2507 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2508 error:
2509 isl_basic_set_free(eq);
2510 isl_qpolynomial_free(qp);
2511 return NULL;
2512 }
2513  
2514 static __isl_give isl_basic_set *add_div_constraints(
2515 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2516 {
2517 int i;
2518 unsigned total;
2519  
2520 if (!bset || !div)
2521 goto error;
2522  
2523 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2524 if (!bset)
2525 goto error;
2526 total = isl_basic_set_total_dim(bset);
2527 for (i = 0; i < div->n_row; ++i)
2528 if (isl_basic_set_add_div_constraints_var(bset,
2529 total - div->n_row + i, div->row[i]) < 0)
2530 goto error;
2531  
2532 isl_mat_free(div);
2533 return bset;
2534 error:
2535 isl_mat_free(div);
2536 isl_basic_set_free(bset);
2537 return NULL;
2538 }
2539  
2540 /* Look for equalities among the variables shared by context and qp
2541 * and the integer divisions of qp, if any.
2542 * The equalities are then used to eliminate variables and/or integer
2543 * divisions from qp.
2544 */
2545 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2546 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2547 {
2548 isl_basic_set *aff;
2549  
2550 if (!qp)
2551 goto error;
2552 if (qp->div->n_row > 0) {
2553 isl_basic_set *bset;
2554 context = isl_set_add_dims(context, isl_dim_set,
2555 qp->div->n_row);
2556 bset = isl_basic_set_universe(isl_set_get_space(context));
2557 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2558 context = isl_set_intersect(context,
2559 isl_set_from_basic_set(bset));
2560 }
2561  
2562 aff = isl_set_affine_hull(context);
2563 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2564 error:
2565 isl_qpolynomial_free(qp);
2566 isl_set_free(context);
2567 return NULL;
2568 }
2569  
2570 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
2571 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2572 {
2573 isl_space *space = isl_qpolynomial_get_domain_space(qp);
2574 isl_set *dom_context = isl_set_universe(space);
2575 dom_context = isl_set_intersect_params(dom_context, context);
2576 return isl_qpolynomial_gist(qp, dom_context);
2577 }
2578  
2579 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2580 __isl_take isl_qpolynomial *qp)
2581 {
2582 isl_set *dom;
2583  
2584 if (!qp)
2585 return NULL;
2586 if (isl_qpolynomial_is_zero(qp)) {
2587 isl_space *dim = isl_qpolynomial_get_space(qp);
2588 isl_qpolynomial_free(qp);
2589 return isl_pw_qpolynomial_zero(dim);
2590 }
2591  
2592 dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2593 return isl_pw_qpolynomial_alloc(dom, qp);
2594 }
2595  
2596 #undef PW
2597 #define PW isl_pw_qpolynomial
2598 #undef EL
2599 #define EL isl_qpolynomial
2600 #undef EL_IS_ZERO
2601 #define EL_IS_ZERO is_zero
2602 #undef ZERO
2603 #define ZERO zero
2604 #undef IS_ZERO
2605 #define IS_ZERO is_zero
2606 #undef FIELD
2607 #define FIELD qp
2608 #undef DEFAULT_IS_ZERO
2609 #define DEFAULT_IS_ZERO 1
2610  
2611 #include <isl_pw_templ.c>
2612  
2613 #undef UNION
2614 #define UNION isl_union_pw_qpolynomial
2615 #undef PART
2616 #define PART isl_pw_qpolynomial
2617 #undef PARTS
2618 #define PARTS pw_qpolynomial
2619 #define ALIGN_DOMAIN
2620  
2621 #include <isl_union_templ.c>
2622  
2623 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2624 {
2625 if (!pwqp)
2626 return -1;
2627  
2628 if (pwqp->n != -1)
2629 return 0;
2630  
2631 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2632 return 0;
2633  
2634 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2635 }
2636  
2637 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2638 __isl_take isl_pw_qpolynomial *pwqp1,
2639 __isl_take isl_pw_qpolynomial *pwqp2)
2640 {
2641 return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
2642 }
2643  
2644 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2645 __isl_take isl_pw_qpolynomial *pwqp1,
2646 __isl_take isl_pw_qpolynomial *pwqp2)
2647 {
2648 int i, j, n;
2649 struct isl_pw_qpolynomial *res;
2650  
2651 if (!pwqp1 || !pwqp2)
2652 goto error;
2653  
2654 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
2655 goto error);
2656  
2657 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2658 isl_pw_qpolynomial_free(pwqp2);
2659 return pwqp1;
2660 }
2661  
2662 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2663 isl_pw_qpolynomial_free(pwqp1);
2664 return pwqp2;
2665 }
2666  
2667 if (isl_pw_qpolynomial_is_one(pwqp1)) {
2668 isl_pw_qpolynomial_free(pwqp1);
2669 return pwqp2;
2670 }
2671  
2672 if (isl_pw_qpolynomial_is_one(pwqp2)) {
2673 isl_pw_qpolynomial_free(pwqp2);
2674 return pwqp1;
2675 }
2676  
2677 n = pwqp1->n * pwqp2->n;
2678 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
2679  
2680 for (i = 0; i < pwqp1->n; ++i) {
2681 for (j = 0; j < pwqp2->n; ++j) {
2682 struct isl_set *common;
2683 struct isl_qpolynomial *prod;
2684 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
2685 isl_set_copy(pwqp2->p[j].set));
2686 if (isl_set_plain_is_empty(common)) {
2687 isl_set_free(common);
2688 continue;
2689 }
2690  
2691 prod = isl_qpolynomial_mul(
2692 isl_qpolynomial_copy(pwqp1->p[i].qp),
2693 isl_qpolynomial_copy(pwqp2->p[j].qp));
2694  
2695 res = isl_pw_qpolynomial_add_piece(res, common, prod);
2696 }
2697 }
2698  
2699 isl_pw_qpolynomial_free(pwqp1);
2700 isl_pw_qpolynomial_free(pwqp2);
2701  
2702 return res;
2703 error:
2704 isl_pw_qpolynomial_free(pwqp1);
2705 isl_pw_qpolynomial_free(pwqp2);
2706 return NULL;
2707 }
2708  
2709 __isl_give struct isl_upoly *isl_upoly_eval(
2710 __isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
2711 {
2712 int i;
2713 struct isl_upoly_rec *rec;
2714 struct isl_upoly *res;
2715 struct isl_upoly *base;
2716  
2717 if (isl_upoly_is_cst(up)) {
2718 isl_vec_free(vec);
2719 return up;
2720 }
2721  
2722 rec = isl_upoly_as_rec(up);
2723 if (!rec)
2724 goto error;
2725  
2726 isl_assert(up->ctx, rec->n >= 1, goto error);
2727  
2728 base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
2729  
2730 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
2731 isl_vec_copy(vec));
2732  
2733 for (i = rec->n - 2; i >= 0; --i) {
2734 res = isl_upoly_mul(res, isl_upoly_copy(base));
2735 res = isl_upoly_sum(res,
2736 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
2737 isl_vec_copy(vec)));
2738 }
2739  
2740 isl_upoly_free(base);
2741 isl_upoly_free(up);
2742 isl_vec_free(vec);
2743 return res;
2744 error:
2745 isl_upoly_free(up);
2746 isl_vec_free(vec);
2747 return NULL;
2748 }
2749  
2750 __isl_give isl_qpolynomial *isl_qpolynomial_eval(
2751 __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt)
2752 {
2753 isl_vec *ext;
2754 struct isl_upoly *up;
2755 isl_space *dim;
2756  
2757 if (!qp || !pnt)
2758 goto error;
2759 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
2760  
2761 if (qp->div->n_row == 0)
2762 ext = isl_vec_copy(pnt->vec);
2763 else {
2764 int i;
2765 unsigned dim = isl_space_dim(qp->dim, isl_dim_all);
2766 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
2767 if (!ext)
2768 goto error;
2769  
2770 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
2771 for (i = 0; i < qp->div->n_row; ++i) {
2772 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
2773 1 + dim + i, &ext->el[1+dim+i]);
2774 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
2775 qp->div->row[i][0]);
2776 }
2777 }
2778  
2779 up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
2780 if (!up)
2781 goto error;
2782  
2783 dim = isl_space_copy(qp->dim);
2784 isl_qpolynomial_free(qp);
2785 isl_point_free(pnt);
2786  
2787 return isl_qpolynomial_alloc(dim, 0, up);
2788 error:
2789 isl_qpolynomial_free(qp);
2790 isl_point_free(pnt);
2791 return NULL;
2792 }
2793  
2794 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
2795 __isl_keep struct isl_upoly_cst *cst2)
2796 {
2797 int cmp;
2798 isl_int t;
2799 isl_int_init(t);
2800 isl_int_mul(t, cst1->n, cst2->d);
2801 isl_int_submul(t, cst2->n, cst1->d);
2802 cmp = isl_int_sgn(t);
2803 isl_int_clear(t);
2804 return cmp;
2805 }
2806  
2807 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1,
2808 __isl_keep isl_qpolynomial *qp2)
2809 {
2810 struct isl_upoly_cst *cst1, *cst2;
2811  
2812 if (!qp1 || !qp2)
2813 return -1;
2814 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1);
2815 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1);
2816 if (isl_qpolynomial_is_nan(qp1))
2817 return -1;
2818 if (isl_qpolynomial_is_nan(qp2))
2819 return -1;
2820 cst1 = isl_upoly_as_cst(qp1->upoly);
2821 cst2 = isl_upoly_as_cst(qp2->upoly);
2822  
2823 return isl_upoly_cmp(cst1, cst2) <= 0;
2824 }
2825  
2826 __isl_give isl_qpolynomial *isl_qpolynomial_min_cst(
2827 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2828 {
2829 struct isl_upoly_cst *cst1, *cst2;
2830 int cmp;
2831  
2832 if (!qp1 || !qp2)
2833 goto error;
2834 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2835 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2836 cst1 = isl_upoly_as_cst(qp1->upoly);
2837 cst2 = isl_upoly_as_cst(qp2->upoly);
2838 cmp = isl_upoly_cmp(cst1, cst2);
2839  
2840 if (cmp <= 0) {
2841 isl_qpolynomial_free(qp2);
2842 } else {
2843 isl_qpolynomial_free(qp1);
2844 qp1 = qp2;
2845 }
2846 return qp1;
2847 error:
2848 isl_qpolynomial_free(qp1);
2849 isl_qpolynomial_free(qp2);
2850 return NULL;
2851 }
2852  
2853 __isl_give isl_qpolynomial *isl_qpolynomial_max_cst(
2854 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2855 {
2856 struct isl_upoly_cst *cst1, *cst2;
2857 int cmp;
2858  
2859 if (!qp1 || !qp2)
2860 goto error;
2861 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2862 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2863 cst1 = isl_upoly_as_cst(qp1->upoly);
2864 cst2 = isl_upoly_as_cst(qp2->upoly);
2865 cmp = isl_upoly_cmp(cst1, cst2);
2866  
2867 if (cmp >= 0) {
2868 isl_qpolynomial_free(qp2);
2869 } else {
2870 isl_qpolynomial_free(qp1);
2871 qp1 = qp2;
2872 }
2873 return qp1;
2874 error:
2875 isl_qpolynomial_free(qp1);
2876 isl_qpolynomial_free(qp2);
2877 return NULL;
2878 }
2879  
2880 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
2881 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
2882 unsigned first, unsigned n)
2883 {
2884 unsigned total;
2885 unsigned g_pos;
2886 int *exp;
2887  
2888 if (!qp)
2889 return NULL;
2890 if (type == isl_dim_out)
2891 isl_die(qp->div->ctx, isl_error_invalid,
2892 "cannot insert output/set dimensions",
2893 goto error);
2894 if (type == isl_dim_in)
2895 type = isl_dim_set;
2896 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2897 return qp;
2898  
2899 qp = isl_qpolynomial_cow(qp);
2900 if (!qp)
2901 return NULL;
2902  
2903 isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
2904 goto error);
2905  
2906 g_pos = pos(qp->dim, type) + first;
2907  
2908 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
2909 if (!qp->div)
2910 goto error;
2911  
2912 total = qp->div->n_col - 2;
2913 if (total > g_pos) {
2914 int i;
2915 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
2916 if (!exp)
2917 goto error;
2918 for (i = 0; i < total - g_pos; ++i)
2919 exp[i] = i + n;
2920 qp->upoly = expand(qp->upoly, exp, g_pos);
2921 free(exp);
2922 if (!qp->upoly)
2923 goto error;
2924 }
2925  
2926 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
2927 if (!qp->dim)
2928 goto error;
2929  
2930 return qp;
2931 error:
2932 isl_qpolynomial_free(qp);
2933 return NULL;
2934 }
2935  
2936 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
2937 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
2938 {
2939 unsigned pos;
2940  
2941 pos = isl_qpolynomial_dim(qp, type);
2942  
2943 return isl_qpolynomial_insert_dims(qp, type, pos, n);
2944 }
2945  
2946 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
2947 __isl_take isl_pw_qpolynomial *pwqp,
2948 enum isl_dim_type type, unsigned n)
2949 {
2950 unsigned pos;
2951  
2952 pos = isl_pw_qpolynomial_dim(pwqp, type);
2953  
2954 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
2955 }
2956  
2957 static int *reordering_move(isl_ctx *ctx,
2958 unsigned len, unsigned dst, unsigned src, unsigned n)
2959 {
2960 int i;
2961 int *reordering;
2962  
2963 reordering = isl_alloc_array(ctx, int, len);
2964 if (!reordering)
2965 return NULL;
2966  
2967 if (dst <= src) {
2968 for (i = 0; i < dst; ++i)
2969 reordering[i] = i;
2970 for (i = 0; i < n; ++i)
2971 reordering[src + i] = dst + i;
2972 for (i = 0; i < src - dst; ++i)
2973 reordering[dst + i] = dst + n + i;
2974 for (i = 0; i < len - src - n; ++i)
2975 reordering[src + n + i] = src + n + i;
2976 } else {
2977 for (i = 0; i < src; ++i)
2978 reordering[i] = i;
2979 for (i = 0; i < n; ++i)
2980 reordering[src + i] = dst + i;
2981 for (i = 0; i < dst - src; ++i)
2982 reordering[src + n + i] = src + i;
2983 for (i = 0; i < len - dst - n; ++i)
2984 reordering[dst + n + i] = dst + n + i;
2985 }
2986  
2987 return reordering;
2988 }
2989  
2990 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
2991 __isl_take isl_qpolynomial *qp,
2992 enum isl_dim_type dst_type, unsigned dst_pos,
2993 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
2994 {
2995 unsigned g_dst_pos;
2996 unsigned g_src_pos;
2997 int *reordering;
2998  
2999 qp = isl_qpolynomial_cow(qp);
3000 if (!qp)
3001 return NULL;
3002  
3003 if (dst_type == isl_dim_out || src_type == isl_dim_out)
3004 isl_die(qp->dim->ctx, isl_error_invalid,
3005 "cannot move output/set dimension",
3006 goto error);
3007 if (dst_type == isl_dim_in)
3008 dst_type = isl_dim_set;
3009 if (src_type == isl_dim_in)
3010 src_type = isl_dim_set;
3011  
3012 isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
3013 goto error);
3014  
3015 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3016 g_src_pos = pos(qp->dim, src_type) + src_pos;
3017 if (dst_type > src_type)
3018 g_dst_pos -= n;
3019  
3020 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3021 if (!qp->div)
3022 goto error;
3023 qp = sort_divs(qp);
3024 if (!qp)
3025 goto error;
3026  
3027 reordering = reordering_move(qp->dim->ctx,
3028 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3029 if (!reordering)
3030 goto error;
3031  
3032 qp->upoly = reorder(qp->upoly, reordering);
3033 free(reordering);
3034 if (!qp->upoly)
3035 goto error;
3036  
3037 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3038 if (!qp->dim)
3039 goto error;
3040  
3041 return qp;
3042 error:
3043 isl_qpolynomial_free(qp);
3044 return NULL;
3045 }
3046  
3047 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim,
3048 isl_int *f, isl_int denom)
3049 {
3050 struct isl_upoly *up;
3051  
3052 dim = isl_space_domain(dim);
3053 if (!dim)
3054 return NULL;
3055  
3056 up = isl_upoly_from_affine(dim->ctx, f, denom,
3057 1 + isl_space_dim(dim, isl_dim_all));
3058  
3059 return isl_qpolynomial_alloc(dim, 0, up);
3060 }
3061  
3062 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3063 {
3064 isl_ctx *ctx;
3065 struct isl_upoly *up;
3066 isl_qpolynomial *qp;
3067  
3068 if (!aff)
3069 return NULL;
3070  
3071 ctx = isl_aff_get_ctx(aff);
3072 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3073 aff->v->size - 1);
3074  
3075 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3076 aff->ls->div->n_row, up);
3077 if (!qp)
3078 goto error;
3079  
3080 isl_mat_free(qp->div);
3081 qp->div = isl_mat_copy(aff->ls->div);
3082 qp->div = isl_mat_cow(qp->div);
3083 if (!qp->div)
3084 goto error;
3085  
3086 isl_aff_free(aff);
3087 qp = reduce_divs(qp);
3088 qp = remove_redundant_divs(qp);
3089 return qp;
3090 error:
3091 isl_aff_free(aff);
3092 return NULL;
3093 }
3094  
3095 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3096 __isl_take isl_pw_aff *pwaff)
3097 {
3098 int i;
3099 isl_pw_qpolynomial *pwqp;
3100  
3101 if (!pwaff)
3102 return NULL;
3103  
3104 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3105 pwaff->n);
3106  
3107 for (i = 0; i < pwaff->n; ++i) {
3108 isl_set *dom;
3109 isl_qpolynomial *qp;
3110  
3111 dom = isl_set_copy(pwaff->p[i].set);
3112 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3113 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3114 }
3115  
3116 isl_pw_aff_free(pwaff);
3117 return pwqp;
3118 }
3119  
3120 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3121 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3122 {
3123 isl_aff *aff;
3124  
3125 aff = isl_constraint_get_bound(c, type, pos);
3126 isl_constraint_free(c);
3127 return isl_qpolynomial_from_aff(aff);
3128 }
3129  
3130 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3131 * in "qp" by subs[i].
3132 */
3133 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3134 __isl_take isl_qpolynomial *qp,
3135 enum isl_dim_type type, unsigned first, unsigned n,
3136 __isl_keep isl_qpolynomial **subs)
3137 {
3138 int i;
3139 struct isl_upoly **ups;
3140  
3141 if (n == 0)
3142 return qp;
3143  
3144 qp = isl_qpolynomial_cow(qp);
3145 if (!qp)
3146 return NULL;
3147  
3148 if (type == isl_dim_out)
3149 isl_die(qp->dim->ctx, isl_error_invalid,
3150 "cannot substitute output/set dimension",
3151 goto error);
3152 if (type == isl_dim_in)
3153 type = isl_dim_set;
3154  
3155 for (i = 0; i < n; ++i)
3156 if (!subs[i])
3157 goto error;
3158  
3159 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3160 goto error);
3161  
3162 for (i = 0; i < n; ++i)
3163 isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3164 goto error);
3165  
3166 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3167 for (i = 0; i < n; ++i)
3168 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3169  
3170 first += pos(qp->dim, type);
3171  
3172 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3173 if (!ups)
3174 goto error;
3175 for (i = 0; i < n; ++i)
3176 ups[i] = subs[i]->upoly;
3177  
3178 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3179  
3180 free(ups);
3181  
3182 if (!qp->upoly)
3183 goto error;
3184  
3185 return qp;
3186 error:
3187 isl_qpolynomial_free(qp);
3188 return NULL;
3189 }
3190  
3191 /* Extend "bset" with extra set dimensions for each integer division
3192 * in "qp" and then call "fn" with the extended bset and the polynomial
3193 * that results from replacing each of the integer divisions by the
3194 * corresponding extra set dimension.
3195 */
3196 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3197 __isl_keep isl_basic_set *bset,
3198 int (*fn)(__isl_take isl_basic_set *bset,
3199 __isl_take isl_qpolynomial *poly, void *user), void *user)
3200 {
3201 isl_space *dim;
3202 isl_mat *div;
3203 isl_qpolynomial *poly;
3204  
3205 if (!qp || !bset)
3206 goto error;
3207 if (qp->div->n_row == 0)
3208 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3209 user);
3210  
3211 div = isl_mat_copy(qp->div);
3212 dim = isl_space_copy(qp->dim);
3213 dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3214 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3215 bset = isl_basic_set_copy(bset);
3216 bset = isl_basic_set_add(bset, isl_dim_set, qp->div->n_row);
3217 bset = add_div_constraints(bset, div);
3218  
3219 return fn(bset, poly, user);
3220 error:
3221 return -1;
3222 }
3223  
3224 /* Return total degree in variables first (inclusive) up to last (exclusive).
3225 */
3226 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3227 {
3228 int deg = -1;
3229 int i;
3230 struct isl_upoly_rec *rec;
3231  
3232 if (!up)
3233 return -2;
3234 if (isl_upoly_is_zero(up))
3235 return -1;
3236 if (isl_upoly_is_cst(up) || up->var < first)
3237 return 0;
3238  
3239 rec = isl_upoly_as_rec(up);
3240 if (!rec)
3241 return -2;
3242  
3243 for (i = 0; i < rec->n; ++i) {
3244 int d;
3245  
3246 if (isl_upoly_is_zero(rec->p[i]))
3247 continue;
3248 d = isl_upoly_degree(rec->p[i], first, last);
3249 if (up->var < last)
3250 d += i;
3251 if (d > deg)
3252 deg = d;
3253 }
3254  
3255 return deg;
3256 }
3257  
3258 /* Return total degree in set variables.
3259 */
3260 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3261 {
3262 unsigned ovar;
3263 unsigned nvar;
3264  
3265 if (!poly)
3266 return -2;
3267  
3268 ovar = isl_space_offset(poly->dim, isl_dim_set);
3269 nvar = isl_space_dim(poly->dim, isl_dim_set);
3270 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3271 }
3272  
3273 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3274 unsigned pos, int deg)
3275 {
3276 int i;
3277 struct isl_upoly_rec *rec;
3278  
3279 if (!up)
3280 return NULL;
3281  
3282 if (isl_upoly_is_cst(up) || up->var < pos) {
3283 if (deg == 0)
3284 return isl_upoly_copy(up);
3285 else
3286 return isl_upoly_zero(up->ctx);
3287 }
3288  
3289 rec = isl_upoly_as_rec(up);
3290 if (!rec)
3291 return NULL;
3292  
3293 if (up->var == pos) {
3294 if (deg < rec->n)
3295 return isl_upoly_copy(rec->p[deg]);
3296 else
3297 return isl_upoly_zero(up->ctx);
3298 }
3299  
3300 up = isl_upoly_copy(up);
3301 up = isl_upoly_cow(up);
3302 rec = isl_upoly_as_rec(up);
3303 if (!rec)
3304 goto error;
3305  
3306 for (i = 0; i < rec->n; ++i) {
3307 struct isl_upoly *t;
3308 t = isl_upoly_coeff(rec->p[i], pos, deg);
3309 if (!t)
3310 goto error;
3311 isl_upoly_free(rec->p[i]);
3312 rec->p[i] = t;
3313 }
3314  
3315 return up;
3316 error:
3317 isl_upoly_free(up);
3318 return NULL;
3319 }
3320  
3321 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3322 */
3323 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3324 __isl_keep isl_qpolynomial *qp,
3325 enum isl_dim_type type, unsigned t_pos, int deg)
3326 {
3327 unsigned g_pos;
3328 struct isl_upoly *up;
3329 isl_qpolynomial *c;
3330  
3331 if (!qp)
3332 return NULL;
3333  
3334 if (type == isl_dim_out)
3335 isl_die(qp->div->ctx, isl_error_invalid,
3336 "output/set dimension does not have a coefficient",
3337 return NULL);
3338 if (type == isl_dim_in)
3339 type = isl_dim_set;
3340  
3341 isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3342 return NULL);
3343  
3344 g_pos = pos(qp->dim, type) + t_pos;
3345 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3346  
3347 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3348 if (!c)
3349 return NULL;
3350 isl_mat_free(c->div);
3351 c->div = isl_mat_copy(qp->div);
3352 if (!c->div)
3353 goto error;
3354 return c;
3355 error:
3356 isl_qpolynomial_free(c);
3357 return NULL;
3358 }
3359  
3360 /* Homogenize the polynomial in the variables first (inclusive) up to
3361 * last (exclusive) by inserting powers of variable first.
3362 * Variable first is assumed not to appear in the input.
3363 */
3364 __isl_give struct isl_upoly *isl_upoly_homogenize(
3365 __isl_take struct isl_upoly *up, int deg, int target,
3366 int first, int last)
3367 {
3368 int i;
3369 struct isl_upoly_rec *rec;
3370  
3371 if (!up)
3372 return NULL;
3373 if (isl_upoly_is_zero(up))
3374 return up;
3375 if (deg == target)
3376 return up;
3377 if (isl_upoly_is_cst(up) || up->var < first) {
3378 struct isl_upoly *hom;
3379  
3380 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3381 if (!hom)
3382 goto error;
3383 rec = isl_upoly_as_rec(hom);
3384 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3385  
3386 return hom;
3387 }
3388  
3389 up = isl_upoly_cow(up);
3390 rec = isl_upoly_as_rec(up);
3391 if (!rec)
3392 goto error;
3393  
3394 for (i = 0; i < rec->n; ++i) {
3395 if (isl_upoly_is_zero(rec->p[i]))
3396 continue;
3397 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3398 up->var < last ? deg + i : i, target,
3399 first, last);
3400 if (!rec->p[i])
3401 goto error;
3402 }
3403  
3404 return up;
3405 error:
3406 isl_upoly_free(up);
3407 return NULL;
3408 }
3409  
3410 /* Homogenize the polynomial in the set variables by introducing
3411 * powers of an extra set variable at position 0.
3412 */
3413 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3414 __isl_take isl_qpolynomial *poly)
3415 {
3416 unsigned ovar;
3417 unsigned nvar;
3418 int deg = isl_qpolynomial_degree(poly);
3419  
3420 if (deg < -1)
3421 goto error;
3422  
3423 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3424 poly = isl_qpolynomial_cow(poly);
3425 if (!poly)
3426 goto error;
3427  
3428 ovar = isl_space_offset(poly->dim, isl_dim_set);
3429 nvar = isl_space_dim(poly->dim, isl_dim_set);
3430 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3431 ovar, ovar + nvar);
3432 if (!poly->upoly)
3433 goto error;
3434  
3435 return poly;
3436 error:
3437 isl_qpolynomial_free(poly);
3438 return NULL;
3439 }
3440  
3441 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim,
3442 __isl_take isl_mat *div)
3443 {
3444 isl_term *term;
3445 int n;
3446  
3447 if (!dim || !div)
3448 goto error;
3449  
3450 n = isl_space_dim(dim, isl_dim_all) + div->n_row;
3451  
3452 term = isl_calloc(dim->ctx, struct isl_term,
3453 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3454 if (!term)
3455 goto error;
3456  
3457 term->ref = 1;
3458 term->dim = dim;
3459 term->div = div;
3460 isl_int_init(term->n);
3461 isl_int_init(term->d);
3462  
3463 return term;
3464 error:
3465 isl_space_free(dim);
3466 isl_mat_free(div);
3467 return NULL;
3468 }
3469  
3470 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3471 {
3472 if (!term)
3473 return NULL;
3474  
3475 term->ref++;
3476 return term;
3477 }
3478  
3479 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3480 {
3481 int i;
3482 isl_term *dup;
3483 unsigned total;
3484  
3485 if (!term)
3486 return NULL;
3487  
3488 total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3489  
3490 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3491 if (!dup)
3492 return NULL;
3493  
3494 isl_int_set(dup->n, term->n);
3495 isl_int_set(dup->d, term->d);
3496  
3497 for (i = 0; i < total; ++i)
3498 dup->pow[i] = term->pow[i];
3499  
3500 return dup;
3501 }
3502  
3503 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3504 {
3505 if (!term)
3506 return NULL;
3507  
3508 if (term->ref == 1)
3509 return term;
3510 term->ref--;
3511 return isl_term_dup(term);
3512 }
3513  
3514 void isl_term_free(__isl_take isl_term *term)
3515 {
3516 if (!term)
3517 return;
3518  
3519 if (--term->ref > 0)
3520 return;
3521  
3522 isl_space_free(term->dim);
3523 isl_mat_free(term->div);
3524 isl_int_clear(term->n);
3525 isl_int_clear(term->d);
3526 free(term);
3527 }
3528  
3529 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3530 {
3531 if (!term)
3532 return 0;
3533  
3534 switch (type) {
3535 case isl_dim_param:
3536 case isl_dim_in:
3537 case isl_dim_out: return isl_space_dim(term->dim, type);
3538 case isl_dim_div: return term->div->n_row;
3539 case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) +
3540 term->div->n_row;
3541 default: return 0;
3542 }
3543 }
3544  
3545 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3546 {
3547 return term ? term->dim->ctx : NULL;
3548 }
3549  
3550 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3551 {
3552 if (!term)
3553 return;
3554 isl_int_set(*n, term->n);
3555 }
3556  
3557 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3558 {
3559 if (!term)
3560 return;
3561 isl_int_set(*d, term->d);
3562 }
3563  
3564 int isl_term_get_exp(__isl_keep isl_term *term,
3565 enum isl_dim_type type, unsigned pos)
3566 {
3567 if (!term)
3568 return -1;
3569  
3570 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3571  
3572 if (type >= isl_dim_set)
3573 pos += isl_space_dim(term->dim, isl_dim_param);
3574 if (type >= isl_dim_div)
3575 pos += isl_space_dim(term->dim, isl_dim_set);
3576  
3577 return term->pow[pos];
3578 }
3579  
3580 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3581 {
3582 isl_local_space *ls;
3583 isl_aff *aff;
3584  
3585 if (!term)
3586 return NULL;
3587  
3588 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3589 return NULL);
3590  
3591 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3592 isl_mat_copy(term->div));
3593 aff = isl_aff_alloc(ls);
3594 if (!aff)
3595 return NULL;
3596  
3597 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3598  
3599 aff = isl_aff_normalize(aff);
3600  
3601 return aff;
3602 }
3603  
3604 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3605 int (*fn)(__isl_take isl_term *term, void *user),
3606 __isl_take isl_term *term, void *user)
3607 {
3608 int i;
3609 struct isl_upoly_rec *rec;
3610  
3611 if (!up || !term)
3612 goto error;
3613  
3614 if (isl_upoly_is_zero(up))
3615 return term;
3616  
3617 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3618 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3619 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3620  
3621 if (isl_upoly_is_cst(up)) {
3622 struct isl_upoly_cst *cst;
3623 cst = isl_upoly_as_cst(up);
3624 if (!cst)
3625 goto error;
3626 term = isl_term_cow(term);
3627 if (!term)
3628 goto error;
3629 isl_int_set(term->n, cst->n);
3630 isl_int_set(term->d, cst->d);
3631 if (fn(isl_term_copy(term), user) < 0)
3632 goto error;
3633 return term;
3634 }
3635  
3636 rec = isl_upoly_as_rec(up);
3637 if (!rec)
3638 goto error;
3639  
3640 for (i = 0; i < rec->n; ++i) {
3641 term = isl_term_cow(term);
3642 if (!term)
3643 goto error;
3644 term->pow[up->var] = i;
3645 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3646 if (!term)
3647 goto error;
3648 }
3649 term->pow[up->var] = 0;
3650  
3651 return term;
3652 error:
3653 isl_term_free(term);
3654 return NULL;
3655 }
3656  
3657 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3658 int (*fn)(__isl_take isl_term *term, void *user), void *user)
3659 {
3660 isl_term *term;
3661  
3662 if (!qp)
3663 return -1;
3664  
3665 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3666 if (!term)
3667 return -1;
3668  
3669 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3670  
3671 isl_term_free(term);
3672  
3673 return term ? 0 : -1;
3674 }
3675  
3676 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3677 {
3678 struct isl_upoly *up;
3679 isl_qpolynomial *qp;
3680 int i, n;
3681  
3682 if (!term)
3683 return NULL;
3684  
3685 n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3686  
3687 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3688 for (i = 0; i < n; ++i) {
3689 if (!term->pow[i])
3690 continue;
3691 up = isl_upoly_mul(up,
3692 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3693 }
3694  
3695 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3696 if (!qp)
3697 goto error;
3698 isl_mat_free(qp->div);
3699 qp->div = isl_mat_copy(term->div);
3700 if (!qp->div)
3701 goto error;
3702  
3703 isl_term_free(term);
3704 return qp;
3705 error:
3706 isl_qpolynomial_free(qp);
3707 isl_term_free(term);
3708 return NULL;
3709 }
3710  
3711 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
3712 __isl_take isl_space *dim)
3713 {
3714 int i;
3715 int extra;
3716 unsigned total;
3717  
3718 if (!qp || !dim)
3719 goto error;
3720  
3721 if (isl_space_is_equal(qp->dim, dim)) {
3722 isl_space_free(dim);
3723 return qp;
3724 }
3725  
3726 qp = isl_qpolynomial_cow(qp);
3727 if (!qp)
3728 goto error;
3729  
3730 extra = isl_space_dim(dim, isl_dim_set) -
3731 isl_space_dim(qp->dim, isl_dim_set);
3732 total = isl_space_dim(qp->dim, isl_dim_all);
3733 if (qp->div->n_row) {
3734 int *exp;
3735  
3736 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
3737 if (!exp)
3738 goto error;
3739 for (i = 0; i < qp->div->n_row; ++i)
3740 exp[i] = extra + i;
3741 qp->upoly = expand(qp->upoly, exp, total);
3742 free(exp);
3743 if (!qp->upoly)
3744 goto error;
3745 }
3746 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
3747 if (!qp->div)
3748 goto error;
3749 for (i = 0; i < qp->div->n_row; ++i)
3750 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
3751  
3752 isl_space_free(qp->dim);
3753 qp->dim = dim;
3754  
3755 return qp;
3756 error:
3757 isl_space_free(dim);
3758 isl_qpolynomial_free(qp);
3759 return NULL;
3760 }
3761  
3762 /* For each parameter or variable that does not appear in qp,
3763 * first eliminate the variable from all constraints and then set it to zero.
3764 */
3765 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
3766 __isl_keep isl_qpolynomial *qp)
3767 {
3768 int *active = NULL;
3769 int i;
3770 int d;
3771 unsigned nparam;
3772 unsigned nvar;
3773  
3774 if (!set || !qp)
3775 goto error;
3776  
3777 d = isl_space_dim(set->dim, isl_dim_all);
3778 active = isl_calloc_array(set->ctx, int, d);
3779 if (set_active(qp, active) < 0)
3780 goto error;
3781  
3782 for (i = 0; i < d; ++i)
3783 if (!active[i])
3784 break;
3785  
3786 if (i == d) {
3787 free(active);
3788 return set;
3789 }
3790  
3791 nparam = isl_space_dim(set->dim, isl_dim_param);
3792 nvar = isl_space_dim(set->dim, isl_dim_set);
3793 for (i = 0; i < nparam; ++i) {
3794 if (active[i])
3795 continue;
3796 set = isl_set_eliminate(set, isl_dim_param, i, 1);
3797 set = isl_set_fix_si(set, isl_dim_param, i, 0);
3798 }
3799 for (i = 0; i < nvar; ++i) {
3800 if (active[nparam + i])
3801 continue;
3802 set = isl_set_eliminate(set, isl_dim_set, i, 1);
3803 set = isl_set_fix_si(set, isl_dim_set, i, 0);
3804 }
3805  
3806 free(active);
3807  
3808 return set;
3809 error:
3810 free(active);
3811 isl_set_free(set);
3812 return NULL;
3813 }
3814  
3815 struct isl_opt_data {
3816 isl_qpolynomial *qp;
3817 int first;
3818 isl_qpolynomial *opt;
3819 int max;
3820 };
3821  
3822 static int opt_fn(__isl_take isl_point *pnt, void *user)
3823 {
3824 struct isl_opt_data *data = (struct isl_opt_data *)user;
3825 isl_qpolynomial *val;
3826  
3827 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
3828 if (data->first) {
3829 data->first = 0;
3830 data->opt = val;
3831 } else if (data->max) {
3832 data->opt = isl_qpolynomial_max_cst(data->opt, val);
3833 } else {
3834 data->opt = isl_qpolynomial_min_cst(data->opt, val);
3835 }
3836  
3837 return 0;
3838 }
3839  
3840 __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain(
3841 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
3842 {
3843 struct isl_opt_data data = { NULL, 1, NULL, max };
3844  
3845 if (!set || !qp)
3846 goto error;
3847  
3848 if (isl_upoly_is_cst(qp->upoly)) {
3849 isl_set_free(set);
3850 return qp;
3851 }
3852  
3853 set = fix_inactive(set, qp);
3854  
3855 data.qp = qp;
3856 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
3857 goto error;
3858  
3859 if (data.first) {
3860 isl_space *space = isl_qpolynomial_get_domain_space(qp);
3861 data.opt = isl_qpolynomial_zero_on_domain(space);
3862 }
3863  
3864 isl_set_free(set);
3865 isl_qpolynomial_free(qp);
3866 return data.opt;
3867 error:
3868 isl_set_free(set);
3869 isl_qpolynomial_free(qp);
3870 isl_qpolynomial_free(data.opt);
3871 return NULL;
3872 }
3873  
3874 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
3875 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
3876 {
3877 int i;
3878 int n_sub;
3879 isl_ctx *ctx;
3880 struct isl_upoly **subs;
3881 isl_mat *mat, *diag;
3882  
3883 qp = isl_qpolynomial_cow(qp);
3884 if (!qp || !morph)
3885 goto error;
3886  
3887 ctx = qp->dim->ctx;
3888 isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
3889  
3890 n_sub = morph->inv->n_row - 1;
3891 if (morph->inv->n_row != morph->inv->n_col)
3892 n_sub += qp->div->n_row;
3893 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
3894 if (!subs)
3895 goto error;
3896  
3897 for (i = 0; 1 + i < morph->inv->n_row; ++i)
3898 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
3899 morph->inv->row[0][0], morph->inv->n_col);
3900 if (morph->inv->n_row != morph->inv->n_col)
3901 for (i = 0; i < qp->div->n_row; ++i)
3902 subs[morph->inv->n_row - 1 + i] =
3903 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
3904  
3905 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
3906  
3907 for (i = 0; i < n_sub; ++i)
3908 isl_upoly_free(subs[i]);
3909 free(subs);
3910  
3911 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
3912 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
3913 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
3914 mat = isl_mat_diagonal(mat, diag);
3915 qp->div = isl_mat_product(qp->div, mat);
3916 isl_space_free(qp->dim);
3917 qp->dim = isl_space_copy(morph->ran->dim);
3918  
3919 if (!qp->upoly || !qp->div || !qp->dim)
3920 goto error;
3921  
3922 isl_morph_free(morph);
3923  
3924 return qp;
3925 error:
3926 isl_qpolynomial_free(qp);
3927 isl_morph_free(morph);
3928 return NULL;
3929 }
3930  
3931 static int neg_entry(void **entry, void *user)
3932 {
3933 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
3934  
3935 *pwqp = isl_pw_qpolynomial_neg(*pwqp);
3936  
3937 return *pwqp ? 0 : -1;
3938 }
3939  
3940 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg(
3941 __isl_take isl_union_pw_qpolynomial *upwqp)
3942 {
3943 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
3944 if (!upwqp)
3945 return NULL;
3946  
3947 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
3948 &neg_entry, NULL) < 0)
3949 goto error;
3950  
3951 return upwqp;
3952 error:
3953 isl_union_pw_qpolynomial_free(upwqp);
3954 return NULL;
3955 }
3956  
3957 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3958 __isl_take isl_union_pw_qpolynomial *upwqp1,
3959 __isl_take isl_union_pw_qpolynomial *upwqp2)
3960 {
3961 return isl_union_pw_qpolynomial_add(upwqp1,
3962 isl_union_pw_qpolynomial_neg(upwqp2));
3963 }
3964  
3965 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3966 __isl_take isl_union_pw_qpolynomial *upwqp1,
3967 __isl_take isl_union_pw_qpolynomial *upwqp2)
3968 {
3969 return match_bin_op(upwqp1, upwqp2, &isl_pw_qpolynomial_mul);
3970 }
3971  
3972 /* Reorder the columns of the given div definitions according to the
3973 * given reordering.
3974 */
3975 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
3976 __isl_take isl_reordering *r)
3977 {
3978 int i, j;
3979 isl_mat *mat;
3980 int extra;
3981  
3982 if (!div || !r)
3983 goto error;
3984  
3985 extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len;
3986 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
3987 if (!mat)
3988 goto error;
3989  
3990 for (i = 0; i < div->n_row; ++i) {
3991 isl_seq_cpy(mat->row[i], div->row[i], 2);
3992 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
3993 for (j = 0; j < r->len; ++j)
3994 isl_int_set(mat->row[i][2 + r->pos[j]],
3995 div->row[i][2 + j]);
3996 }
3997  
3998 isl_reordering_free(r);
3999 isl_mat_free(div);
4000 return mat;
4001 error:
4002 isl_reordering_free(r);
4003 isl_mat_free(div);
4004 return NULL;
4005 }
4006  
4007 /* Reorder the dimension of "qp" according to the given reordering.
4008 */
4009 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4010 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4011 {
4012 qp = isl_qpolynomial_cow(qp);
4013 if (!qp)
4014 goto error;
4015  
4016 r = isl_reordering_extend(r, qp->div->n_row);
4017 if (!r)
4018 goto error;
4019  
4020 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
4021 if (!qp->div)
4022 goto error;
4023  
4024 qp->upoly = reorder(qp->upoly, r->pos);
4025 if (!qp->upoly)
4026 goto error;
4027  
4028 qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim));
4029  
4030 isl_reordering_free(r);
4031 return qp;
4032 error:
4033 isl_qpolynomial_free(qp);
4034 isl_reordering_free(r);
4035 return NULL;
4036 }
4037  
4038 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4039 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4040 {
4041 if (!qp || !model)
4042 goto error;
4043  
4044 if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) {
4045 isl_reordering *exp;
4046  
4047 model = isl_space_drop_dims(model, isl_dim_in,
4048 0, isl_space_dim(model, isl_dim_in));
4049 model = isl_space_drop_dims(model, isl_dim_out,
4050 0, isl_space_dim(model, isl_dim_out));
4051 exp = isl_parameter_alignment_reordering(qp->dim, model);
4052 exp = isl_reordering_extend_space(exp,
4053 isl_qpolynomial_get_domain_space(qp));
4054 qp = isl_qpolynomial_realign_domain(qp, exp);
4055 }
4056  
4057 isl_space_free(model);
4058 return qp;
4059 error:
4060 isl_space_free(model);
4061 isl_qpolynomial_free(qp);
4062 return NULL;
4063 }
4064  
4065 struct isl_split_periods_data {
4066 int max_periods;
4067 isl_pw_qpolynomial *res;
4068 };
4069  
4070 /* Create a slice where the integer division "div" has the fixed value "v".
4071 * In particular, if "div" refers to floor(f/m), then create a slice
4072 *
4073 * m v <= f <= m v + (m - 1)
4074 *
4075 * or
4076 *
4077 * f - m v >= 0
4078 * -f + m v + (m - 1) >= 0
4079 */
4080 static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim,
4081 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4082 {
4083 int total;
4084 isl_basic_set *bset = NULL;
4085 int k;
4086  
4087 if (!dim || !qp)
4088 goto error;
4089  
4090 total = isl_space_dim(dim, isl_dim_all);
4091 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2);
4092  
4093 k = isl_basic_set_alloc_inequality(bset);
4094 if (k < 0)
4095 goto error;
4096 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4097 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4098  
4099 k = isl_basic_set_alloc_inequality(bset);
4100 if (k < 0)
4101 goto error;
4102 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4103 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4104 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4105 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4106  
4107 isl_space_free(dim);
4108 return isl_set_from_basic_set(bset);
4109 error:
4110 isl_basic_set_free(bset);
4111 isl_space_free(dim);
4112 return NULL;
4113 }
4114  
4115 static int split_periods(__isl_take isl_set *set,
4116 __isl_take isl_qpolynomial *qp, void *user);
4117  
4118 /* Create a slice of the domain "set" such that integer division "div"
4119 * has the fixed value "v" and add the results to data->res,
4120 * replacing the integer division by "v" in "qp".
4121 */
4122 static int set_div(__isl_take isl_set *set,
4123 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4124 struct isl_split_periods_data *data)
4125 {
4126 int i;
4127 int total;
4128 isl_set *slice;
4129 struct isl_upoly *cst;
4130  
4131 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4132 set = isl_set_intersect(set, slice);
4133  
4134 if (!qp)
4135 goto error;
4136  
4137 total = isl_space_dim(qp->dim, isl_dim_all);
4138  
4139 for (i = div + 1; i < qp->div->n_row; ++i) {
4140 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4141 continue;
4142 isl_int_addmul(qp->div->row[i][1],
4143 qp->div->row[i][2 + total + div], v);
4144 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4145 }
4146  
4147 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4148 qp = substitute_div(qp, div, cst);
4149  
4150 return split_periods(set, qp, data);
4151 error:
4152 isl_set_free(set);
4153 isl_qpolynomial_free(qp);
4154 return -1;
4155 }
4156  
4157 /* Split the domain "set" such that integer division "div"
4158 * has a fixed value (ranging from "min" to "max") on each slice
4159 * and add the results to data->res.
4160 */
4161 static int split_div(__isl_take isl_set *set,
4162 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4163 struct isl_split_periods_data *data)
4164 {
4165 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4166 isl_set *set_i = isl_set_copy(set);
4167 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4168  
4169 if (set_div(set_i, qp_i, div, min, data) < 0)
4170 goto error;
4171 }
4172 isl_set_free(set);
4173 isl_qpolynomial_free(qp);
4174 return 0;
4175 error:
4176 isl_set_free(set);
4177 isl_qpolynomial_free(qp);
4178 return -1;
4179 }
4180  
4181 /* If "qp" refers to any integer division
4182 * that can only attain "max_periods" distinct values on "set"
4183 * then split the domain along those distinct values.
4184 * Add the results (or the original if no splitting occurs)
4185 * to data->res.
4186 */
4187 static int split_periods(__isl_take isl_set *set,
4188 __isl_take isl_qpolynomial *qp, void *user)
4189 {
4190 int i;
4191 isl_pw_qpolynomial *pwqp;
4192 struct isl_split_periods_data *data;
4193 isl_int min, max;
4194 int total;
4195 int r = 0;
4196  
4197 data = (struct isl_split_periods_data *)user;
4198  
4199 if (!set || !qp)
4200 goto error;
4201  
4202 if (qp->div->n_row == 0) {
4203 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4204 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4205 return 0;
4206 }
4207  
4208 isl_int_init(min);
4209 isl_int_init(max);
4210 total = isl_space_dim(qp->dim, isl_dim_all);
4211 for (i = 0; i < qp->div->n_row; ++i) {
4212 enum isl_lp_result lp_res;
4213  
4214 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4215 qp->div->n_row) != -1)
4216 continue;
4217  
4218 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4219 set->ctx->one, &min, NULL, NULL);
4220 if (lp_res == isl_lp_error)
4221 goto error2;
4222 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4223 continue;
4224 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4225  
4226 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4227 set->ctx->one, &max, NULL, NULL);
4228 if (lp_res == isl_lp_error)
4229 goto error2;
4230 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4231 continue;
4232 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4233  
4234 isl_int_sub(max, max, min);
4235 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4236 isl_int_add(max, max, min);
4237 break;
4238 }
4239 }
4240  
4241 if (i < qp->div->n_row) {
4242 r = split_div(set, qp, i, min, max, data);
4243 } else {
4244 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4245 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4246 }
4247  
4248 isl_int_clear(max);
4249 isl_int_clear(min);
4250  
4251 return r;
4252 error2:
4253 isl_int_clear(max);
4254 isl_int_clear(min);
4255 error:
4256 isl_set_free(set);
4257 isl_qpolynomial_free(qp);
4258 return -1;
4259 }
4260  
4261 /* If any quasi-polynomial in pwqp refers to any integer division
4262 * that can only attain "max_periods" distinct values on its domain
4263 * then split the domain along those distinct values.
4264 */
4265 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4266 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4267 {
4268 struct isl_split_periods_data data;
4269  
4270 data.max_periods = max_periods;
4271 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4272  
4273 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4274 goto error;
4275  
4276 isl_pw_qpolynomial_free(pwqp);
4277  
4278 return data.res;
4279 error:
4280 isl_pw_qpolynomial_free(data.res);
4281 isl_pw_qpolynomial_free(pwqp);
4282 return NULL;
4283 }
4284  
4285 /* Construct a piecewise quasipolynomial that is constant on the given
4286 * domain. In particular, it is
4287 * 0 if cst == 0
4288 * 1 if cst == 1
4289 * infinity if cst == -1
4290 */
4291 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4292 __isl_take isl_basic_set *bset, int cst)
4293 {
4294 isl_space *dim;
4295 isl_qpolynomial *qp;
4296  
4297 if (!bset)
4298 return NULL;
4299  
4300 bset = isl_basic_set_params(bset);
4301 dim = isl_basic_set_get_space(bset);
4302 if (cst < 0)
4303 qp = isl_qpolynomial_infty_on_domain(dim);
4304 else if (cst == 0)
4305 qp = isl_qpolynomial_zero_on_domain(dim);
4306 else
4307 qp = isl_qpolynomial_one_on_domain(dim);
4308 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4309 }
4310  
4311 /* Factor bset, call fn on each of the factors and return the product.
4312 *
4313 * If no factors can be found, simply call fn on the input.
4314 * Otherwise, construct the factors based on the factorizer,
4315 * call fn on each factor and compute the product.
4316 */
4317 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4318 __isl_take isl_basic_set *bset,
4319 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4320 {
4321 int i, n;
4322 isl_space *dim;
4323 isl_set *set;
4324 isl_factorizer *f;
4325 isl_qpolynomial *qp;
4326 isl_pw_qpolynomial *pwqp;
4327 unsigned nparam;
4328 unsigned nvar;
4329  
4330 f = isl_basic_set_factorizer(bset);
4331 if (!f)
4332 goto error;
4333 if (f->n_group == 0) {
4334 isl_factorizer_free(f);
4335 return fn(bset);
4336 }
4337  
4338 nparam = isl_basic_set_dim(bset, isl_dim_param);
4339 nvar = isl_basic_set_dim(bset, isl_dim_set);
4340  
4341 dim = isl_basic_set_get_space(bset);
4342 dim = isl_space_domain(dim);
4343 set = isl_set_universe(isl_space_copy(dim));
4344 qp = isl_qpolynomial_one_on_domain(dim);
4345 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4346  
4347 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4348  
4349 for (i = 0, n = 0; i < f->n_group; ++i) {
4350 isl_basic_set *bset_i;
4351 isl_pw_qpolynomial *pwqp_i;
4352  
4353 bset_i = isl_basic_set_copy(bset);
4354 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4355 nparam + n + f->len[i], nvar - n - f->len[i]);
4356 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4357 nparam, n);
4358 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4359 n + f->len[i], nvar - n - f->len[i]);
4360 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4361  
4362 pwqp_i = fn(bset_i);
4363 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4364  
4365 n += f->len[i];
4366 }
4367  
4368 isl_basic_set_free(bset);
4369 isl_factorizer_free(f);
4370  
4371 return pwqp;
4372 error:
4373 isl_basic_set_free(bset);
4374 return NULL;
4375 }
4376  
4377 /* Factor bset, call fn on each of the factors and return the product.
4378 * The function is assumed to evaluate to zero on empty domains,
4379 * to one on zero-dimensional domains and to infinity on unbounded domains
4380 * and will not be called explicitly on zero-dimensional or unbounded domains.
4381 *
4382 * We first check for some special cases and remove all equalities.
4383 * Then we hand over control to compressed_multiplicative_call.
4384 */
4385 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4386 __isl_take isl_basic_set *bset,
4387 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4388 {
4389 int bounded;
4390 isl_morph *morph;
4391 isl_pw_qpolynomial *pwqp;
4392  
4393 if (!bset)
4394 return NULL;
4395  
4396 if (isl_basic_set_plain_is_empty(bset))
4397 return constant_on_domain(bset, 0);
4398  
4399 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4400 return constant_on_domain(bset, 1);
4401  
4402 bounded = isl_basic_set_is_bounded(bset);
4403 if (bounded < 0)
4404 goto error;
4405 if (!bounded)
4406 return constant_on_domain(bset, -1);
4407  
4408 if (bset->n_eq == 0)
4409 return compressed_multiplicative_call(bset, fn);
4410  
4411 morph = isl_basic_set_full_compression(bset);
4412 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4413  
4414 pwqp = compressed_multiplicative_call(bset, fn);
4415  
4416 morph = isl_morph_dom_params(morph);
4417 morph = isl_morph_ran_params(morph);
4418 morph = isl_morph_inverse(morph);
4419  
4420 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4421  
4422 return pwqp;
4423 error:
4424 isl_basic_set_free(bset);
4425 return NULL;
4426 }
4427  
4428 /* Drop all floors in "qp", turning each integer division [a/m] into
4429 * a rational division a/m. If "down" is set, then the integer division
4430 * is replaces by (a-(m-1))/m instead.
4431 */
4432 static __isl_give isl_qpolynomial *qp_drop_floors(
4433 __isl_take isl_qpolynomial *qp, int down)
4434 {
4435 int i;
4436 struct isl_upoly *s;
4437  
4438 if (!qp)
4439 return NULL;
4440 if (qp->div->n_row == 0)
4441 return qp;
4442  
4443 qp = isl_qpolynomial_cow(qp);
4444 if (!qp)
4445 return NULL;
4446  
4447 for (i = qp->div->n_row - 1; i >= 0; --i) {
4448 if (down) {
4449 isl_int_sub(qp->div->row[i][1],
4450 qp->div->row[i][1], qp->div->row[i][0]);
4451 isl_int_add_ui(qp->div->row[i][1],
4452 qp->div->row[i][1], 1);
4453 }
4454 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4455 qp->div->row[i][0], qp->div->n_col - 1);
4456 qp = substitute_div(qp, i, s);
4457 if (!qp)
4458 return NULL;
4459 }
4460  
4461 return qp;
4462 }
4463  
4464 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4465 * a rational division a/m.
4466 */
4467 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4468 __isl_take isl_pw_qpolynomial *pwqp)
4469 {
4470 int i;
4471  
4472 if (!pwqp)
4473 return NULL;
4474  
4475 if (isl_pw_qpolynomial_is_zero(pwqp))
4476 return pwqp;
4477  
4478 pwqp = isl_pw_qpolynomial_cow(pwqp);
4479 if (!pwqp)
4480 return NULL;
4481  
4482 for (i = 0; i < pwqp->n; ++i) {
4483 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4484 if (!pwqp->p[i].qp)
4485 goto error;
4486 }
4487  
4488 return pwqp;
4489 error:
4490 isl_pw_qpolynomial_free(pwqp);
4491 return NULL;
4492 }
4493  
4494 /* Adjust all the integer divisions in "qp" such that they are at least
4495 * one over the given orthant (identified by "signs"). This ensures
4496 * that they will still be non-negative even after subtracting (m-1)/m.
4497 *
4498 * In particular, f is replaced by f' + v, changing f = [a/m]
4499 * to f' = [(a - m v)/m].
4500 * If the constant term k in a is smaller than m,
4501 * the constant term of v is set to floor(k/m) - 1.
4502 * For any other term, if the coefficient c and the variable x have
4503 * the same sign, then no changes are needed.
4504 * Otherwise, if the variable is positive (and c is negative),
4505 * then the coefficient of x in v is set to floor(c/m).
4506 * If the variable is negative (and c is positive),
4507 * then the coefficient of x in v is set to ceil(c/m).
4508 */
4509 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4510 int *signs)
4511 {
4512 int i, j;
4513 int total;
4514 isl_vec *v = NULL;
4515 struct isl_upoly *s;
4516  
4517 qp = isl_qpolynomial_cow(qp);
4518 if (!qp)
4519 return NULL;
4520 qp->div = isl_mat_cow(qp->div);
4521 if (!qp->div)
4522 goto error;
4523  
4524 total = isl_space_dim(qp->dim, isl_dim_all);
4525 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4526  
4527 for (i = 0; i < qp->div->n_row; ++i) {
4528 isl_int *row = qp->div->row[i];
4529 v = isl_vec_clr(v);
4530 if (!v)
4531 goto error;
4532 if (isl_int_lt(row[1], row[0])) {
4533 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4534 isl_int_sub_ui(v->el[0], v->el[0], 1);
4535 isl_int_submul(row[1], row[0], v->el[0]);
4536 }
4537 for (j = 0; j < total; ++j) {
4538 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4539 continue;
4540 if (signs[j] < 0)
4541 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4542 else
4543 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4544 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4545 }
4546 for (j = 0; j < i; ++j) {
4547 if (isl_int_sgn(row[2 + total + j]) >= 0)
4548 continue;
4549 isl_int_fdiv_q(v->el[1 + total + j],
4550 row[2 + total + j], row[0]);
4551 isl_int_submul(row[2 + total + j],
4552 row[0], v->el[1 + total + j]);
4553 }
4554 for (j = i + 1; j < qp->div->n_row; ++j) {
4555 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4556 continue;
4557 isl_seq_combine(qp->div->row[j] + 1,
4558 qp->div->ctx->one, qp->div->row[j] + 1,
4559 qp->div->row[j][2 + total + i], v->el, v->size);
4560 }
4561 isl_int_set_si(v->el[1 + total + i], 1);
4562 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4563 qp->div->ctx->one, v->size);
4564 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4565 isl_upoly_free(s);
4566 if (!qp->upoly)
4567 goto error;
4568 }
4569  
4570 isl_vec_free(v);
4571 return qp;
4572 error:
4573 isl_vec_free(v);
4574 isl_qpolynomial_free(qp);
4575 return NULL;
4576 }
4577  
4578 struct isl_to_poly_data {
4579 int sign;
4580 isl_pw_qpolynomial *res;
4581 isl_qpolynomial *qp;
4582 };
4583  
4584 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4585 * We first make all integer divisions positive and then split the
4586 * quasipolynomials into terms with sign data->sign (the direction
4587 * of the requested approximation) and terms with the opposite sign.
4588 * In the first set of terms, each integer division [a/m] is
4589 * overapproximated by a/m, while in the second it is underapproximated
4590 * by (a-(m-1))/m.
4591 */
4592 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4593 void *user)
4594 {
4595 struct isl_to_poly_data *data = user;
4596 isl_pw_qpolynomial *t;
4597 isl_qpolynomial *qp, *up, *down;
4598  
4599 qp = isl_qpolynomial_copy(data->qp);
4600 qp = make_divs_pos(qp, signs);
4601  
4602 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4603 up = qp_drop_floors(up, 0);
4604 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4605 down = qp_drop_floors(down, 1);
4606  
4607 isl_qpolynomial_free(qp);
4608 qp = isl_qpolynomial_add(up, down);
4609  
4610 t = isl_pw_qpolynomial_alloc(orthant, qp);
4611 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4612  
4613 return 0;
4614 }
4615  
4616 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4617 * the polynomial will be an overapproximation. If "sign" is negative,
4618 * it will be an underapproximation. If "sign" is zero, the approximation
4619 * will lie somewhere in between.
4620 *
4621 * In particular, is sign == 0, we simply drop the floors, turning
4622 * the integer divisions into rational divisions.
4623 * Otherwise, we split the domains into orthants, make all integer divisions
4624 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4625 * depending on the requested sign and the sign of the term in which
4626 * the integer division appears.
4627 */
4628 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4629 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4630 {
4631 int i;
4632 struct isl_to_poly_data data;
4633  
4634 if (sign == 0)
4635 return pwqp_drop_floors(pwqp);
4636  
4637 if (!pwqp)
4638 return NULL;
4639  
4640 data.sign = sign;
4641 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4642  
4643 for (i = 0; i < pwqp->n; ++i) {
4644 if (pwqp->p[i].qp->div->n_row == 0) {
4645 isl_pw_qpolynomial *t;
4646 t = isl_pw_qpolynomial_alloc(
4647 isl_set_copy(pwqp->p[i].set),
4648 isl_qpolynomial_copy(pwqp->p[i].qp));
4649 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4650 continue;
4651 }
4652 data.qp = pwqp->p[i].qp;
4653 if (isl_set_foreach_orthant(pwqp->p[i].set,
4654 &to_polynomial_on_orthant, &data) < 0)
4655 goto error;
4656 }
4657  
4658 isl_pw_qpolynomial_free(pwqp);
4659  
4660 return data.res;
4661 error:
4662 isl_pw_qpolynomial_free(pwqp);
4663 isl_pw_qpolynomial_free(data.res);
4664 return NULL;
4665 }
4666  
4667 static int poly_entry(void **entry, void *user)
4668 {
4669 int *sign = user;
4670 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
4671  
4672 *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign);
4673  
4674 return *pwqp ? 0 : -1;
4675 }
4676  
4677 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4678 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4679 {
4680 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
4681 if (!upwqp)
4682 return NULL;
4683  
4684 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
4685 &poly_entry, &sign) < 0)
4686 goto error;
4687  
4688 return upwqp;
4689 error:
4690 isl_union_pw_qpolynomial_free(upwqp);
4691 return NULL;
4692 }
4693  
4694 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4695 __isl_take isl_qpolynomial *qp)
4696 {
4697 int i, k;
4698 isl_space *dim;
4699 isl_vec *aff = NULL;
4700 isl_basic_map *bmap = NULL;
4701 unsigned pos;
4702 unsigned n_div;
4703  
4704 if (!qp)
4705 return NULL;
4706 if (!isl_upoly_is_affine(qp->upoly))
4707 isl_die(qp->dim->ctx, isl_error_invalid,
4708 "input quasi-polynomial not affine", goto error);
4709 aff = isl_qpolynomial_extract_affine(qp);
4710 if (!aff)
4711 goto error;
4712 dim = isl_qpolynomial_get_space(qp);
4713 pos = 1 + isl_space_offset(dim, isl_dim_out);
4714 n_div = qp->div->n_row;
4715 bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4716  
4717 for (i = 0; i < n_div; ++i) {
4718 k = isl_basic_map_alloc_div(bmap);
4719 if (k < 0)
4720 goto error;
4721 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4722 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4723 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4724 goto error;
4725 }
4726 k = isl_basic_map_alloc_equality(bmap);
4727 if (k < 0)
4728 goto error;
4729 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4730 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4731 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4732  
4733 isl_vec_free(aff);
4734 isl_qpolynomial_free(qp);
4735 bmap = isl_basic_map_finalize(bmap);
4736 return bmap;
4737 error:
4738 isl_vec_free(aff);
4739 isl_qpolynomial_free(qp);
4740 isl_basic_map_free(bmap);
4741 return NULL;
4742 }