nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* |
2 | * Copyright 2010 INRIA Saclay |
||
3 | * |
||
4 | * Use of this software is governed by the GNU LGPLv2.1 license |
||
5 | * |
||
6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
||
7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
||
8 | * 91893 Orsay, France |
||
9 | */ |
||
10 | |||
11 | #include <stdlib.h> |
||
12 | #define ISL_DIM_H |
||
13 | #include <isl_ctx_private.h> |
||
14 | #include <isl_map_private.h> |
||
15 | #include <isl_factorization.h> |
||
16 | #include <isl/lp.h> |
||
17 | #include <isl/seq.h> |
||
18 | #include <isl_union_map_private.h> |
||
19 | #include <isl_constraint_private.h> |
||
20 | #include <isl_polynomial_private.h> |
||
21 | #include <isl_point_private.h> |
||
22 | #include <isl_space_private.h> |
||
23 | #include <isl_mat_private.h> |
||
24 | #include <isl_range.h> |
||
25 | #include <isl_local_space_private.h> |
||
26 | #include <isl_aff_private.h> |
||
27 | #include <isl_config.h> |
||
28 | |||
29 | static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type) |
||
30 | { |
||
31 | switch (type) { |
||
32 | case isl_dim_param: return 0; |
||
33 | case isl_dim_in: return dim->nparam; |
||
34 | case isl_dim_out: return dim->nparam + dim->n_in; |
||
35 | default: return 0; |
||
36 | } |
||
37 | } |
||
38 | |||
39 | int isl_upoly_is_cst(__isl_keep struct isl_upoly *up) |
||
40 | { |
||
41 | if (!up) |
||
42 | return -1; |
||
43 | |||
44 | return up->var < 0; |
||
45 | } |
||
46 | |||
47 | __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up) |
||
48 | { |
||
49 | if (!up) |
||
50 | return NULL; |
||
51 | |||
52 | isl_assert(up->ctx, up->var < 0, return NULL); |
||
53 | |||
54 | return (struct isl_upoly_cst *)up; |
||
55 | } |
||
56 | |||
57 | __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up) |
||
58 | { |
||
59 | if (!up) |
||
60 | return NULL; |
||
61 | |||
62 | isl_assert(up->ctx, up->var >= 0, return NULL); |
||
63 | |||
64 | return (struct isl_upoly_rec *)up; |
||
65 | } |
||
66 | |||
67 | int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1, |
||
68 | __isl_keep struct isl_upoly *up2) |
||
69 | { |
||
70 | int i; |
||
71 | struct isl_upoly_rec *rec1, *rec2; |
||
72 | |||
73 | if (!up1 || !up2) |
||
74 | return -1; |
||
75 | if (up1 == up2) |
||
76 | return 1; |
||
77 | if (up1->var != up2->var) |
||
78 | return 0; |
||
79 | if (isl_upoly_is_cst(up1)) { |
||
80 | struct isl_upoly_cst *cst1, *cst2; |
||
81 | cst1 = isl_upoly_as_cst(up1); |
||
82 | cst2 = isl_upoly_as_cst(up2); |
||
83 | if (!cst1 || !cst2) |
||
84 | return -1; |
||
85 | return isl_int_eq(cst1->n, cst2->n) && |
||
86 | isl_int_eq(cst1->d, cst2->d); |
||
87 | } |
||
88 | |||
89 | rec1 = isl_upoly_as_rec(up1); |
||
90 | rec2 = isl_upoly_as_rec(up2); |
||
91 | if (!rec1 || !rec2) |
||
92 | return -1; |
||
93 | |||
94 | if (rec1->n != rec2->n) |
||
95 | return 0; |
||
96 | |||
97 | for (i = 0; i < rec1->n; ++i) { |
||
98 | int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]); |
||
99 | if (eq < 0 || !eq) |
||
100 | return eq; |
||
101 | } |
||
102 | |||
103 | return 1; |
||
104 | } |
||
105 | |||
106 | int isl_upoly_is_zero(__isl_keep struct isl_upoly *up) |
||
107 | { |
||
108 | struct isl_upoly_cst *cst; |
||
109 | |||
110 | if (!up) |
||
111 | return -1; |
||
112 | if (!isl_upoly_is_cst(up)) |
||
113 | return 0; |
||
114 | |||
115 | cst = isl_upoly_as_cst(up); |
||
116 | if (!cst) |
||
117 | return -1; |
||
118 | |||
119 | return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d); |
||
120 | } |
||
121 | |||
122 | int isl_upoly_sgn(__isl_keep struct isl_upoly *up) |
||
123 | { |
||
124 | struct isl_upoly_cst *cst; |
||
125 | |||
126 | if (!up) |
||
127 | return 0; |
||
128 | if (!isl_upoly_is_cst(up)) |
||
129 | return 0; |
||
130 | |||
131 | cst = isl_upoly_as_cst(up); |
||
132 | if (!cst) |
||
133 | return 0; |
||
134 | |||
135 | return isl_int_sgn(cst->n); |
||
136 | } |
||
137 | |||
138 | int isl_upoly_is_nan(__isl_keep struct isl_upoly *up) |
||
139 | { |
||
140 | struct isl_upoly_cst *cst; |
||
141 | |||
142 | if (!up) |
||
143 | return -1; |
||
144 | if (!isl_upoly_is_cst(up)) |
||
145 | return 0; |
||
146 | |||
147 | cst = isl_upoly_as_cst(up); |
||
148 | if (!cst) |
||
149 | return -1; |
||
150 | |||
151 | return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d); |
||
152 | } |
||
153 | |||
154 | int isl_upoly_is_infty(__isl_keep struct isl_upoly *up) |
||
155 | { |
||
156 | struct isl_upoly_cst *cst; |
||
157 | |||
158 | if (!up) |
||
159 | return -1; |
||
160 | if (!isl_upoly_is_cst(up)) |
||
161 | return 0; |
||
162 | |||
163 | cst = isl_upoly_as_cst(up); |
||
164 | if (!cst) |
||
165 | return -1; |
||
166 | |||
167 | return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d); |
||
168 | } |
||
169 | |||
170 | int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up) |
||
171 | { |
||
172 | struct isl_upoly_cst *cst; |
||
173 | |||
174 | if (!up) |
||
175 | return -1; |
||
176 | if (!isl_upoly_is_cst(up)) |
||
177 | return 0; |
||
178 | |||
179 | cst = isl_upoly_as_cst(up); |
||
180 | if (!cst) |
||
181 | return -1; |
||
182 | |||
183 | return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d); |
||
184 | } |
||
185 | |||
186 | int isl_upoly_is_one(__isl_keep struct isl_upoly *up) |
||
187 | { |
||
188 | struct isl_upoly_cst *cst; |
||
189 | |||
190 | if (!up) |
||
191 | return -1; |
||
192 | if (!isl_upoly_is_cst(up)) |
||
193 | return 0; |
||
194 | |||
195 | cst = isl_upoly_as_cst(up); |
||
196 | if (!cst) |
||
197 | return -1; |
||
198 | |||
199 | return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d); |
||
200 | } |
||
201 | |||
202 | int isl_upoly_is_negone(__isl_keep struct isl_upoly *up) |
||
203 | { |
||
204 | struct isl_upoly_cst *cst; |
||
205 | |||
206 | if (!up) |
||
207 | return -1; |
||
208 | if (!isl_upoly_is_cst(up)) |
||
209 | return 0; |
||
210 | |||
211 | cst = isl_upoly_as_cst(up); |
||
212 | if (!cst) |
||
213 | return -1; |
||
214 | |||
215 | return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d); |
||
216 | } |
||
217 | |||
218 | __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx) |
||
219 | { |
||
220 | struct isl_upoly_cst *cst; |
||
221 | |||
222 | cst = isl_alloc_type(ctx, struct isl_upoly_cst); |
||
223 | if (!cst) |
||
224 | return NULL; |
||
225 | |||
226 | cst->up.ref = 1; |
||
227 | cst->up.ctx = ctx; |
||
228 | isl_ctx_ref(ctx); |
||
229 | cst->up.var = -1; |
||
230 | |||
231 | isl_int_init(cst->n); |
||
232 | isl_int_init(cst->d); |
||
233 | |||
234 | return cst; |
||
235 | } |
||
236 | |||
237 | __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx) |
||
238 | { |
||
239 | struct isl_upoly_cst *cst; |
||
240 | |||
241 | cst = isl_upoly_cst_alloc(ctx); |
||
242 | if (!cst) |
||
243 | return NULL; |
||
244 | |||
245 | isl_int_set_si(cst->n, 0); |
||
246 | isl_int_set_si(cst->d, 1); |
||
247 | |||
248 | return &cst->up; |
||
249 | } |
||
250 | |||
251 | __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx) |
||
252 | { |
||
253 | struct isl_upoly_cst *cst; |
||
254 | |||
255 | cst = isl_upoly_cst_alloc(ctx); |
||
256 | if (!cst) |
||
257 | return NULL; |
||
258 | |||
259 | isl_int_set_si(cst->n, 1); |
||
260 | isl_int_set_si(cst->d, 1); |
||
261 | |||
262 | return &cst->up; |
||
263 | } |
||
264 | |||
265 | __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx) |
||
266 | { |
||
267 | struct isl_upoly_cst *cst; |
||
268 | |||
269 | cst = isl_upoly_cst_alloc(ctx); |
||
270 | if (!cst) |
||
271 | return NULL; |
||
272 | |||
273 | isl_int_set_si(cst->n, 1); |
||
274 | isl_int_set_si(cst->d, 0); |
||
275 | |||
276 | return &cst->up; |
||
277 | } |
||
278 | |||
279 | __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx) |
||
280 | { |
||
281 | struct isl_upoly_cst *cst; |
||
282 | |||
283 | cst = isl_upoly_cst_alloc(ctx); |
||
284 | if (!cst) |
||
285 | return NULL; |
||
286 | |||
287 | isl_int_set_si(cst->n, -1); |
||
288 | isl_int_set_si(cst->d, 0); |
||
289 | |||
290 | return &cst->up; |
||
291 | } |
||
292 | |||
293 | __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx) |
||
294 | { |
||
295 | struct isl_upoly_cst *cst; |
||
296 | |||
297 | cst = isl_upoly_cst_alloc(ctx); |
||
298 | if (!cst) |
||
299 | return NULL; |
||
300 | |||
301 | isl_int_set_si(cst->n, 0); |
||
302 | isl_int_set_si(cst->d, 0); |
||
303 | |||
304 | return &cst->up; |
||
305 | } |
||
306 | |||
307 | __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx, |
||
308 | isl_int n, isl_int d) |
||
309 | { |
||
310 | struct isl_upoly_cst *cst; |
||
311 | |||
312 | cst = isl_upoly_cst_alloc(ctx); |
||
313 | if (!cst) |
||
314 | return NULL; |
||
315 | |||
316 | isl_int_set(cst->n, n); |
||
317 | isl_int_set(cst->d, d); |
||
318 | |||
319 | return &cst->up; |
||
320 | } |
||
321 | |||
322 | __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx, |
||
323 | int var, int size) |
||
324 | { |
||
325 | struct isl_upoly_rec *rec; |
||
326 | |||
327 | isl_assert(ctx, var >= 0, return NULL); |
||
328 | isl_assert(ctx, size >= 0, return NULL); |
||
329 | rec = isl_calloc(ctx, struct isl_upoly_rec, |
||
330 | sizeof(struct isl_upoly_rec) + |
||
331 | size * sizeof(struct isl_upoly *)); |
||
332 | if (!rec) |
||
333 | return NULL; |
||
334 | |||
335 | rec->up.ref = 1; |
||
336 | rec->up.ctx = ctx; |
||
337 | isl_ctx_ref(ctx); |
||
338 | rec->up.var = var; |
||
339 | |||
340 | rec->n = 0; |
||
341 | rec->size = size; |
||
342 | |||
343 | return rec; |
||
344 | } |
||
345 | |||
346 | __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space( |
||
347 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim) |
||
348 | { |
||
349 | qp = isl_qpolynomial_cow(qp); |
||
350 | if (!qp || !dim) |
||
351 | goto error; |
||
352 | |||
353 | isl_space_free(qp->dim); |
||
354 | qp->dim = dim; |
||
355 | |||
356 | return qp; |
||
357 | error: |
||
358 | isl_qpolynomial_free(qp); |
||
359 | isl_space_free(dim); |
||
360 | return NULL; |
||
361 | } |
||
362 | |||
363 | /* Reset the space of "qp". This function is called from isl_pw_templ.c |
||
364 | * and doesn't know if the space of an element object is represented |
||
365 | * directly or through its domain. It therefore passes along both. |
||
366 | */ |
||
367 | __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain( |
||
368 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *space, |
||
369 | __isl_take isl_space *domain) |
||
370 | { |
||
371 | isl_space_free(space); |
||
372 | return isl_qpolynomial_reset_domain_space(qp, domain); |
||
373 | } |
||
374 | |||
375 | isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp) |
||
376 | { |
||
377 | return qp ? qp->dim->ctx : NULL; |
||
378 | } |
||
379 | |||
380 | __isl_give isl_space *isl_qpolynomial_get_domain_space( |
||
381 | __isl_keep isl_qpolynomial *qp) |
||
382 | { |
||
383 | return qp ? isl_space_copy(qp->dim) : NULL; |
||
384 | } |
||
385 | |||
386 | __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp) |
||
387 | { |
||
388 | isl_space *space; |
||
389 | if (!qp) |
||
390 | return NULL; |
||
391 | space = isl_space_copy(qp->dim); |
||
392 | space = isl_space_from_domain(space); |
||
393 | space = isl_space_add_dims(space, isl_dim_out, 1); |
||
394 | return space; |
||
395 | } |
||
396 | |||
397 | /* Externally, an isl_qpolynomial has a map space, but internally, the |
||
398 | * ls field corresponds to the domain of that space. |
||
399 | */ |
||
400 | unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp, |
||
401 | enum isl_dim_type type) |
||
402 | { |
||
403 | if (!qp) |
||
404 | return 0; |
||
405 | if (type == isl_dim_out) |
||
406 | return 1; |
||
407 | if (type == isl_dim_in) |
||
408 | type = isl_dim_set; |
||
409 | return isl_space_dim(qp->dim, type); |
||
410 | } |
||
411 | |||
412 | int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp) |
||
413 | { |
||
414 | return qp ? isl_upoly_is_zero(qp->upoly) : -1; |
||
415 | } |
||
416 | |||
417 | int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp) |
||
418 | { |
||
419 | return qp ? isl_upoly_is_one(qp->upoly) : -1; |
||
420 | } |
||
421 | |||
422 | int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp) |
||
423 | { |
||
424 | return qp ? isl_upoly_is_nan(qp->upoly) : -1; |
||
425 | } |
||
426 | |||
427 | int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp) |
||
428 | { |
||
429 | return qp ? isl_upoly_is_infty(qp->upoly) : -1; |
||
430 | } |
||
431 | |||
432 | int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp) |
||
433 | { |
||
434 | return qp ? isl_upoly_is_neginfty(qp->upoly) : -1; |
||
435 | } |
||
436 | |||
437 | int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp) |
||
438 | { |
||
439 | return qp ? isl_upoly_sgn(qp->upoly) : 0; |
||
440 | } |
||
441 | |||
442 | static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst) |
||
443 | { |
||
444 | isl_int_clear(cst->n); |
||
445 | isl_int_clear(cst->d); |
||
446 | } |
||
447 | |||
448 | static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec) |
||
449 | { |
||
450 | int i; |
||
451 | |||
452 | for (i = 0; i < rec->n; ++i) |
||
453 | isl_upoly_free(rec->p[i]); |
||
454 | } |
||
455 | |||
456 | __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up) |
||
457 | { |
||
458 | if (!up) |
||
459 | return NULL; |
||
460 | |||
461 | up->ref++; |
||
462 | return up; |
||
463 | } |
||
464 | |||
465 | __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up) |
||
466 | { |
||
467 | struct isl_upoly_cst *cst; |
||
468 | struct isl_upoly_cst *dup; |
||
469 | |||
470 | cst = isl_upoly_as_cst(up); |
||
471 | if (!cst) |
||
472 | return NULL; |
||
473 | |||
474 | dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx)); |
||
475 | if (!dup) |
||
476 | return NULL; |
||
477 | isl_int_set(dup->n, cst->n); |
||
478 | isl_int_set(dup->d, cst->d); |
||
479 | |||
480 | return &dup->up; |
||
481 | } |
||
482 | |||
483 | __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up) |
||
484 | { |
||
485 | int i; |
||
486 | struct isl_upoly_rec *rec; |
||
487 | struct isl_upoly_rec *dup; |
||
488 | |||
489 | rec = isl_upoly_as_rec(up); |
||
490 | if (!rec) |
||
491 | return NULL; |
||
492 | |||
493 | dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n); |
||
494 | if (!dup) |
||
495 | return NULL; |
||
496 | |||
497 | for (i = 0; i < rec->n; ++i) { |
||
498 | dup->p[i] = isl_upoly_copy(rec->p[i]); |
||
499 | if (!dup->p[i]) |
||
500 | goto error; |
||
501 | dup->n++; |
||
502 | } |
||
503 | |||
504 | return &dup->up; |
||
505 | error: |
||
506 | isl_upoly_free(&dup->up); |
||
507 | return NULL; |
||
508 | } |
||
509 | |||
510 | __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up) |
||
511 | { |
||
512 | if (!up) |
||
513 | return NULL; |
||
514 | |||
515 | if (isl_upoly_is_cst(up)) |
||
516 | return isl_upoly_dup_cst(up); |
||
517 | else |
||
518 | return isl_upoly_dup_rec(up); |
||
519 | } |
||
520 | |||
521 | __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up) |
||
522 | { |
||
523 | if (!up) |
||
524 | return NULL; |
||
525 | |||
526 | if (up->ref == 1) |
||
527 | return up; |
||
528 | up->ref--; |
||
529 | return isl_upoly_dup(up); |
||
530 | } |
||
531 | |||
532 | void isl_upoly_free(__isl_take struct isl_upoly *up) |
||
533 | { |
||
534 | if (!up) |
||
535 | return; |
||
536 | |||
537 | if (--up->ref > 0) |
||
538 | return; |
||
539 | |||
540 | if (up->var < 0) |
||
541 | upoly_free_cst((struct isl_upoly_cst *)up); |
||
542 | else |
||
543 | upoly_free_rec((struct isl_upoly_rec *)up); |
||
544 | |||
545 | isl_ctx_deref(up->ctx); |
||
546 | free(up); |
||
547 | } |
||
548 | |||
549 | static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst) |
||
550 | { |
||
551 | isl_int gcd; |
||
552 | |||
553 | isl_int_init(gcd); |
||
554 | isl_int_gcd(gcd, cst->n, cst->d); |
||
555 | if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) { |
||
556 | isl_int_divexact(cst->n, cst->n, gcd); |
||
557 | isl_int_divexact(cst->d, cst->d, gcd); |
||
558 | } |
||
559 | isl_int_clear(gcd); |
||
560 | } |
||
561 | |||
562 | __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1, |
||
563 | __isl_take struct isl_upoly *up2) |
||
564 | { |
||
565 | struct isl_upoly_cst *cst1; |
||
566 | struct isl_upoly_cst *cst2; |
||
567 | |||
568 | up1 = isl_upoly_cow(up1); |
||
569 | if (!up1 || !up2) |
||
570 | goto error; |
||
571 | |||
572 | cst1 = isl_upoly_as_cst(up1); |
||
573 | cst2 = isl_upoly_as_cst(up2); |
||
574 | |||
575 | if (isl_int_eq(cst1->d, cst2->d)) |
||
576 | isl_int_add(cst1->n, cst1->n, cst2->n); |
||
577 | else { |
||
578 | isl_int_mul(cst1->n, cst1->n, cst2->d); |
||
579 | isl_int_addmul(cst1->n, cst2->n, cst1->d); |
||
580 | isl_int_mul(cst1->d, cst1->d, cst2->d); |
||
581 | } |
||
582 | |||
583 | isl_upoly_cst_reduce(cst1); |
||
584 | |||
585 | isl_upoly_free(up2); |
||
586 | return up1; |
||
587 | error: |
||
588 | isl_upoly_free(up1); |
||
589 | isl_upoly_free(up2); |
||
590 | return NULL; |
||
591 | } |
||
592 | |||
593 | static __isl_give struct isl_upoly *replace_by_zero( |
||
594 | __isl_take struct isl_upoly *up) |
||
595 | { |
||
596 | struct isl_ctx *ctx; |
||
597 | |||
598 | if (!up) |
||
599 | return NULL; |
||
600 | ctx = up->ctx; |
||
601 | isl_upoly_free(up); |
||
602 | return isl_upoly_zero(ctx); |
||
603 | } |
||
604 | |||
605 | static __isl_give struct isl_upoly *replace_by_constant_term( |
||
606 | __isl_take struct isl_upoly *up) |
||
607 | { |
||
608 | struct isl_upoly_rec *rec; |
||
609 | struct isl_upoly *cst; |
||
610 | |||
611 | if (!up) |
||
612 | return NULL; |
||
613 | |||
614 | rec = isl_upoly_as_rec(up); |
||
615 | if (!rec) |
||
616 | goto error; |
||
617 | cst = isl_upoly_copy(rec->p[0]); |
||
618 | isl_upoly_free(up); |
||
619 | return cst; |
||
620 | error: |
||
621 | isl_upoly_free(up); |
||
622 | return NULL; |
||
623 | } |
||
624 | |||
625 | __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1, |
||
626 | __isl_take struct isl_upoly *up2) |
||
627 | { |
||
628 | int i; |
||
629 | struct isl_upoly_rec *rec1, *rec2; |
||
630 | |||
631 | if (!up1 || !up2) |
||
632 | goto error; |
||
633 | |||
634 | if (isl_upoly_is_nan(up1)) { |
||
635 | isl_upoly_free(up2); |
||
636 | return up1; |
||
637 | } |
||
638 | |||
639 | if (isl_upoly_is_nan(up2)) { |
||
640 | isl_upoly_free(up1); |
||
641 | return up2; |
||
642 | } |
||
643 | |||
644 | if (isl_upoly_is_zero(up1)) { |
||
645 | isl_upoly_free(up1); |
||
646 | return up2; |
||
647 | } |
||
648 | |||
649 | if (isl_upoly_is_zero(up2)) { |
||
650 | isl_upoly_free(up2); |
||
651 | return up1; |
||
652 | } |
||
653 | |||
654 | if (up1->var < up2->var) |
||
655 | return isl_upoly_sum(up2, up1); |
||
656 | |||
657 | if (up2->var < up1->var) { |
||
658 | struct isl_upoly_rec *rec; |
||
659 | if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) { |
||
660 | isl_upoly_free(up1); |
||
661 | return up2; |
||
662 | } |
||
663 | up1 = isl_upoly_cow(up1); |
||
664 | rec = isl_upoly_as_rec(up1); |
||
665 | if (!rec) |
||
666 | goto error; |
||
667 | rec->p[0] = isl_upoly_sum(rec->p[0], up2); |
||
668 | if (rec->n == 1) |
||
669 | up1 = replace_by_constant_term(up1); |
||
670 | return up1; |
||
671 | } |
||
672 | |||
673 | if (isl_upoly_is_cst(up1)) |
||
674 | return isl_upoly_sum_cst(up1, up2); |
||
675 | |||
676 | rec1 = isl_upoly_as_rec(up1); |
||
677 | rec2 = isl_upoly_as_rec(up2); |
||
678 | if (!rec1 || !rec2) |
||
679 | goto error; |
||
680 | |||
681 | if (rec1->n < rec2->n) |
||
682 | return isl_upoly_sum(up2, up1); |
||
683 | |||
684 | up1 = isl_upoly_cow(up1); |
||
685 | rec1 = isl_upoly_as_rec(up1); |
||
686 | if (!rec1) |
||
687 | goto error; |
||
688 | |||
689 | for (i = rec2->n - 1; i >= 0; --i) { |
||
690 | rec1->p[i] = isl_upoly_sum(rec1->p[i], |
||
691 | isl_upoly_copy(rec2->p[i])); |
||
692 | if (!rec1->p[i]) |
||
693 | goto error; |
||
694 | if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) { |
||
695 | isl_upoly_free(rec1->p[i]); |
||
696 | rec1->n--; |
||
697 | } |
||
698 | } |
||
699 | |||
700 | if (rec1->n == 0) |
||
701 | up1 = replace_by_zero(up1); |
||
702 | else if (rec1->n == 1) |
||
703 | up1 = replace_by_constant_term(up1); |
||
704 | |||
705 | isl_upoly_free(up2); |
||
706 | |||
707 | return up1; |
||
708 | error: |
||
709 | isl_upoly_free(up1); |
||
710 | isl_upoly_free(up2); |
||
711 | return NULL; |
||
712 | } |
||
713 | |||
714 | __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int( |
||
715 | __isl_take struct isl_upoly *up, isl_int v) |
||
716 | { |
||
717 | struct isl_upoly_cst *cst; |
||
718 | |||
719 | up = isl_upoly_cow(up); |
||
720 | if (!up) |
||
721 | return NULL; |
||
722 | |||
723 | cst = isl_upoly_as_cst(up); |
||
724 | |||
725 | isl_int_addmul(cst->n, cst->d, v); |
||
726 | |||
727 | return up; |
||
728 | } |
||
729 | |||
730 | __isl_give struct isl_upoly *isl_upoly_add_isl_int( |
||
731 | __isl_take struct isl_upoly *up, isl_int v) |
||
732 | { |
||
733 | struct isl_upoly_rec *rec; |
||
734 | |||
735 | if (!up) |
||
736 | return NULL; |
||
737 | |||
738 | if (isl_upoly_is_cst(up)) |
||
739 | return isl_upoly_cst_add_isl_int(up, v); |
||
740 | |||
741 | up = isl_upoly_cow(up); |
||
742 | rec = isl_upoly_as_rec(up); |
||
743 | if (!rec) |
||
744 | goto error; |
||
745 | |||
746 | rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v); |
||
747 | if (!rec->p[0]) |
||
748 | goto error; |
||
749 | |||
750 | return up; |
||
751 | error: |
||
752 | isl_upoly_free(up); |
||
753 | return NULL; |
||
754 | } |
||
755 | |||
756 | __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int( |
||
757 | __isl_take struct isl_upoly *up, isl_int v) |
||
758 | { |
||
759 | struct isl_upoly_cst *cst; |
||
760 | |||
761 | if (isl_upoly_is_zero(up)) |
||
762 | return up; |
||
763 | |||
764 | up = isl_upoly_cow(up); |
||
765 | if (!up) |
||
766 | return NULL; |
||
767 | |||
768 | cst = isl_upoly_as_cst(up); |
||
769 | |||
770 | isl_int_mul(cst->n, cst->n, v); |
||
771 | |||
772 | return up; |
||
773 | } |
||
774 | |||
775 | __isl_give struct isl_upoly *isl_upoly_mul_isl_int( |
||
776 | __isl_take struct isl_upoly *up, isl_int v) |
||
777 | { |
||
778 | int i; |
||
779 | struct isl_upoly_rec *rec; |
||
780 | |||
781 | if (!up) |
||
782 | return NULL; |
||
783 | |||
784 | if (isl_upoly_is_cst(up)) |
||
785 | return isl_upoly_cst_mul_isl_int(up, v); |
||
786 | |||
787 | up = isl_upoly_cow(up); |
||
788 | rec = isl_upoly_as_rec(up); |
||
789 | if (!rec) |
||
790 | goto error; |
||
791 | |||
792 | for (i = 0; i < rec->n; ++i) { |
||
793 | rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v); |
||
794 | if (!rec->p[i]) |
||
795 | goto error; |
||
796 | } |
||
797 | |||
798 | return up; |
||
799 | error: |
||
800 | isl_upoly_free(up); |
||
801 | return NULL; |
||
802 | } |
||
803 | |||
804 | __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1, |
||
805 | __isl_take struct isl_upoly *up2) |
||
806 | { |
||
807 | struct isl_upoly_cst *cst1; |
||
808 | struct isl_upoly_cst *cst2; |
||
809 | |||
810 | up1 = isl_upoly_cow(up1); |
||
811 | if (!up1 || !up2) |
||
812 | goto error; |
||
813 | |||
814 | cst1 = isl_upoly_as_cst(up1); |
||
815 | cst2 = isl_upoly_as_cst(up2); |
||
816 | |||
817 | isl_int_mul(cst1->n, cst1->n, cst2->n); |
||
818 | isl_int_mul(cst1->d, cst1->d, cst2->d); |
||
819 | |||
820 | isl_upoly_cst_reduce(cst1); |
||
821 | |||
822 | isl_upoly_free(up2); |
||
823 | return up1; |
||
824 | error: |
||
825 | isl_upoly_free(up1); |
||
826 | isl_upoly_free(up2); |
||
827 | return NULL; |
||
828 | } |
||
829 | |||
830 | __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1, |
||
831 | __isl_take struct isl_upoly *up2) |
||
832 | { |
||
833 | struct isl_upoly_rec *rec1; |
||
834 | struct isl_upoly_rec *rec2; |
||
835 | struct isl_upoly_rec *res = NULL; |
||
836 | int i, j; |
||
837 | int size; |
||
838 | |||
839 | rec1 = isl_upoly_as_rec(up1); |
||
840 | rec2 = isl_upoly_as_rec(up2); |
||
841 | if (!rec1 || !rec2) |
||
842 | goto error; |
||
843 | size = rec1->n + rec2->n - 1; |
||
844 | res = isl_upoly_alloc_rec(up1->ctx, up1->var, size); |
||
845 | if (!res) |
||
846 | goto error; |
||
847 | |||
848 | for (i = 0; i < rec1->n; ++i) { |
||
849 | res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]), |
||
850 | isl_upoly_copy(rec1->p[i])); |
||
851 | if (!res->p[i]) |
||
852 | goto error; |
||
853 | res->n++; |
||
854 | } |
||
855 | for (; i < size; ++i) { |
||
856 | res->p[i] = isl_upoly_zero(up1->ctx); |
||
857 | if (!res->p[i]) |
||
858 | goto error; |
||
859 | res->n++; |
||
860 | } |
||
861 | for (i = 0; i < rec1->n; ++i) { |
||
862 | for (j = 1; j < rec2->n; ++j) { |
||
863 | struct isl_upoly *up; |
||
864 | up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]), |
||
865 | isl_upoly_copy(rec1->p[i])); |
||
866 | res->p[i + j] = isl_upoly_sum(res->p[i + j], up); |
||
867 | if (!res->p[i + j]) |
||
868 | goto error; |
||
869 | } |
||
870 | } |
||
871 | |||
872 | isl_upoly_free(up1); |
||
873 | isl_upoly_free(up2); |
||
874 | |||
875 | return &res->up; |
||
876 | error: |
||
877 | isl_upoly_free(up1); |
||
878 | isl_upoly_free(up2); |
||
879 | isl_upoly_free(&res->up); |
||
880 | return NULL; |
||
881 | } |
||
882 | |||
883 | __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1, |
||
884 | __isl_take struct isl_upoly *up2) |
||
885 | { |
||
886 | if (!up1 || !up2) |
||
887 | goto error; |
||
888 | |||
889 | if (isl_upoly_is_nan(up1)) { |
||
890 | isl_upoly_free(up2); |
||
891 | return up1; |
||
892 | } |
||
893 | |||
894 | if (isl_upoly_is_nan(up2)) { |
||
895 | isl_upoly_free(up1); |
||
896 | return up2; |
||
897 | } |
||
898 | |||
899 | if (isl_upoly_is_zero(up1)) { |
||
900 | isl_upoly_free(up2); |
||
901 | return up1; |
||
902 | } |
||
903 | |||
904 | if (isl_upoly_is_zero(up2)) { |
||
905 | isl_upoly_free(up1); |
||
906 | return up2; |
||
907 | } |
||
908 | |||
909 | if (isl_upoly_is_one(up1)) { |
||
910 | isl_upoly_free(up1); |
||
911 | return up2; |
||
912 | } |
||
913 | |||
914 | if (isl_upoly_is_one(up2)) { |
||
915 | isl_upoly_free(up2); |
||
916 | return up1; |
||
917 | } |
||
918 | |||
919 | if (up1->var < up2->var) |
||
920 | return isl_upoly_mul(up2, up1); |
||
921 | |||
922 | if (up2->var < up1->var) { |
||
923 | int i; |
||
924 | struct isl_upoly_rec *rec; |
||
925 | if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) { |
||
926 | isl_ctx *ctx = up1->ctx; |
||
927 | isl_upoly_free(up1); |
||
928 | isl_upoly_free(up2); |
||
929 | return isl_upoly_nan(ctx); |
||
930 | } |
||
931 | up1 = isl_upoly_cow(up1); |
||
932 | rec = isl_upoly_as_rec(up1); |
||
933 | if (!rec) |
||
934 | goto error; |
||
935 | |||
936 | for (i = 0; i < rec->n; ++i) { |
||
937 | rec->p[i] = isl_upoly_mul(rec->p[i], |
||
938 | isl_upoly_copy(up2)); |
||
939 | if (!rec->p[i]) |
||
940 | goto error; |
||
941 | } |
||
942 | isl_upoly_free(up2); |
||
943 | return up1; |
||
944 | } |
||
945 | |||
946 | if (isl_upoly_is_cst(up1)) |
||
947 | return isl_upoly_mul_cst(up1, up2); |
||
948 | |||
949 | return isl_upoly_mul_rec(up1, up2); |
||
950 | error: |
||
951 | isl_upoly_free(up1); |
||
952 | isl_upoly_free(up2); |
||
953 | return NULL; |
||
954 | } |
||
955 | |||
956 | __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up, |
||
957 | unsigned power) |
||
958 | { |
||
959 | struct isl_upoly *res; |
||
960 | |||
961 | if (!up) |
||
962 | return NULL; |
||
963 | if (power == 1) |
||
964 | return up; |
||
965 | |||
966 | if (power % 2) |
||
967 | res = isl_upoly_copy(up); |
||
968 | else |
||
969 | res = isl_upoly_one(up->ctx); |
||
970 | |||
971 | while (power >>= 1) { |
||
972 | up = isl_upoly_mul(up, isl_upoly_copy(up)); |
||
973 | if (power % 2) |
||
974 | res = isl_upoly_mul(res, isl_upoly_copy(up)); |
||
975 | } |
||
976 | |||
977 | isl_upoly_free(up); |
||
978 | return res; |
||
979 | } |
||
980 | |||
981 | __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim, |
||
982 | unsigned n_div, __isl_take struct isl_upoly *up) |
||
983 | { |
||
984 | struct isl_qpolynomial *qp = NULL; |
||
985 | unsigned total; |
||
986 | |||
987 | if (!dim || !up) |
||
988 | goto error; |
||
989 | |||
990 | if (!isl_space_is_set(dim)) |
||
991 | isl_die(isl_space_get_ctx(dim), isl_error_invalid, |
||
992 | "domain of polynomial should be a set", goto error); |
||
993 | |||
994 | total = isl_space_dim(dim, isl_dim_all); |
||
995 | |||
996 | qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial); |
||
997 | if (!qp) |
||
998 | goto error; |
||
999 | |||
1000 | qp->ref = 1; |
||
1001 | qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div); |
||
1002 | if (!qp->div) |
||
1003 | goto error; |
||
1004 | |||
1005 | qp->dim = dim; |
||
1006 | qp->upoly = up; |
||
1007 | |||
1008 | return qp; |
||
1009 | error: |
||
1010 | isl_space_free(dim); |
||
1011 | isl_upoly_free(up); |
||
1012 | isl_qpolynomial_free(qp); |
||
1013 | return NULL; |
||
1014 | } |
||
1015 | |||
1016 | __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp) |
||
1017 | { |
||
1018 | if (!qp) |
||
1019 | return NULL; |
||
1020 | |||
1021 | qp->ref++; |
||
1022 | return qp; |
||
1023 | } |
||
1024 | |||
1025 | __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp) |
||
1026 | { |
||
1027 | struct isl_qpolynomial *dup; |
||
1028 | |||
1029 | if (!qp) |
||
1030 | return NULL; |
||
1031 | |||
1032 | dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, |
||
1033 | isl_upoly_copy(qp->upoly)); |
||
1034 | if (!dup) |
||
1035 | return NULL; |
||
1036 | isl_mat_free(dup->div); |
||
1037 | dup->div = isl_mat_copy(qp->div); |
||
1038 | if (!dup->div) |
||
1039 | goto error; |
||
1040 | |||
1041 | return dup; |
||
1042 | error: |
||
1043 | isl_qpolynomial_free(dup); |
||
1044 | return NULL; |
||
1045 | } |
||
1046 | |||
1047 | __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp) |
||
1048 | { |
||
1049 | if (!qp) |
||
1050 | return NULL; |
||
1051 | |||
1052 | if (qp->ref == 1) |
||
1053 | return qp; |
||
1054 | qp->ref--; |
||
1055 | return isl_qpolynomial_dup(qp); |
||
1056 | } |
||
1057 | |||
1058 | void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp) |
||
1059 | { |
||
1060 | if (!qp) |
||
1061 | return NULL; |
||
1062 | |||
1063 | if (--qp->ref > 0) |
||
1064 | return NULL; |
||
1065 | |||
1066 | isl_space_free(qp->dim); |
||
1067 | isl_mat_free(qp->div); |
||
1068 | isl_upoly_free(qp->upoly); |
||
1069 | |||
1070 | free(qp); |
||
1071 | return NULL; |
||
1072 | } |
||
1073 | |||
1074 | __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power) |
||
1075 | { |
||
1076 | int i; |
||
1077 | struct isl_upoly_rec *rec; |
||
1078 | struct isl_upoly_cst *cst; |
||
1079 | |||
1080 | rec = isl_upoly_alloc_rec(ctx, pos, 1 + power); |
||
1081 | if (!rec) |
||
1082 | return NULL; |
||
1083 | for (i = 0; i < 1 + power; ++i) { |
||
1084 | rec->p[i] = isl_upoly_zero(ctx); |
||
1085 | if (!rec->p[i]) |
||
1086 | goto error; |
||
1087 | rec->n++; |
||
1088 | } |
||
1089 | cst = isl_upoly_as_cst(rec->p[power]); |
||
1090 | isl_int_set_si(cst->n, 1); |
||
1091 | |||
1092 | return &rec->up; |
||
1093 | error: |
||
1094 | isl_upoly_free(&rec->up); |
||
1095 | return NULL; |
||
1096 | } |
||
1097 | |||
1098 | /* r array maps original positions to new positions. |
||
1099 | */ |
||
1100 | static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up, |
||
1101 | int *r) |
||
1102 | { |
||
1103 | int i; |
||
1104 | struct isl_upoly_rec *rec; |
||
1105 | struct isl_upoly *base; |
||
1106 | struct isl_upoly *res; |
||
1107 | |||
1108 | if (isl_upoly_is_cst(up)) |
||
1109 | return up; |
||
1110 | |||
1111 | rec = isl_upoly_as_rec(up); |
||
1112 | if (!rec) |
||
1113 | goto error; |
||
1114 | |||
1115 | isl_assert(up->ctx, rec->n >= 1, goto error); |
||
1116 | |||
1117 | base = isl_upoly_var_pow(up->ctx, r[up->var], 1); |
||
1118 | res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r); |
||
1119 | |||
1120 | for (i = rec->n - 2; i >= 0; --i) { |
||
1121 | res = isl_upoly_mul(res, isl_upoly_copy(base)); |
||
1122 | res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r)); |
||
1123 | } |
||
1124 | |||
1125 | isl_upoly_free(base); |
||
1126 | isl_upoly_free(up); |
||
1127 | |||
1128 | return res; |
||
1129 | error: |
||
1130 | isl_upoly_free(up); |
||
1131 | return NULL; |
||
1132 | } |
||
1133 | |||
1134 | static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2) |
||
1135 | { |
||
1136 | int n_row, n_col; |
||
1137 | int equal; |
||
1138 | |||
1139 | isl_assert(div1->ctx, div1->n_row >= div2->n_row && |
||
1140 | div1->n_col >= div2->n_col, return -1); |
||
1141 | |||
1142 | if (div1->n_row == div2->n_row) |
||
1143 | return isl_mat_is_equal(div1, div2); |
||
1144 | |||
1145 | n_row = div1->n_row; |
||
1146 | n_col = div1->n_col; |
||
1147 | div1->n_row = div2->n_row; |
||
1148 | div1->n_col = div2->n_col; |
||
1149 | |||
1150 | equal = isl_mat_is_equal(div1, div2); |
||
1151 | |||
1152 | div1->n_row = n_row; |
||
1153 | div1->n_col = n_col; |
||
1154 | |||
1155 | return equal; |
||
1156 | } |
||
1157 | |||
1158 | static int cmp_row(__isl_keep isl_mat *div, int i, int j) |
||
1159 | { |
||
1160 | int li, lj; |
||
1161 | |||
1162 | li = isl_seq_last_non_zero(div->row[i], div->n_col); |
||
1163 | lj = isl_seq_last_non_zero(div->row[j], div->n_col); |
||
1164 | |||
1165 | if (li != lj) |
||
1166 | return li - lj; |
||
1167 | |||
1168 | return isl_seq_cmp(div->row[i], div->row[j], div->n_col); |
||
1169 | } |
||
1170 | |||
1171 | struct isl_div_sort_info { |
||
1172 | isl_mat *div; |
||
1173 | int row; |
||
1174 | }; |
||
1175 | |||
1176 | static int div_sort_cmp(const void *p1, const void *p2) |
||
1177 | { |
||
1178 | const struct isl_div_sort_info *i1, *i2; |
||
1179 | i1 = (const struct isl_div_sort_info *) p1; |
||
1180 | i2 = (const struct isl_div_sort_info *) p2; |
||
1181 | |||
1182 | return cmp_row(i1->div, i1->row, i2->row); |
||
1183 | } |
||
1184 | |||
1185 | /* Sort divs and remove duplicates. |
||
1186 | */ |
||
1187 | static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp) |
||
1188 | { |
||
1189 | int i; |
||
1190 | int skip; |
||
1191 | int len; |
||
1192 | struct isl_div_sort_info *array = NULL; |
||
1193 | int *pos = NULL, *at = NULL; |
||
1194 | int *reordering = NULL; |
||
1195 | unsigned div_pos; |
||
1196 | |||
1197 | if (!qp) |
||
1198 | return NULL; |
||
1199 | if (qp->div->n_row <= 1) |
||
1200 | return qp; |
||
1201 | |||
1202 | div_pos = isl_space_dim(qp->dim, isl_dim_all); |
||
1203 | |||
1204 | array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info, |
||
1205 | qp->div->n_row); |
||
1206 | pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
||
1207 | at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
||
1208 | len = qp->div->n_col - 2; |
||
1209 | reordering = isl_alloc_array(qp->div->ctx, int, len); |
||
1210 | if (!array || !pos || !at || !reordering) |
||
1211 | goto error; |
||
1212 | |||
1213 | for (i = 0; i < qp->div->n_row; ++i) { |
||
1214 | array[i].div = qp->div; |
||
1215 | array[i].row = i; |
||
1216 | pos[i] = i; |
||
1217 | at[i] = i; |
||
1218 | } |
||
1219 | |||
1220 | qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info), |
||
1221 | div_sort_cmp); |
||
1222 | |||
1223 | for (i = 0; i < div_pos; ++i) |
||
1224 | reordering[i] = i; |
||
1225 | |||
1226 | for (i = 0; i < qp->div->n_row; ++i) { |
||
1227 | if (pos[array[i].row] == i) |
||
1228 | continue; |
||
1229 | qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]); |
||
1230 | pos[at[i]] = pos[array[i].row]; |
||
1231 | at[pos[array[i].row]] = at[i]; |
||
1232 | at[i] = array[i].row; |
||
1233 | pos[array[i].row] = i; |
||
1234 | } |
||
1235 | |||
1236 | skip = 0; |
||
1237 | for (i = 0; i < len - div_pos; ++i) { |
||
1238 | if (i > 0 && |
||
1239 | isl_seq_eq(qp->div->row[i - skip - 1], |
||
1240 | qp->div->row[i - skip], qp->div->n_col)) { |
||
1241 | qp->div = isl_mat_drop_rows(qp->div, i - skip, 1); |
||
1242 | isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1, |
||
1243 | 2 + div_pos + i - skip); |
||
1244 | qp->div = isl_mat_drop_cols(qp->div, |
||
1245 | 2 + div_pos + i - skip, 1); |
||
1246 | skip++; |
||
1247 | } |
||
1248 | reordering[div_pos + array[i].row] = div_pos + i - skip; |
||
1249 | } |
||
1250 | |||
1251 | qp->upoly = reorder(qp->upoly, reordering); |
||
1252 | |||
1253 | if (!qp->upoly || !qp->div) |
||
1254 | goto error; |
||
1255 | |||
1256 | free(at); |
||
1257 | free(pos); |
||
1258 | free(array); |
||
1259 | free(reordering); |
||
1260 | |||
1261 | return qp; |
||
1262 | error: |
||
1263 | free(at); |
||
1264 | free(pos); |
||
1265 | free(array); |
||
1266 | free(reordering); |
||
1267 | isl_qpolynomial_free(qp); |
||
1268 | return NULL; |
||
1269 | } |
||
1270 | |||
1271 | static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up, |
||
1272 | int *exp, int first) |
||
1273 | { |
||
1274 | int i; |
||
1275 | struct isl_upoly_rec *rec; |
||
1276 | |||
1277 | if (isl_upoly_is_cst(up)) |
||
1278 | return up; |
||
1279 | |||
1280 | if (up->var < first) |
||
1281 | return up; |
||
1282 | |||
1283 | if (exp[up->var - first] == up->var - first) |
||
1284 | return up; |
||
1285 | |||
1286 | up = isl_upoly_cow(up); |
||
1287 | if (!up) |
||
1288 | goto error; |
||
1289 | |||
1290 | up->var = exp[up->var - first] + first; |
||
1291 | |||
1292 | rec = isl_upoly_as_rec(up); |
||
1293 | if (!rec) |
||
1294 | goto error; |
||
1295 | |||
1296 | for (i = 0; i < rec->n; ++i) { |
||
1297 | rec->p[i] = expand(rec->p[i], exp, first); |
||
1298 | if (!rec->p[i]) |
||
1299 | goto error; |
||
1300 | } |
||
1301 | |||
1302 | return up; |
||
1303 | error: |
||
1304 | isl_upoly_free(up); |
||
1305 | return NULL; |
||
1306 | } |
||
1307 | |||
1308 | static __isl_give isl_qpolynomial *with_merged_divs( |
||
1309 | __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1, |
||
1310 | __isl_take isl_qpolynomial *qp2), |
||
1311 | __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) |
||
1312 | { |
||
1313 | int *exp1 = NULL; |
||
1314 | int *exp2 = NULL; |
||
1315 | isl_mat *div = NULL; |
||
1316 | |||
1317 | qp1 = isl_qpolynomial_cow(qp1); |
||
1318 | qp2 = isl_qpolynomial_cow(qp2); |
||
1319 | |||
1320 | if (!qp1 || !qp2) |
||
1321 | goto error; |
||
1322 | |||
1323 | isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row && |
||
1324 | qp1->div->n_col >= qp2->div->n_col, goto error); |
||
1325 | |||
1326 | exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row); |
||
1327 | exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row); |
||
1328 | if (!exp1 || !exp2) |
||
1329 | goto error; |
||
1330 | |||
1331 | div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2); |
||
1332 | if (!div) |
||
1333 | goto error; |
||
1334 | |||
1335 | isl_mat_free(qp1->div); |
||
1336 | qp1->div = isl_mat_copy(div); |
||
1337 | isl_mat_free(qp2->div); |
||
1338 | qp2->div = isl_mat_copy(div); |
||
1339 | |||
1340 | qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2); |
||
1341 | qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2); |
||
1342 | |||
1343 | if (!qp1->upoly || !qp2->upoly) |
||
1344 | goto error; |
||
1345 | |||
1346 | isl_mat_free(div); |
||
1347 | free(exp1); |
||
1348 | free(exp2); |
||
1349 | |||
1350 | return fn(qp1, qp2); |
||
1351 | error: |
||
1352 | isl_mat_free(div); |
||
1353 | free(exp1); |
||
1354 | free(exp2); |
||
1355 | isl_qpolynomial_free(qp1); |
||
1356 | isl_qpolynomial_free(qp2); |
||
1357 | return NULL; |
||
1358 | } |
||
1359 | |||
1360 | __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1, |
||
1361 | __isl_take isl_qpolynomial *qp2) |
||
1362 | { |
||
1363 | qp1 = isl_qpolynomial_cow(qp1); |
||
1364 | |||
1365 | if (!qp1 || !qp2) |
||
1366 | goto error; |
||
1367 | |||
1368 | if (qp1->div->n_row < qp2->div->n_row) |
||
1369 | return isl_qpolynomial_add(qp2, qp1); |
||
1370 | |||
1371 | isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error); |
||
1372 | if (!compatible_divs(qp1->div, qp2->div)) |
||
1373 | return with_merged_divs(isl_qpolynomial_add, qp1, qp2); |
||
1374 | |||
1375 | qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly)); |
||
1376 | if (!qp1->upoly) |
||
1377 | goto error; |
||
1378 | |||
1379 | isl_qpolynomial_free(qp2); |
||
1380 | |||
1381 | return qp1; |
||
1382 | error: |
||
1383 | isl_qpolynomial_free(qp1); |
||
1384 | isl_qpolynomial_free(qp2); |
||
1385 | return NULL; |
||
1386 | } |
||
1387 | |||
1388 | __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain( |
||
1389 | __isl_keep isl_set *dom, |
||
1390 | __isl_take isl_qpolynomial *qp1, |
||
1391 | __isl_take isl_qpolynomial *qp2) |
||
1392 | { |
||
1393 | qp1 = isl_qpolynomial_add(qp1, qp2); |
||
1394 | qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom)); |
||
1395 | return qp1; |
||
1396 | } |
||
1397 | |||
1398 | __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1, |
||
1399 | __isl_take isl_qpolynomial *qp2) |
||
1400 | { |
||
1401 | return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2)); |
||
1402 | } |
||
1403 | |||
1404 | __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int( |
||
1405 | __isl_take isl_qpolynomial *qp, isl_int v) |
||
1406 | { |
||
1407 | if (isl_int_is_zero(v)) |
||
1408 | return qp; |
||
1409 | |||
1410 | qp = isl_qpolynomial_cow(qp); |
||
1411 | if (!qp) |
||
1412 | return NULL; |
||
1413 | |||
1414 | qp->upoly = isl_upoly_add_isl_int(qp->upoly, v); |
||
1415 | if (!qp->upoly) |
||
1416 | goto error; |
||
1417 | |||
1418 | return qp; |
||
1419 | error: |
||
1420 | isl_qpolynomial_free(qp); |
||
1421 | return NULL; |
||
1422 | |||
1423 | } |
||
1424 | |||
1425 | __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp) |
||
1426 | { |
||
1427 | if (!qp) |
||
1428 | return NULL; |
||
1429 | |||
1430 | return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone); |
||
1431 | } |
||
1432 | |||
1433 | __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int( |
||
1434 | __isl_take isl_qpolynomial *qp, isl_int v) |
||
1435 | { |
||
1436 | if (isl_int_is_one(v)) |
||
1437 | return qp; |
||
1438 | |||
1439 | if (qp && isl_int_is_zero(v)) { |
||
1440 | isl_qpolynomial *zero; |
||
1441 | zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim)); |
||
1442 | isl_qpolynomial_free(qp); |
||
1443 | return zero; |
||
1444 | } |
||
1445 | |||
1446 | qp = isl_qpolynomial_cow(qp); |
||
1447 | if (!qp) |
||
1448 | return NULL; |
||
1449 | |||
1450 | qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v); |
||
1451 | if (!qp->upoly) |
||
1452 | goto error; |
||
1453 | |||
1454 | return qp; |
||
1455 | error: |
||
1456 | isl_qpolynomial_free(qp); |
||
1457 | return NULL; |
||
1458 | } |
||
1459 | |||
1460 | __isl_give isl_qpolynomial *isl_qpolynomial_scale( |
||
1461 | __isl_take isl_qpolynomial *qp, isl_int v) |
||
1462 | { |
||
1463 | return isl_qpolynomial_mul_isl_int(qp, v); |
||
1464 | } |
||
1465 | |||
1466 | __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1, |
||
1467 | __isl_take isl_qpolynomial *qp2) |
||
1468 | { |
||
1469 | qp1 = isl_qpolynomial_cow(qp1); |
||
1470 | |||
1471 | if (!qp1 || !qp2) |
||
1472 | goto error; |
||
1473 | |||
1474 | if (qp1->div->n_row < qp2->div->n_row) |
||
1475 | return isl_qpolynomial_mul(qp2, qp1); |
||
1476 | |||
1477 | isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error); |
||
1478 | if (!compatible_divs(qp1->div, qp2->div)) |
||
1479 | return with_merged_divs(isl_qpolynomial_mul, qp1, qp2); |
||
1480 | |||
1481 | qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly)); |
||
1482 | if (!qp1->upoly) |
||
1483 | goto error; |
||
1484 | |||
1485 | isl_qpolynomial_free(qp2); |
||
1486 | |||
1487 | return qp1; |
||
1488 | error: |
||
1489 | isl_qpolynomial_free(qp1); |
||
1490 | isl_qpolynomial_free(qp2); |
||
1491 | return NULL; |
||
1492 | } |
||
1493 | |||
1494 | __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp, |
||
1495 | unsigned power) |
||
1496 | { |
||
1497 | qp = isl_qpolynomial_cow(qp); |
||
1498 | |||
1499 | if (!qp) |
||
1500 | return NULL; |
||
1501 | |||
1502 | qp->upoly = isl_upoly_pow(qp->upoly, power); |
||
1503 | if (!qp->upoly) |
||
1504 | goto error; |
||
1505 | |||
1506 | return qp; |
||
1507 | error: |
||
1508 | isl_qpolynomial_free(qp); |
||
1509 | return NULL; |
||
1510 | } |
||
1511 | |||
1512 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( |
||
1513 | __isl_take isl_pw_qpolynomial *pwqp, unsigned power) |
||
1514 | { |
||
1515 | int i; |
||
1516 | |||
1517 | if (power == 1) |
||
1518 | return pwqp; |
||
1519 | |||
1520 | pwqp = isl_pw_qpolynomial_cow(pwqp); |
||
1521 | if (!pwqp) |
||
1522 | return NULL; |
||
1523 | |||
1524 | for (i = 0; i < pwqp->n; ++i) { |
||
1525 | pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power); |
||
1526 | if (!pwqp->p[i].qp) |
||
1527 | return isl_pw_qpolynomial_free(pwqp); |
||
1528 | } |
||
1529 | |||
1530 | return pwqp; |
||
1531 | } |
||
1532 | |||
1533 | __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( |
||
1534 | __isl_take isl_space *dim) |
||
1535 | { |
||
1536 | if (!dim) |
||
1537 | return NULL; |
||
1538 | return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); |
||
1539 | } |
||
1540 | |||
1541 | __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( |
||
1542 | __isl_take isl_space *dim) |
||
1543 | { |
||
1544 | if (!dim) |
||
1545 | return NULL; |
||
1546 | return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx)); |
||
1547 | } |
||
1548 | |||
1549 | __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( |
||
1550 | __isl_take isl_space *dim) |
||
1551 | { |
||
1552 | if (!dim) |
||
1553 | return NULL; |
||
1554 | return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx)); |
||
1555 | } |
||
1556 | |||
1557 | __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( |
||
1558 | __isl_take isl_space *dim) |
||
1559 | { |
||
1560 | if (!dim) |
||
1561 | return NULL; |
||
1562 | return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx)); |
||
1563 | } |
||
1564 | |||
1565 | __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( |
||
1566 | __isl_take isl_space *dim) |
||
1567 | { |
||
1568 | if (!dim) |
||
1569 | return NULL; |
||
1570 | return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx)); |
||
1571 | } |
||
1572 | |||
1573 | __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain( |
||
1574 | __isl_take isl_space *dim, |
||
1575 | isl_int v) |
||
1576 | { |
||
1577 | struct isl_qpolynomial *qp; |
||
1578 | struct isl_upoly_cst *cst; |
||
1579 | |||
1580 | if (!dim) |
||
1581 | return NULL; |
||
1582 | |||
1583 | qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); |
||
1584 | if (!qp) |
||
1585 | return NULL; |
||
1586 | |||
1587 | cst = isl_upoly_as_cst(qp->upoly); |
||
1588 | isl_int_set(cst->n, v); |
||
1589 | |||
1590 | return qp; |
||
1591 | } |
||
1592 | |||
1593 | int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, |
||
1594 | isl_int *n, isl_int *d) |
||
1595 | { |
||
1596 | struct isl_upoly_cst *cst; |
||
1597 | |||
1598 | if (!qp) |
||
1599 | return -1; |
||
1600 | |||
1601 | if (!isl_upoly_is_cst(qp->upoly)) |
||
1602 | return 0; |
||
1603 | |||
1604 | cst = isl_upoly_as_cst(qp->upoly); |
||
1605 | if (!cst) |
||
1606 | return -1; |
||
1607 | |||
1608 | if (n) |
||
1609 | isl_int_set(*n, cst->n); |
||
1610 | if (d) |
||
1611 | isl_int_set(*d, cst->d); |
||
1612 | |||
1613 | return 1; |
||
1614 | } |
||
1615 | |||
1616 | int isl_upoly_is_affine(__isl_keep struct isl_upoly *up) |
||
1617 | { |
||
1618 | int is_cst; |
||
1619 | struct isl_upoly_rec *rec; |
||
1620 | |||
1621 | if (!up) |
||
1622 | return -1; |
||
1623 | |||
1624 | if (up->var < 0) |
||
1625 | return 1; |
||
1626 | |||
1627 | rec = isl_upoly_as_rec(up); |
||
1628 | if (!rec) |
||
1629 | return -1; |
||
1630 | |||
1631 | if (rec->n > 2) |
||
1632 | return 0; |
||
1633 | |||
1634 | isl_assert(up->ctx, rec->n > 1, return -1); |
||
1635 | |||
1636 | is_cst = isl_upoly_is_cst(rec->p[1]); |
||
1637 | if (is_cst < 0) |
||
1638 | return -1; |
||
1639 | if (!is_cst) |
||
1640 | return 0; |
||
1641 | |||
1642 | return isl_upoly_is_affine(rec->p[0]); |
||
1643 | } |
||
1644 | |||
1645 | int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp) |
||
1646 | { |
||
1647 | if (!qp) |
||
1648 | return -1; |
||
1649 | |||
1650 | if (qp->div->n_row > 0) |
||
1651 | return 0; |
||
1652 | |||
1653 | return isl_upoly_is_affine(qp->upoly); |
||
1654 | } |
||
1655 | |||
1656 | static void update_coeff(__isl_keep isl_vec *aff, |
||
1657 | __isl_keep struct isl_upoly_cst *cst, int pos) |
||
1658 | { |
||
1659 | isl_int gcd; |
||
1660 | isl_int f; |
||
1661 | |||
1662 | if (isl_int_is_zero(cst->n)) |
||
1663 | return; |
||
1664 | |||
1665 | isl_int_init(gcd); |
||
1666 | isl_int_init(f); |
||
1667 | isl_int_gcd(gcd, cst->d, aff->el[0]); |
||
1668 | isl_int_divexact(f, cst->d, gcd); |
||
1669 | isl_int_divexact(gcd, aff->el[0], gcd); |
||
1670 | isl_seq_scale(aff->el, aff->el, f, aff->size); |
||
1671 | isl_int_mul(aff->el[1 + pos], gcd, cst->n); |
||
1672 | isl_int_clear(gcd); |
||
1673 | isl_int_clear(f); |
||
1674 | } |
||
1675 | |||
1676 | int isl_upoly_update_affine(__isl_keep struct isl_upoly *up, |
||
1677 | __isl_keep isl_vec *aff) |
||
1678 | { |
||
1679 | struct isl_upoly_cst *cst; |
||
1680 | struct isl_upoly_rec *rec; |
||
1681 | |||
1682 | if (!up || !aff) |
||
1683 | return -1; |
||
1684 | |||
1685 | if (up->var < 0) { |
||
1686 | struct isl_upoly_cst *cst; |
||
1687 | |||
1688 | cst = isl_upoly_as_cst(up); |
||
1689 | if (!cst) |
||
1690 | return -1; |
||
1691 | update_coeff(aff, cst, 0); |
||
1692 | return 0; |
||
1693 | } |
||
1694 | |||
1695 | rec = isl_upoly_as_rec(up); |
||
1696 | if (!rec) |
||
1697 | return -1; |
||
1698 | isl_assert(up->ctx, rec->n == 2, return -1); |
||
1699 | |||
1700 | cst = isl_upoly_as_cst(rec->p[1]); |
||
1701 | if (!cst) |
||
1702 | return -1; |
||
1703 | update_coeff(aff, cst, 1 + up->var); |
||
1704 | |||
1705 | return isl_upoly_update_affine(rec->p[0], aff); |
||
1706 | } |
||
1707 | |||
1708 | __isl_give isl_vec *isl_qpolynomial_extract_affine( |
||
1709 | __isl_keep isl_qpolynomial *qp) |
||
1710 | { |
||
1711 | isl_vec *aff; |
||
1712 | unsigned d; |
||
1713 | |||
1714 | if (!qp) |
||
1715 | return NULL; |
||
1716 | |||
1717 | d = isl_space_dim(qp->dim, isl_dim_all); |
||
1718 | aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row); |
||
1719 | if (!aff) |
||
1720 | return NULL; |
||
1721 | |||
1722 | isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row); |
||
1723 | isl_int_set_si(aff->el[0], 1); |
||
1724 | |||
1725 | if (isl_upoly_update_affine(qp->upoly, aff) < 0) |
||
1726 | goto error; |
||
1727 | |||
1728 | return aff; |
||
1729 | error: |
||
1730 | isl_vec_free(aff); |
||
1731 | return NULL; |
||
1732 | } |
||
1733 | |||
1734 | int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1, |
||
1735 | __isl_keep isl_qpolynomial *qp2) |
||
1736 | { |
||
1737 | int equal; |
||
1738 | |||
1739 | if (!qp1 || !qp2) |
||
1740 | return -1; |
||
1741 | |||
1742 | equal = isl_space_is_equal(qp1->dim, qp2->dim); |
||
1743 | if (equal < 0 || !equal) |
||
1744 | return equal; |
||
1745 | |||
1746 | equal = isl_mat_is_equal(qp1->div, qp2->div); |
||
1747 | if (equal < 0 || !equal) |
||
1748 | return equal; |
||
1749 | |||
1750 | return isl_upoly_is_equal(qp1->upoly, qp2->upoly); |
||
1751 | } |
||
1752 | |||
1753 | static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d) |
||
1754 | { |
||
1755 | int i; |
||
1756 | struct isl_upoly_rec *rec; |
||
1757 | |||
1758 | if (isl_upoly_is_cst(up)) { |
||
1759 | struct isl_upoly_cst *cst; |
||
1760 | cst = isl_upoly_as_cst(up); |
||
1761 | if (!cst) |
||
1762 | return; |
||
1763 | isl_int_lcm(*d, *d, cst->d); |
||
1764 | return; |
||
1765 | } |
||
1766 | |||
1767 | rec = isl_upoly_as_rec(up); |
||
1768 | if (!rec) |
||
1769 | return; |
||
1770 | |||
1771 | for (i = 0; i < rec->n; ++i) |
||
1772 | upoly_update_den(rec->p[i], d); |
||
1773 | } |
||
1774 | |||
1775 | void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d) |
||
1776 | { |
||
1777 | isl_int_set_si(*d, 1); |
||
1778 | if (!qp) |
||
1779 | return; |
||
1780 | upoly_update_den(qp->upoly, d); |
||
1781 | } |
||
1782 | |||
1783 | __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain( |
||
1784 | __isl_take isl_space *dim, int pos, int power) |
||
1785 | { |
||
1786 | struct isl_ctx *ctx; |
||
1787 | |||
1788 | if (!dim) |
||
1789 | return NULL; |
||
1790 | |||
1791 | ctx = dim->ctx; |
||
1792 | |||
1793 | return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power)); |
||
1794 | } |
||
1795 | |||
1796 | __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim, |
||
1797 | enum isl_dim_type type, unsigned pos) |
||
1798 | { |
||
1799 | if (!dim) |
||
1800 | return NULL; |
||
1801 | |||
1802 | isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error); |
||
1803 | isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error); |
||
1804 | |||
1805 | if (type == isl_dim_set) |
||
1806 | pos += isl_space_dim(dim, isl_dim_param); |
||
1807 | |||
1808 | return isl_qpolynomial_var_pow_on_domain(dim, pos, 1); |
||
1809 | error: |
||
1810 | isl_space_free(dim); |
||
1811 | return NULL; |
||
1812 | } |
||
1813 | |||
1814 | __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up, |
||
1815 | unsigned first, unsigned n, __isl_keep struct isl_upoly **subs) |
||
1816 | { |
||
1817 | int i; |
||
1818 | struct isl_upoly_rec *rec; |
||
1819 | struct isl_upoly *base, *res; |
||
1820 | |||
1821 | if (!up) |
||
1822 | return NULL; |
||
1823 | |||
1824 | if (isl_upoly_is_cst(up)) |
||
1825 | return up; |
||
1826 | |||
1827 | if (up->var < first) |
||
1828 | return up; |
||
1829 | |||
1830 | rec = isl_upoly_as_rec(up); |
||
1831 | if (!rec) |
||
1832 | goto error; |
||
1833 | |||
1834 | isl_assert(up->ctx, rec->n >= 1, goto error); |
||
1835 | |||
1836 | if (up->var >= first + n) |
||
1837 | base = isl_upoly_var_pow(up->ctx, up->var, 1); |
||
1838 | else |
||
1839 | base = isl_upoly_copy(subs[up->var - first]); |
||
1840 | |||
1841 | res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs); |
||
1842 | for (i = rec->n - 2; i >= 0; --i) { |
||
1843 | struct isl_upoly *t; |
||
1844 | t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs); |
||
1845 | res = isl_upoly_mul(res, isl_upoly_copy(base)); |
||
1846 | res = isl_upoly_sum(res, t); |
||
1847 | } |
||
1848 | |||
1849 | isl_upoly_free(base); |
||
1850 | isl_upoly_free(up); |
||
1851 | |||
1852 | return res; |
||
1853 | error: |
||
1854 | isl_upoly_free(up); |
||
1855 | return NULL; |
||
1856 | } |
||
1857 | |||
1858 | __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f, |
||
1859 | isl_int denom, unsigned len) |
||
1860 | { |
||
1861 | int i; |
||
1862 | struct isl_upoly *up; |
||
1863 | |||
1864 | isl_assert(ctx, len >= 1, return NULL); |
||
1865 | |||
1866 | up = isl_upoly_rat_cst(ctx, f[0], denom); |
||
1867 | for (i = 0; i < len - 1; ++i) { |
||
1868 | struct isl_upoly *t; |
||
1869 | struct isl_upoly *c; |
||
1870 | |||
1871 | if (isl_int_is_zero(f[1 + i])) |
||
1872 | continue; |
||
1873 | |||
1874 | c = isl_upoly_rat_cst(ctx, f[1 + i], denom); |
||
1875 | t = isl_upoly_var_pow(ctx, i, 1); |
||
1876 | t = isl_upoly_mul(c, t); |
||
1877 | up = isl_upoly_sum(up, t); |
||
1878 | } |
||
1879 | |||
1880 | return up; |
||
1881 | } |
||
1882 | |||
1883 | /* Remove common factor of non-constant terms and denominator. |
||
1884 | */ |
||
1885 | static void normalize_div(__isl_keep isl_qpolynomial *qp, int div) |
||
1886 | { |
||
1887 | isl_ctx *ctx = qp->div->ctx; |
||
1888 | unsigned total = qp->div->n_col - 2; |
||
1889 | |||
1890 | isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd); |
||
1891 | isl_int_gcd(ctx->normalize_gcd, |
||
1892 | ctx->normalize_gcd, qp->div->row[div][0]); |
||
1893 | if (isl_int_is_one(ctx->normalize_gcd)) |
||
1894 | return; |
||
1895 | |||
1896 | isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2, |
||
1897 | ctx->normalize_gcd, total); |
||
1898 | isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0], |
||
1899 | ctx->normalize_gcd); |
||
1900 | isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1], |
||
1901 | ctx->normalize_gcd); |
||
1902 | } |
||
1903 | |||
1904 | /* Replace the integer division identified by "div" by the polynomial "s". |
||
1905 | * The integer division is assumed not to appear in the definition |
||
1906 | * of any other integer divisions. |
||
1907 | */ |
||
1908 | static __isl_give isl_qpolynomial *substitute_div( |
||
1909 | __isl_take isl_qpolynomial *qp, |
||
1910 | int div, __isl_take struct isl_upoly *s) |
||
1911 | { |
||
1912 | int i; |
||
1913 | int total; |
||
1914 | int *reordering; |
||
1915 | |||
1916 | if (!qp || !s) |
||
1917 | goto error; |
||
1918 | |||
1919 | qp = isl_qpolynomial_cow(qp); |
||
1920 | if (!qp) |
||
1921 | goto error; |
||
1922 | |||
1923 | total = isl_space_dim(qp->dim, isl_dim_all); |
||
1924 | qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s); |
||
1925 | if (!qp->upoly) |
||
1926 | goto error; |
||
1927 | |||
1928 | reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row); |
||
1929 | if (!reordering) |
||
1930 | goto error; |
||
1931 | for (i = 0; i < total + div; ++i) |
||
1932 | reordering[i] = i; |
||
1933 | for (i = total + div + 1; i < total + qp->div->n_row; ++i) |
||
1934 | reordering[i] = i - 1; |
||
1935 | qp->div = isl_mat_drop_rows(qp->div, div, 1); |
||
1936 | qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1); |
||
1937 | qp->upoly = reorder(qp->upoly, reordering); |
||
1938 | free(reordering); |
||
1939 | |||
1940 | if (!qp->upoly || !qp->div) |
||
1941 | goto error; |
||
1942 | |||
1943 | isl_upoly_free(s); |
||
1944 | return qp; |
||
1945 | error: |
||
1946 | isl_qpolynomial_free(qp); |
||
1947 | isl_upoly_free(s); |
||
1948 | return NULL; |
||
1949 | } |
||
1950 | |||
1951 | /* Replace all integer divisions [e/d] that turn out to not actually be integer |
||
1952 | * divisions because d is equal to 1 by their definition, i.e., e. |
||
1953 | */ |
||
1954 | static __isl_give isl_qpolynomial *substitute_non_divs( |
||
1955 | __isl_take isl_qpolynomial *qp) |
||
1956 | { |
||
1957 | int i, j; |
||
1958 | int total; |
||
1959 | struct isl_upoly *s; |
||
1960 | |||
1961 | if (!qp) |
||
1962 | return NULL; |
||
1963 | |||
1964 | total = isl_space_dim(qp->dim, isl_dim_all); |
||
1965 | for (i = 0; qp && i < qp->div->n_row; ++i) { |
||
1966 | if (!isl_int_is_one(qp->div->row[i][0])) |
||
1967 | continue; |
||
1968 | for (j = i + 1; j < qp->div->n_row; ++j) { |
||
1969 | if (isl_int_is_zero(qp->div->row[j][2 + total + i])) |
||
1970 | continue; |
||
1971 | isl_seq_combine(qp->div->row[j] + 1, |
||
1972 | qp->div->ctx->one, qp->div->row[j] + 1, |
||
1973 | qp->div->row[j][2 + total + i], |
||
1974 | qp->div->row[i] + 1, 1 + total + i); |
||
1975 | isl_int_set_si(qp->div->row[j][2 + total + i], 0); |
||
1976 | normalize_div(qp, j); |
||
1977 | } |
||
1978 | s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1, |
||
1979 | qp->div->row[i][0], qp->div->n_col - 1); |
||
1980 | qp = substitute_div(qp, i, s); |
||
1981 | --i; |
||
1982 | } |
||
1983 | |||
1984 | return qp; |
||
1985 | } |
||
1986 | |||
1987 | /* Reduce the coefficients of div "div" to lie in the interval [0, d-1], |
||
1988 | * with d the denominator. When replacing the coefficient e of x by |
||
1989 | * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x |
||
1990 | * inside the division, so we need to add floor(e/d) * x outside. |
||
1991 | * That is, we replace q by q' + floor(e/d) * x and we therefore need |
||
1992 | * to adjust the coefficient of x in each later div that depends on the |
||
1993 | * current div "div" and also in the affine expression "aff" |
||
1994 | * (if it too depends on "div"). |
||
1995 | */ |
||
1996 | static void reduce_div(__isl_keep isl_qpolynomial *qp, int div, |
||
1997 | __isl_keep isl_vec *aff) |
||
1998 | { |
||
1999 | int i, j; |
||
2000 | isl_int v; |
||
2001 | unsigned total = qp->div->n_col - qp->div->n_row - 2; |
||
2002 | |||
2003 | isl_int_init(v); |
||
2004 | for (i = 0; i < 1 + total + div; ++i) { |
||
2005 | if (isl_int_is_nonneg(qp->div->row[div][1 + i]) && |
||
2006 | isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0])) |
||
2007 | continue; |
||
2008 | isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]); |
||
2009 | isl_int_fdiv_r(qp->div->row[div][1 + i], |
||
2010 | qp->div->row[div][1 + i], qp->div->row[div][0]); |
||
2011 | if (!isl_int_is_zero(aff->el[1 + total + div])) |
||
2012 | isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]); |
||
2013 | for (j = div + 1; j < qp->div->n_row; ++j) { |
||
2014 | if (isl_int_is_zero(qp->div->row[j][2 + total + div])) |
||
2015 | continue; |
||
2016 | isl_int_addmul(qp->div->row[j][1 + i], |
||
2017 | v, qp->div->row[j][2 + total + div]); |
||
2018 | } |
||
2019 | } |
||
2020 | isl_int_clear(v); |
||
2021 | } |
||
2022 | |||
2023 | /* Check if the last non-zero coefficient is bigger that half of the |
||
2024 | * denominator. If so, we will invert the div to further reduce the number |
||
2025 | * of distinct divs that may appear. |
||
2026 | * If the last non-zero coefficient is exactly half the denominator, |
||
2027 | * then we continue looking for earlier coefficients that are bigger |
||
2028 | * than half the denominator. |
||
2029 | */ |
||
2030 | static int needs_invert(__isl_keep isl_mat *div, int row) |
||
2031 | { |
||
2032 | int i; |
||
2033 | int cmp; |
||
2034 | |||
2035 | for (i = div->n_col - 1; i >= 1; --i) { |
||
2036 | if (isl_int_is_zero(div->row[row][i])) |
||
2037 | continue; |
||
2038 | isl_int_mul_ui(div->row[row][i], div->row[row][i], 2); |
||
2039 | cmp = isl_int_cmp(div->row[row][i], div->row[row][0]); |
||
2040 | isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2); |
||
2041 | if (cmp) |
||
2042 | return cmp > 0; |
||
2043 | if (i == 1) |
||
2044 | return 1; |
||
2045 | } |
||
2046 | |||
2047 | return 0; |
||
2048 | } |
||
2049 | |||
2050 | /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d]. |
||
2051 | * We only invert the coefficients of e (and the coefficient of q in |
||
2052 | * later divs and in "aff"). After calling this function, the |
||
2053 | * coefficients of e should be reduced again. |
||
2054 | */ |
||
2055 | static void invert_div(__isl_keep isl_qpolynomial *qp, int div, |
||
2056 | __isl_keep isl_vec *aff) |
||
2057 | { |
||
2058 | unsigned total = qp->div->n_col - qp->div->n_row - 2; |
||
2059 | |||
2060 | isl_seq_neg(qp->div->row[div] + 1, |
||
2061 | qp->div->row[div] + 1, qp->div->n_col - 1); |
||
2062 | isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1); |
||
2063 | isl_int_add(qp->div->row[div][1], |
||
2064 | qp->div->row[div][1], qp->div->row[div][0]); |
||
2065 | if (!isl_int_is_zero(aff->el[1 + total + div])) |
||
2066 | isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]); |
||
2067 | isl_mat_col_mul(qp->div, 2 + total + div, |
||
2068 | qp->div->ctx->negone, 2 + total + div); |
||
2069 | } |
||
2070 | |||
2071 | /* Assuming "qp" is a monomial, reduce all its divs to have coefficients |
||
2072 | * in the interval [0, d-1], with d the denominator and such that the |
||
2073 | * last non-zero coefficient that is not equal to d/2 is smaller than d/2. |
||
2074 | * |
||
2075 | * After the reduction, some divs may have become redundant or identical, |
||
2076 | * so we call substitute_non_divs and sort_divs. If these functions |
||
2077 | * eliminate divs or merge two or more divs into one, the coefficients |
||
2078 | * of the enclosing divs may have to be reduced again, so we call |
||
2079 | * ourselves recursively if the number of divs decreases. |
||
2080 | */ |
||
2081 | static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp) |
||
2082 | { |
||
2083 | int i; |
||
2084 | isl_vec *aff = NULL; |
||
2085 | struct isl_upoly *s; |
||
2086 | unsigned n_div; |
||
2087 | |||
2088 | if (!qp) |
||
2089 | return NULL; |
||
2090 | |||
2091 | aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1); |
||
2092 | aff = isl_vec_clr(aff); |
||
2093 | if (!aff) |
||
2094 | goto error; |
||
2095 | |||
2096 | isl_int_set_si(aff->el[1 + qp->upoly->var], 1); |
||
2097 | |||
2098 | for (i = 0; i < qp->div->n_row; ++i) { |
||
2099 | normalize_div(qp, i); |
||
2100 | reduce_div(qp, i, aff); |
||
2101 | if (needs_invert(qp->div, i)) { |
||
2102 | invert_div(qp, i, aff); |
||
2103 | reduce_div(qp, i, aff); |
||
2104 | } |
||
2105 | } |
||
2106 | |||
2107 | s = isl_upoly_from_affine(qp->div->ctx, aff->el, |
||
2108 | qp->div->ctx->one, aff->size); |
||
2109 | qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s); |
||
2110 | isl_upoly_free(s); |
||
2111 | if (!qp->upoly) |
||
2112 | goto error; |
||
2113 | |||
2114 | isl_vec_free(aff); |
||
2115 | |||
2116 | n_div = qp->div->n_row; |
||
2117 | qp = substitute_non_divs(qp); |
||
2118 | qp = sort_divs(qp); |
||
2119 | if (qp && qp->div->n_row < n_div) |
||
2120 | return reduce_divs(qp); |
||
2121 | |||
2122 | return qp; |
||
2123 | error: |
||
2124 | isl_qpolynomial_free(qp); |
||
2125 | isl_vec_free(aff); |
||
2126 | return NULL; |
||
2127 | } |
||
2128 | |||
2129 | __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( |
||
2130 | __isl_take isl_space *dim, const isl_int n, const isl_int d) |
||
2131 | { |
||
2132 | struct isl_qpolynomial *qp; |
||
2133 | struct isl_upoly_cst *cst; |
||
2134 | |||
2135 | if (!dim) |
||
2136 | return NULL; |
||
2137 | |||
2138 | qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); |
||
2139 | if (!qp) |
||
2140 | return NULL; |
||
2141 | |||
2142 | cst = isl_upoly_as_cst(qp->upoly); |
||
2143 | isl_int_set(cst->n, n); |
||
2144 | isl_int_set(cst->d, d); |
||
2145 | |||
2146 | return qp; |
||
2147 | } |
||
2148 | |||
2149 | static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d) |
||
2150 | { |
||
2151 | struct isl_upoly_rec *rec; |
||
2152 | int i; |
||
2153 | |||
2154 | if (!up) |
||
2155 | return -1; |
||
2156 | |||
2157 | if (isl_upoly_is_cst(up)) |
||
2158 | return 0; |
||
2159 | |||
2160 | if (up->var < d) |
||
2161 | active[up->var] = 1; |
||
2162 | |||
2163 | rec = isl_upoly_as_rec(up); |
||
2164 | for (i = 0; i < rec->n; ++i) |
||
2165 | if (up_set_active(rec->p[i], active, d) < 0) |
||
2166 | return -1; |
||
2167 | |||
2168 | return 0; |
||
2169 | } |
||
2170 | |||
2171 | static int set_active(__isl_keep isl_qpolynomial *qp, int *active) |
||
2172 | { |
||
2173 | int i, j; |
||
2174 | int d = isl_space_dim(qp->dim, isl_dim_all); |
||
2175 | |||
2176 | if (!qp || !active) |
||
2177 | return -1; |
||
2178 | |||
2179 | for (i = 0; i < d; ++i) |
||
2180 | for (j = 0; j < qp->div->n_row; ++j) { |
||
2181 | if (isl_int_is_zero(qp->div->row[j][2 + i])) |
||
2182 | continue; |
||
2183 | active[i] = 1; |
||
2184 | break; |
||
2185 | } |
||
2186 | |||
2187 | return up_set_active(qp->upoly, active, d); |
||
2188 | } |
||
2189 | |||
2190 | int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp, |
||
2191 | enum isl_dim_type type, unsigned first, unsigned n) |
||
2192 | { |
||
2193 | int i; |
||
2194 | int *active = NULL; |
||
2195 | int involves = 0; |
||
2196 | |||
2197 | if (!qp) |
||
2198 | return -1; |
||
2199 | if (n == 0) |
||
2200 | return 0; |
||
2201 | |||
2202 | isl_assert(qp->dim->ctx, |
||
2203 | first + n <= isl_qpolynomial_dim(qp, type), return -1); |
||
2204 | isl_assert(qp->dim->ctx, type == isl_dim_param || |
||
2205 | type == isl_dim_in, return -1); |
||
2206 | |||
2207 | active = isl_calloc_array(qp->dim->ctx, int, |
||
2208 | isl_space_dim(qp->dim, isl_dim_all)); |
||
2209 | if (set_active(qp, active) < 0) |
||
2210 | goto error; |
||
2211 | |||
2212 | if (type == isl_dim_in) |
||
2213 | first += isl_space_dim(qp->dim, isl_dim_param); |
||
2214 | for (i = 0; i < n; ++i) |
||
2215 | if (active[first + i]) { |
||
2216 | involves = 1; |
||
2217 | break; |
||
2218 | } |
||
2219 | |||
2220 | free(active); |
||
2221 | |||
2222 | return involves; |
||
2223 | error: |
||
2224 | free(active); |
||
2225 | return -1; |
||
2226 | } |
||
2227 | |||
2228 | /* Remove divs that do not appear in the quasi-polynomial, nor in any |
||
2229 | * of the divs that do appear in the quasi-polynomial. |
||
2230 | */ |
||
2231 | static __isl_give isl_qpolynomial *remove_redundant_divs( |
||
2232 | __isl_take isl_qpolynomial *qp) |
||
2233 | { |
||
2234 | int i, j; |
||
2235 | int d; |
||
2236 | int len; |
||
2237 | int skip; |
||
2238 | int *active = NULL; |
||
2239 | int *reordering = NULL; |
||
2240 | int redundant = 0; |
||
2241 | int n_div; |
||
2242 | isl_ctx *ctx; |
||
2243 | |||
2244 | if (!qp) |
||
2245 | return NULL; |
||
2246 | if (qp->div->n_row == 0) |
||
2247 | return qp; |
||
2248 | |||
2249 | d = isl_space_dim(qp->dim, isl_dim_all); |
||
2250 | len = qp->div->n_col - 2; |
||
2251 | ctx = isl_qpolynomial_get_ctx(qp); |
||
2252 | active = isl_calloc_array(ctx, int, len); |
||
2253 | if (!active) |
||
2254 | goto error; |
||
2255 | |||
2256 | if (up_set_active(qp->upoly, active, len) < 0) |
||
2257 | goto error; |
||
2258 | |||
2259 | for (i = qp->div->n_row - 1; i >= 0; --i) { |
||
2260 | if (!active[d + i]) { |
||
2261 | redundant = 1; |
||
2262 | continue; |
||
2263 | } |
||
2264 | for (j = 0; j < i; ++j) { |
||
2265 | if (isl_int_is_zero(qp->div->row[i][2 + d + j])) |
||
2266 | continue; |
||
2267 | active[d + j] = 1; |
||
2268 | break; |
||
2269 | } |
||
2270 | } |
||
2271 | |||
2272 | if (!redundant) { |
||
2273 | free(active); |
||
2274 | return qp; |
||
2275 | } |
||
2276 | |||
2277 | reordering = isl_alloc_array(qp->div->ctx, int, len); |
||
2278 | if (!reordering) |
||
2279 | goto error; |
||
2280 | |||
2281 | for (i = 0; i < d; ++i) |
||
2282 | reordering[i] = i; |
||
2283 | |||
2284 | skip = 0; |
||
2285 | n_div = qp->div->n_row; |
||
2286 | for (i = 0; i < n_div; ++i) { |
||
2287 | if (!active[d + i]) { |
||
2288 | qp->div = isl_mat_drop_rows(qp->div, i - skip, 1); |
||
2289 | qp->div = isl_mat_drop_cols(qp->div, |
||
2290 | 2 + d + i - skip, 1); |
||
2291 | skip++; |
||
2292 | } |
||
2293 | reordering[d + i] = d + i - skip; |
||
2294 | } |
||
2295 | |||
2296 | qp->upoly = reorder(qp->upoly, reordering); |
||
2297 | |||
2298 | if (!qp->upoly || !qp->div) |
||
2299 | goto error; |
||
2300 | |||
2301 | free(active); |
||
2302 | free(reordering); |
||
2303 | |||
2304 | return qp; |
||
2305 | error: |
||
2306 | free(active); |
||
2307 | free(reordering); |
||
2308 | isl_qpolynomial_free(qp); |
||
2309 | return NULL; |
||
2310 | } |
||
2311 | |||
2312 | __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up, |
||
2313 | unsigned first, unsigned n) |
||
2314 | { |
||
2315 | int i; |
||
2316 | struct isl_upoly_rec *rec; |
||
2317 | |||
2318 | if (!up) |
||
2319 | return NULL; |
||
2320 | if (n == 0 || up->var < 0 || up->var < first) |
||
2321 | return up; |
||
2322 | if (up->var < first + n) { |
||
2323 | up = replace_by_constant_term(up); |
||
2324 | return isl_upoly_drop(up, first, n); |
||
2325 | } |
||
2326 | up = isl_upoly_cow(up); |
||
2327 | if (!up) |
||
2328 | return NULL; |
||
2329 | up->var -= n; |
||
2330 | rec = isl_upoly_as_rec(up); |
||
2331 | if (!rec) |
||
2332 | goto error; |
||
2333 | |||
2334 | for (i = 0; i < rec->n; ++i) { |
||
2335 | rec->p[i] = isl_upoly_drop(rec->p[i], first, n); |
||
2336 | if (!rec->p[i]) |
||
2337 | goto error; |
||
2338 | } |
||
2339 | |||
2340 | return up; |
||
2341 | error: |
||
2342 | isl_upoly_free(up); |
||
2343 | return NULL; |
||
2344 | } |
||
2345 | |||
2346 | __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( |
||
2347 | __isl_take isl_qpolynomial *qp, |
||
2348 | enum isl_dim_type type, unsigned pos, const char *s) |
||
2349 | { |
||
2350 | qp = isl_qpolynomial_cow(qp); |
||
2351 | if (!qp) |
||
2352 | return NULL; |
||
2353 | qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s); |
||
2354 | if (!qp->dim) |
||
2355 | goto error; |
||
2356 | return qp; |
||
2357 | error: |
||
2358 | isl_qpolynomial_free(qp); |
||
2359 | return NULL; |
||
2360 | } |
||
2361 | |||
2362 | __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims( |
||
2363 | __isl_take isl_qpolynomial *qp, |
||
2364 | enum isl_dim_type type, unsigned first, unsigned n) |
||
2365 | { |
||
2366 | if (!qp) |
||
2367 | return NULL; |
||
2368 | if (type == isl_dim_out) |
||
2369 | isl_die(qp->dim->ctx, isl_error_invalid, |
||
2370 | "cannot drop output/set dimension", |
||
2371 | goto error); |
||
2372 | if (type == isl_dim_in) |
||
2373 | type = isl_dim_set; |
||
2374 | if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type)) |
||
2375 | return qp; |
||
2376 | |||
2377 | qp = isl_qpolynomial_cow(qp); |
||
2378 | if (!qp) |
||
2379 | return NULL; |
||
2380 | |||
2381 | isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type), |
||
2382 | goto error); |
||
2383 | isl_assert(qp->dim->ctx, type == isl_dim_param || |
||
2384 | type == isl_dim_set, goto error); |
||
2385 | |||
2386 | qp->dim = isl_space_drop_dims(qp->dim, type, first, n); |
||
2387 | if (!qp->dim) |
||
2388 | goto error; |
||
2389 | |||
2390 | if (type == isl_dim_set) |
||
2391 | first += isl_space_dim(qp->dim, isl_dim_param); |
||
2392 | |||
2393 | qp->div = isl_mat_drop_cols(qp->div, 2 + first, n); |
||
2394 | if (!qp->div) |
||
2395 | goto error; |
||
2396 | |||
2397 | qp->upoly = isl_upoly_drop(qp->upoly, first, n); |
||
2398 | if (!qp->upoly) |
||
2399 | goto error; |
||
2400 | |||
2401 | return qp; |
||
2402 | error: |
||
2403 | isl_qpolynomial_free(qp); |
||
2404 | return NULL; |
||
2405 | } |
||
2406 | |||
2407 | /* Project the domain of the quasi-polynomial onto its parameter space. |
||
2408 | * The quasi-polynomial may not involve any of the domain dimensions. |
||
2409 | */ |
||
2410 | __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( |
||
2411 | __isl_take isl_qpolynomial *qp) |
||
2412 | { |
||
2413 | isl_space *space; |
||
2414 | unsigned n; |
||
2415 | int involves; |
||
2416 | |||
2417 | n = isl_qpolynomial_dim(qp, isl_dim_in); |
||
2418 | involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n); |
||
2419 | if (involves < 0) |
||
2420 | return isl_qpolynomial_free(qp); |
||
2421 | if (involves) |
||
2422 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
||
2423 | "polynomial involves some of the domain dimensions", |
||
2424 | return isl_qpolynomial_free(qp)); |
||
2425 | qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n); |
||
2426 | space = isl_qpolynomial_get_domain_space(qp); |
||
2427 | space = isl_space_params(space); |
||
2428 | qp = isl_qpolynomial_reset_domain_space(qp, space); |
||
2429 | return qp; |
||
2430 | } |
||
2431 | |||
2432 | static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted( |
||
2433 | __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) |
||
2434 | { |
||
2435 | int i, j, k; |
||
2436 | isl_int denom; |
||
2437 | unsigned total; |
||
2438 | unsigned n_div; |
||
2439 | struct isl_upoly *up; |
||
2440 | |||
2441 | if (!eq) |
||
2442 | goto error; |
||
2443 | if (eq->n_eq == 0) { |
||
2444 | isl_basic_set_free(eq); |
||
2445 | return qp; |
||
2446 | } |
||
2447 | |||
2448 | qp = isl_qpolynomial_cow(qp); |
||
2449 | if (!qp) |
||
2450 | goto error; |
||
2451 | qp->div = isl_mat_cow(qp->div); |
||
2452 | if (!qp->div) |
||
2453 | goto error; |
||
2454 | |||
2455 | total = 1 + isl_space_dim(eq->dim, isl_dim_all); |
||
2456 | n_div = eq->n_div; |
||
2457 | isl_int_init(denom); |
||
2458 | for (i = 0; i < eq->n_eq; ++i) { |
||
2459 | j = isl_seq_last_non_zero(eq->eq[i], total + n_div); |
||
2460 | if (j < 0 || j == 0 || j >= total) |
||
2461 | continue; |
||
2462 | |||
2463 | for (k = 0; k < qp->div->n_row; ++k) { |
||
2464 | if (isl_int_is_zero(qp->div->row[k][1 + j])) |
||
2465 | continue; |
||
2466 | isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total, |
||
2467 | &qp->div->row[k][0]); |
||
2468 | normalize_div(qp, k); |
||
2469 | } |
||
2470 | |||
2471 | if (isl_int_is_pos(eq->eq[i][j])) |
||
2472 | isl_seq_neg(eq->eq[i], eq->eq[i], total); |
||
2473 | isl_int_abs(denom, eq->eq[i][j]); |
||
2474 | isl_int_set_si(eq->eq[i][j], 0); |
||
2475 | |||
2476 | up = isl_upoly_from_affine(qp->dim->ctx, |
||
2477 | eq->eq[i], denom, total); |
||
2478 | qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up); |
||
2479 | isl_upoly_free(up); |
||
2480 | } |
||
2481 | isl_int_clear(denom); |
||
2482 | |||
2483 | if (!qp->upoly) |
||
2484 | goto error; |
||
2485 | |||
2486 | isl_basic_set_free(eq); |
||
2487 | |||
2488 | qp = substitute_non_divs(qp); |
||
2489 | qp = sort_divs(qp); |
||
2490 | |||
2491 | return qp; |
||
2492 | error: |
||
2493 | isl_basic_set_free(eq); |
||
2494 | isl_qpolynomial_free(qp); |
||
2495 | return NULL; |
||
2496 | } |
||
2497 | |||
2498 | /* Exploit the equalities in "eq" to simplify the quasi-polynomial. |
||
2499 | */ |
||
2500 | __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities( |
||
2501 | __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) |
||
2502 | { |
||
2503 | if (!qp || !eq) |
||
2504 | goto error; |
||
2505 | if (qp->div->n_row > 0) |
||
2506 | eq = isl_basic_set_add(eq, isl_dim_set, qp->div->n_row); |
||
2507 | return isl_qpolynomial_substitute_equalities_lifted(qp, eq); |
||
2508 | error: |
||
2509 | isl_basic_set_free(eq); |
||
2510 | isl_qpolynomial_free(qp); |
||
2511 | return NULL; |
||
2512 | } |
||
2513 | |||
2514 | static __isl_give isl_basic_set *add_div_constraints( |
||
2515 | __isl_take isl_basic_set *bset, __isl_take isl_mat *div) |
||
2516 | { |
||
2517 | int i; |
||
2518 | unsigned total; |
||
2519 | |||
2520 | if (!bset || !div) |
||
2521 | goto error; |
||
2522 | |||
2523 | bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row); |
||
2524 | if (!bset) |
||
2525 | goto error; |
||
2526 | total = isl_basic_set_total_dim(bset); |
||
2527 | for (i = 0; i < div->n_row; ++i) |
||
2528 | if (isl_basic_set_add_div_constraints_var(bset, |
||
2529 | total - div->n_row + i, div->row[i]) < 0) |
||
2530 | goto error; |
||
2531 | |||
2532 | isl_mat_free(div); |
||
2533 | return bset; |
||
2534 | error: |
||
2535 | isl_mat_free(div); |
||
2536 | isl_basic_set_free(bset); |
||
2537 | return NULL; |
||
2538 | } |
||
2539 | |||
2540 | /* Look for equalities among the variables shared by context and qp |
||
2541 | * and the integer divisions of qp, if any. |
||
2542 | * The equalities are then used to eliminate variables and/or integer |
||
2543 | * divisions from qp. |
||
2544 | */ |
||
2545 | __isl_give isl_qpolynomial *isl_qpolynomial_gist( |
||
2546 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) |
||
2547 | { |
||
2548 | isl_basic_set *aff; |
||
2549 | |||
2550 | if (!qp) |
||
2551 | goto error; |
||
2552 | if (qp->div->n_row > 0) { |
||
2553 | isl_basic_set *bset; |
||
2554 | context = isl_set_add_dims(context, isl_dim_set, |
||
2555 | qp->div->n_row); |
||
2556 | bset = isl_basic_set_universe(isl_set_get_space(context)); |
||
2557 | bset = add_div_constraints(bset, isl_mat_copy(qp->div)); |
||
2558 | context = isl_set_intersect(context, |
||
2559 | isl_set_from_basic_set(bset)); |
||
2560 | } |
||
2561 | |||
2562 | aff = isl_set_affine_hull(context); |
||
2563 | return isl_qpolynomial_substitute_equalities_lifted(qp, aff); |
||
2564 | error: |
||
2565 | isl_qpolynomial_free(qp); |
||
2566 | isl_set_free(context); |
||
2567 | return NULL; |
||
2568 | } |
||
2569 | |||
2570 | __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( |
||
2571 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) |
||
2572 | { |
||
2573 | isl_space *space = isl_qpolynomial_get_domain_space(qp); |
||
2574 | isl_set *dom_context = isl_set_universe(space); |
||
2575 | dom_context = isl_set_intersect_params(dom_context, context); |
||
2576 | return isl_qpolynomial_gist(qp, dom_context); |
||
2577 | } |
||
2578 | |||
2579 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial( |
||
2580 | __isl_take isl_qpolynomial *qp) |
||
2581 | { |
||
2582 | isl_set *dom; |
||
2583 | |||
2584 | if (!qp) |
||
2585 | return NULL; |
||
2586 | if (isl_qpolynomial_is_zero(qp)) { |
||
2587 | isl_space *dim = isl_qpolynomial_get_space(qp); |
||
2588 | isl_qpolynomial_free(qp); |
||
2589 | return isl_pw_qpolynomial_zero(dim); |
||
2590 | } |
||
2591 | |||
2592 | dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp)); |
||
2593 | return isl_pw_qpolynomial_alloc(dom, qp); |
||
2594 | } |
||
2595 | |||
2596 | #undef PW |
||
2597 | #define PW isl_pw_qpolynomial |
||
2598 | #undef EL |
||
2599 | #define EL isl_qpolynomial |
||
2600 | #undef EL_IS_ZERO |
||
2601 | #define EL_IS_ZERO is_zero |
||
2602 | #undef ZERO |
||
2603 | #define ZERO zero |
||
2604 | #undef IS_ZERO |
||
2605 | #define IS_ZERO is_zero |
||
2606 | #undef FIELD |
||
2607 | #define FIELD qp |
||
2608 | #undef DEFAULT_IS_ZERO |
||
2609 | #define DEFAULT_IS_ZERO 1 |
||
2610 | |||
2611 | #include <isl_pw_templ.c> |
||
2612 | |||
2613 | #undef UNION |
||
2614 | #define UNION isl_union_pw_qpolynomial |
||
2615 | #undef PART |
||
2616 | #define PART isl_pw_qpolynomial |
||
2617 | #undef PARTS |
||
2618 | #define PARTS pw_qpolynomial |
||
2619 | #define ALIGN_DOMAIN |
||
2620 | |||
2621 | #include <isl_union_templ.c> |
||
2622 | |||
2623 | int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp) |
||
2624 | { |
||
2625 | if (!pwqp) |
||
2626 | return -1; |
||
2627 | |||
2628 | if (pwqp->n != -1) |
||
2629 | return 0; |
||
2630 | |||
2631 | if (!isl_set_plain_is_universe(pwqp->p[0].set)) |
||
2632 | return 0; |
||
2633 | |||
2634 | return isl_qpolynomial_is_one(pwqp->p[0].qp); |
||
2635 | } |
||
2636 | |||
2637 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( |
||
2638 | __isl_take isl_pw_qpolynomial *pwqp1, |
||
2639 | __isl_take isl_pw_qpolynomial *pwqp2) |
||
2640 | { |
||
2641 | return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2); |
||
2642 | } |
||
2643 | |||
2644 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( |
||
2645 | __isl_take isl_pw_qpolynomial *pwqp1, |
||
2646 | __isl_take isl_pw_qpolynomial *pwqp2) |
||
2647 | { |
||
2648 | int i, j, n; |
||
2649 | struct isl_pw_qpolynomial *res; |
||
2650 | |||
2651 | if (!pwqp1 || !pwqp2) |
||
2652 | goto error; |
||
2653 | |||
2654 | isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim), |
||
2655 | goto error); |
||
2656 | |||
2657 | if (isl_pw_qpolynomial_is_zero(pwqp1)) { |
||
2658 | isl_pw_qpolynomial_free(pwqp2); |
||
2659 | return pwqp1; |
||
2660 | } |
||
2661 | |||
2662 | if (isl_pw_qpolynomial_is_zero(pwqp2)) { |
||
2663 | isl_pw_qpolynomial_free(pwqp1); |
||
2664 | return pwqp2; |
||
2665 | } |
||
2666 | |||
2667 | if (isl_pw_qpolynomial_is_one(pwqp1)) { |
||
2668 | isl_pw_qpolynomial_free(pwqp1); |
||
2669 | return pwqp2; |
||
2670 | } |
||
2671 | |||
2672 | if (isl_pw_qpolynomial_is_one(pwqp2)) { |
||
2673 | isl_pw_qpolynomial_free(pwqp2); |
||
2674 | return pwqp1; |
||
2675 | } |
||
2676 | |||
2677 | n = pwqp1->n * pwqp2->n; |
||
2678 | res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n); |
||
2679 | |||
2680 | for (i = 0; i < pwqp1->n; ++i) { |
||
2681 | for (j = 0; j < pwqp2->n; ++j) { |
||
2682 | struct isl_set *common; |
||
2683 | struct isl_qpolynomial *prod; |
||
2684 | common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set), |
||
2685 | isl_set_copy(pwqp2->p[j].set)); |
||
2686 | if (isl_set_plain_is_empty(common)) { |
||
2687 | isl_set_free(common); |
||
2688 | continue; |
||
2689 | } |
||
2690 | |||
2691 | prod = isl_qpolynomial_mul( |
||
2692 | isl_qpolynomial_copy(pwqp1->p[i].qp), |
||
2693 | isl_qpolynomial_copy(pwqp2->p[j].qp)); |
||
2694 | |||
2695 | res = isl_pw_qpolynomial_add_piece(res, common, prod); |
||
2696 | } |
||
2697 | } |
||
2698 | |||
2699 | isl_pw_qpolynomial_free(pwqp1); |
||
2700 | isl_pw_qpolynomial_free(pwqp2); |
||
2701 | |||
2702 | return res; |
||
2703 | error: |
||
2704 | isl_pw_qpolynomial_free(pwqp1); |
||
2705 | isl_pw_qpolynomial_free(pwqp2); |
||
2706 | return NULL; |
||
2707 | } |
||
2708 | |||
2709 | __isl_give struct isl_upoly *isl_upoly_eval( |
||
2710 | __isl_take struct isl_upoly *up, __isl_take isl_vec *vec) |
||
2711 | { |
||
2712 | int i; |
||
2713 | struct isl_upoly_rec *rec; |
||
2714 | struct isl_upoly *res; |
||
2715 | struct isl_upoly *base; |
||
2716 | |||
2717 | if (isl_upoly_is_cst(up)) { |
||
2718 | isl_vec_free(vec); |
||
2719 | return up; |
||
2720 | } |
||
2721 | |||
2722 | rec = isl_upoly_as_rec(up); |
||
2723 | if (!rec) |
||
2724 | goto error; |
||
2725 | |||
2726 | isl_assert(up->ctx, rec->n >= 1, goto error); |
||
2727 | |||
2728 | base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]); |
||
2729 | |||
2730 | res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]), |
||
2731 | isl_vec_copy(vec)); |
||
2732 | |||
2733 | for (i = rec->n - 2; i >= 0; --i) { |
||
2734 | res = isl_upoly_mul(res, isl_upoly_copy(base)); |
||
2735 | res = isl_upoly_sum(res, |
||
2736 | isl_upoly_eval(isl_upoly_copy(rec->p[i]), |
||
2737 | isl_vec_copy(vec))); |
||
2738 | } |
||
2739 | |||
2740 | isl_upoly_free(base); |
||
2741 | isl_upoly_free(up); |
||
2742 | isl_vec_free(vec); |
||
2743 | return res; |
||
2744 | error: |
||
2745 | isl_upoly_free(up); |
||
2746 | isl_vec_free(vec); |
||
2747 | return NULL; |
||
2748 | } |
||
2749 | |||
2750 | __isl_give isl_qpolynomial *isl_qpolynomial_eval( |
||
2751 | __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt) |
||
2752 | { |
||
2753 | isl_vec *ext; |
||
2754 | struct isl_upoly *up; |
||
2755 | isl_space *dim; |
||
2756 | |||
2757 | if (!qp || !pnt) |
||
2758 | goto error; |
||
2759 | isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error); |
||
2760 | |||
2761 | if (qp->div->n_row == 0) |
||
2762 | ext = isl_vec_copy(pnt->vec); |
||
2763 | else { |
||
2764 | int i; |
||
2765 | unsigned dim = isl_space_dim(qp->dim, isl_dim_all); |
||
2766 | ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row); |
||
2767 | if (!ext) |
||
2768 | goto error; |
||
2769 | |||
2770 | isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size); |
||
2771 | for (i = 0; i < qp->div->n_row; ++i) { |
||
2772 | isl_seq_inner_product(qp->div->row[i] + 1, ext->el, |
||
2773 | 1 + dim + i, &ext->el[1+dim+i]); |
||
2774 | isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i], |
||
2775 | qp->div->row[i][0]); |
||
2776 | } |
||
2777 | } |
||
2778 | |||
2779 | up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext); |
||
2780 | if (!up) |
||
2781 | goto error; |
||
2782 | |||
2783 | dim = isl_space_copy(qp->dim); |
||
2784 | isl_qpolynomial_free(qp); |
||
2785 | isl_point_free(pnt); |
||
2786 | |||
2787 | return isl_qpolynomial_alloc(dim, 0, up); |
||
2788 | error: |
||
2789 | isl_qpolynomial_free(qp); |
||
2790 | isl_point_free(pnt); |
||
2791 | return NULL; |
||
2792 | } |
||
2793 | |||
2794 | int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1, |
||
2795 | __isl_keep struct isl_upoly_cst *cst2) |
||
2796 | { |
||
2797 | int cmp; |
||
2798 | isl_int t; |
||
2799 | isl_int_init(t); |
||
2800 | isl_int_mul(t, cst1->n, cst2->d); |
||
2801 | isl_int_submul(t, cst2->n, cst1->d); |
||
2802 | cmp = isl_int_sgn(t); |
||
2803 | isl_int_clear(t); |
||
2804 | return cmp; |
||
2805 | } |
||
2806 | |||
2807 | int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1, |
||
2808 | __isl_keep isl_qpolynomial *qp2) |
||
2809 | { |
||
2810 | struct isl_upoly_cst *cst1, *cst2; |
||
2811 | |||
2812 | if (!qp1 || !qp2) |
||
2813 | return -1; |
||
2814 | isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1); |
||
2815 | isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1); |
||
2816 | if (isl_qpolynomial_is_nan(qp1)) |
||
2817 | return -1; |
||
2818 | if (isl_qpolynomial_is_nan(qp2)) |
||
2819 | return -1; |
||
2820 | cst1 = isl_upoly_as_cst(qp1->upoly); |
||
2821 | cst2 = isl_upoly_as_cst(qp2->upoly); |
||
2822 | |||
2823 | return isl_upoly_cmp(cst1, cst2) <= 0; |
||
2824 | } |
||
2825 | |||
2826 | __isl_give isl_qpolynomial *isl_qpolynomial_min_cst( |
||
2827 | __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) |
||
2828 | { |
||
2829 | struct isl_upoly_cst *cst1, *cst2; |
||
2830 | int cmp; |
||
2831 | |||
2832 | if (!qp1 || !qp2) |
||
2833 | goto error; |
||
2834 | isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error); |
||
2835 | isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error); |
||
2836 | cst1 = isl_upoly_as_cst(qp1->upoly); |
||
2837 | cst2 = isl_upoly_as_cst(qp2->upoly); |
||
2838 | cmp = isl_upoly_cmp(cst1, cst2); |
||
2839 | |||
2840 | if (cmp <= 0) { |
||
2841 | isl_qpolynomial_free(qp2); |
||
2842 | } else { |
||
2843 | isl_qpolynomial_free(qp1); |
||
2844 | qp1 = qp2; |
||
2845 | } |
||
2846 | return qp1; |
||
2847 | error: |
||
2848 | isl_qpolynomial_free(qp1); |
||
2849 | isl_qpolynomial_free(qp2); |
||
2850 | return NULL; |
||
2851 | } |
||
2852 | |||
2853 | __isl_give isl_qpolynomial *isl_qpolynomial_max_cst( |
||
2854 | __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) |
||
2855 | { |
||
2856 | struct isl_upoly_cst *cst1, *cst2; |
||
2857 | int cmp; |
||
2858 | |||
2859 | if (!qp1 || !qp2) |
||
2860 | goto error; |
||
2861 | isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error); |
||
2862 | isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error); |
||
2863 | cst1 = isl_upoly_as_cst(qp1->upoly); |
||
2864 | cst2 = isl_upoly_as_cst(qp2->upoly); |
||
2865 | cmp = isl_upoly_cmp(cst1, cst2); |
||
2866 | |||
2867 | if (cmp >= 0) { |
||
2868 | isl_qpolynomial_free(qp2); |
||
2869 | } else { |
||
2870 | isl_qpolynomial_free(qp1); |
||
2871 | qp1 = qp2; |
||
2872 | } |
||
2873 | return qp1; |
||
2874 | error: |
||
2875 | isl_qpolynomial_free(qp1); |
||
2876 | isl_qpolynomial_free(qp2); |
||
2877 | return NULL; |
||
2878 | } |
||
2879 | |||
2880 | __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims( |
||
2881 | __isl_take isl_qpolynomial *qp, enum isl_dim_type type, |
||
2882 | unsigned first, unsigned n) |
||
2883 | { |
||
2884 | unsigned total; |
||
2885 | unsigned g_pos; |
||
2886 | int *exp; |
||
2887 | |||
2888 | if (!qp) |
||
2889 | return NULL; |
||
2890 | if (type == isl_dim_out) |
||
2891 | isl_die(qp->div->ctx, isl_error_invalid, |
||
2892 | "cannot insert output/set dimensions", |
||
2893 | goto error); |
||
2894 | if (type == isl_dim_in) |
||
2895 | type = isl_dim_set; |
||
2896 | if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type)) |
||
2897 | return qp; |
||
2898 | |||
2899 | qp = isl_qpolynomial_cow(qp); |
||
2900 | if (!qp) |
||
2901 | return NULL; |
||
2902 | |||
2903 | isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type), |
||
2904 | goto error); |
||
2905 | |||
2906 | g_pos = pos(qp->dim, type) + first; |
||
2907 | |||
2908 | qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n); |
||
2909 | if (!qp->div) |
||
2910 | goto error; |
||
2911 | |||
2912 | total = qp->div->n_col - 2; |
||
2913 | if (total > g_pos) { |
||
2914 | int i; |
||
2915 | exp = isl_alloc_array(qp->div->ctx, int, total - g_pos); |
||
2916 | if (!exp) |
||
2917 | goto error; |
||
2918 | for (i = 0; i < total - g_pos; ++i) |
||
2919 | exp[i] = i + n; |
||
2920 | qp->upoly = expand(qp->upoly, exp, g_pos); |
||
2921 | free(exp); |
||
2922 | if (!qp->upoly) |
||
2923 | goto error; |
||
2924 | } |
||
2925 | |||
2926 | qp->dim = isl_space_insert_dims(qp->dim, type, first, n); |
||
2927 | if (!qp->dim) |
||
2928 | goto error; |
||
2929 | |||
2930 | return qp; |
||
2931 | error: |
||
2932 | isl_qpolynomial_free(qp); |
||
2933 | return NULL; |
||
2934 | } |
||
2935 | |||
2936 | __isl_give isl_qpolynomial *isl_qpolynomial_add_dims( |
||
2937 | __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n) |
||
2938 | { |
||
2939 | unsigned pos; |
||
2940 | |||
2941 | pos = isl_qpolynomial_dim(qp, type); |
||
2942 | |||
2943 | return isl_qpolynomial_insert_dims(qp, type, pos, n); |
||
2944 | } |
||
2945 | |||
2946 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims( |
||
2947 | __isl_take isl_pw_qpolynomial *pwqp, |
||
2948 | enum isl_dim_type type, unsigned n) |
||
2949 | { |
||
2950 | unsigned pos; |
||
2951 | |||
2952 | pos = isl_pw_qpolynomial_dim(pwqp, type); |
||
2953 | |||
2954 | return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n); |
||
2955 | } |
||
2956 | |||
2957 | static int *reordering_move(isl_ctx *ctx, |
||
2958 | unsigned len, unsigned dst, unsigned src, unsigned n) |
||
2959 | { |
||
2960 | int i; |
||
2961 | int *reordering; |
||
2962 | |||
2963 | reordering = isl_alloc_array(ctx, int, len); |
||
2964 | if (!reordering) |
||
2965 | return NULL; |
||
2966 | |||
2967 | if (dst <= src) { |
||
2968 | for (i = 0; i < dst; ++i) |
||
2969 | reordering[i] = i; |
||
2970 | for (i = 0; i < n; ++i) |
||
2971 | reordering[src + i] = dst + i; |
||
2972 | for (i = 0; i < src - dst; ++i) |
||
2973 | reordering[dst + i] = dst + n + i; |
||
2974 | for (i = 0; i < len - src - n; ++i) |
||
2975 | reordering[src + n + i] = src + n + i; |
||
2976 | } else { |
||
2977 | for (i = 0; i < src; ++i) |
||
2978 | reordering[i] = i; |
||
2979 | for (i = 0; i < n; ++i) |
||
2980 | reordering[src + i] = dst + i; |
||
2981 | for (i = 0; i < dst - src; ++i) |
||
2982 | reordering[src + n + i] = src + i; |
||
2983 | for (i = 0; i < len - dst - n; ++i) |
||
2984 | reordering[dst + n + i] = dst + n + i; |
||
2985 | } |
||
2986 | |||
2987 | return reordering; |
||
2988 | } |
||
2989 | |||
2990 | __isl_give isl_qpolynomial *isl_qpolynomial_move_dims( |
||
2991 | __isl_take isl_qpolynomial *qp, |
||
2992 | enum isl_dim_type dst_type, unsigned dst_pos, |
||
2993 | enum isl_dim_type src_type, unsigned src_pos, unsigned n) |
||
2994 | { |
||
2995 | unsigned g_dst_pos; |
||
2996 | unsigned g_src_pos; |
||
2997 | int *reordering; |
||
2998 | |||
2999 | qp = isl_qpolynomial_cow(qp); |
||
3000 | if (!qp) |
||
3001 | return NULL; |
||
3002 | |||
3003 | if (dst_type == isl_dim_out || src_type == isl_dim_out) |
||
3004 | isl_die(qp->dim->ctx, isl_error_invalid, |
||
3005 | "cannot move output/set dimension", |
||
3006 | goto error); |
||
3007 | if (dst_type == isl_dim_in) |
||
3008 | dst_type = isl_dim_set; |
||
3009 | if (src_type == isl_dim_in) |
||
3010 | src_type = isl_dim_set; |
||
3011 | |||
3012 | isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type), |
||
3013 | goto error); |
||
3014 | |||
3015 | g_dst_pos = pos(qp->dim, dst_type) + dst_pos; |
||
3016 | g_src_pos = pos(qp->dim, src_type) + src_pos; |
||
3017 | if (dst_type > src_type) |
||
3018 | g_dst_pos -= n; |
||
3019 | |||
3020 | qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n); |
||
3021 | if (!qp->div) |
||
3022 | goto error; |
||
3023 | qp = sort_divs(qp); |
||
3024 | if (!qp) |
||
3025 | goto error; |
||
3026 | |||
3027 | reordering = reordering_move(qp->dim->ctx, |
||
3028 | qp->div->n_col - 2, g_dst_pos, g_src_pos, n); |
||
3029 | if (!reordering) |
||
3030 | goto error; |
||
3031 | |||
3032 | qp->upoly = reorder(qp->upoly, reordering); |
||
3033 | free(reordering); |
||
3034 | if (!qp->upoly) |
||
3035 | goto error; |
||
3036 | |||
3037 | qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n); |
||
3038 | if (!qp->dim) |
||
3039 | goto error; |
||
3040 | |||
3041 | return qp; |
||
3042 | error: |
||
3043 | isl_qpolynomial_free(qp); |
||
3044 | return NULL; |
||
3045 | } |
||
3046 | |||
3047 | __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim, |
||
3048 | isl_int *f, isl_int denom) |
||
3049 | { |
||
3050 | struct isl_upoly *up; |
||
3051 | |||
3052 | dim = isl_space_domain(dim); |
||
3053 | if (!dim) |
||
3054 | return NULL; |
||
3055 | |||
3056 | up = isl_upoly_from_affine(dim->ctx, f, denom, |
||
3057 | 1 + isl_space_dim(dim, isl_dim_all)); |
||
3058 | |||
3059 | return isl_qpolynomial_alloc(dim, 0, up); |
||
3060 | } |
||
3061 | |||
3062 | __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff) |
||
3063 | { |
||
3064 | isl_ctx *ctx; |
||
3065 | struct isl_upoly *up; |
||
3066 | isl_qpolynomial *qp; |
||
3067 | |||
3068 | if (!aff) |
||
3069 | return NULL; |
||
3070 | |||
3071 | ctx = isl_aff_get_ctx(aff); |
||
3072 | up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0], |
||
3073 | aff->v->size - 1); |
||
3074 | |||
3075 | qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff), |
||
3076 | aff->ls->div->n_row, up); |
||
3077 | if (!qp) |
||
3078 | goto error; |
||
3079 | |||
3080 | isl_mat_free(qp->div); |
||
3081 | qp->div = isl_mat_copy(aff->ls->div); |
||
3082 | qp->div = isl_mat_cow(qp->div); |
||
3083 | if (!qp->div) |
||
3084 | goto error; |
||
3085 | |||
3086 | isl_aff_free(aff); |
||
3087 | qp = reduce_divs(qp); |
||
3088 | qp = remove_redundant_divs(qp); |
||
3089 | return qp; |
||
3090 | error: |
||
3091 | isl_aff_free(aff); |
||
3092 | return NULL; |
||
3093 | } |
||
3094 | |||
3095 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( |
||
3096 | __isl_take isl_pw_aff *pwaff) |
||
3097 | { |
||
3098 | int i; |
||
3099 | isl_pw_qpolynomial *pwqp; |
||
3100 | |||
3101 | if (!pwaff) |
||
3102 | return NULL; |
||
3103 | |||
3104 | pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff), |
||
3105 | pwaff->n); |
||
3106 | |||
3107 | for (i = 0; i < pwaff->n; ++i) { |
||
3108 | isl_set *dom; |
||
3109 | isl_qpolynomial *qp; |
||
3110 | |||
3111 | dom = isl_set_copy(pwaff->p[i].set); |
||
3112 | qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff)); |
||
3113 | pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp); |
||
3114 | } |
||
3115 | |||
3116 | isl_pw_aff_free(pwaff); |
||
3117 | return pwqp; |
||
3118 | } |
||
3119 | |||
3120 | __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint( |
||
3121 | __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos) |
||
3122 | { |
||
3123 | isl_aff *aff; |
||
3124 | |||
3125 | aff = isl_constraint_get_bound(c, type, pos); |
||
3126 | isl_constraint_free(c); |
||
3127 | return isl_qpolynomial_from_aff(aff); |
||
3128 | } |
||
3129 | |||
3130 | /* For each 0 <= i < "n", replace variable "first" + i of type "type" |
||
3131 | * in "qp" by subs[i]. |
||
3132 | */ |
||
3133 | __isl_give isl_qpolynomial *isl_qpolynomial_substitute( |
||
3134 | __isl_take isl_qpolynomial *qp, |
||
3135 | enum isl_dim_type type, unsigned first, unsigned n, |
||
3136 | __isl_keep isl_qpolynomial **subs) |
||
3137 | { |
||
3138 | int i; |
||
3139 | struct isl_upoly **ups; |
||
3140 | |||
3141 | if (n == 0) |
||
3142 | return qp; |
||
3143 | |||
3144 | qp = isl_qpolynomial_cow(qp); |
||
3145 | if (!qp) |
||
3146 | return NULL; |
||
3147 | |||
3148 | if (type == isl_dim_out) |
||
3149 | isl_die(qp->dim->ctx, isl_error_invalid, |
||
3150 | "cannot substitute output/set dimension", |
||
3151 | goto error); |
||
3152 | if (type == isl_dim_in) |
||
3153 | type = isl_dim_set; |
||
3154 | |||
3155 | for (i = 0; i < n; ++i) |
||
3156 | if (!subs[i]) |
||
3157 | goto error; |
||
3158 | |||
3159 | isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type), |
||
3160 | goto error); |
||
3161 | |||
3162 | for (i = 0; i < n; ++i) |
||
3163 | isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim), |
||
3164 | goto error); |
||
3165 | |||
3166 | isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error); |
||
3167 | for (i = 0; i < n; ++i) |
||
3168 | isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error); |
||
3169 | |||
3170 | first += pos(qp->dim, type); |
||
3171 | |||
3172 | ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n); |
||
3173 | if (!ups) |
||
3174 | goto error; |
||
3175 | for (i = 0; i < n; ++i) |
||
3176 | ups[i] = subs[i]->upoly; |
||
3177 | |||
3178 | qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups); |
||
3179 | |||
3180 | free(ups); |
||
3181 | |||
3182 | if (!qp->upoly) |
||
3183 | goto error; |
||
3184 | |||
3185 | return qp; |
||
3186 | error: |
||
3187 | isl_qpolynomial_free(qp); |
||
3188 | return NULL; |
||
3189 | } |
||
3190 | |||
3191 | /* Extend "bset" with extra set dimensions for each integer division |
||
3192 | * in "qp" and then call "fn" with the extended bset and the polynomial |
||
3193 | * that results from replacing each of the integer divisions by the |
||
3194 | * corresponding extra set dimension. |
||
3195 | */ |
||
3196 | int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp, |
||
3197 | __isl_keep isl_basic_set *bset, |
||
3198 | int (*fn)(__isl_take isl_basic_set *bset, |
||
3199 | __isl_take isl_qpolynomial *poly, void *user), void *user) |
||
3200 | { |
||
3201 | isl_space *dim; |
||
3202 | isl_mat *div; |
||
3203 | isl_qpolynomial *poly; |
||
3204 | |||
3205 | if (!qp || !bset) |
||
3206 | goto error; |
||
3207 | if (qp->div->n_row == 0) |
||
3208 | return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp), |
||
3209 | user); |
||
3210 | |||
3211 | div = isl_mat_copy(qp->div); |
||
3212 | dim = isl_space_copy(qp->dim); |
||
3213 | dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row); |
||
3214 | poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly)); |
||
3215 | bset = isl_basic_set_copy(bset); |
||
3216 | bset = isl_basic_set_add(bset, isl_dim_set, qp->div->n_row); |
||
3217 | bset = add_div_constraints(bset, div); |
||
3218 | |||
3219 | return fn(bset, poly, user); |
||
3220 | error: |
||
3221 | return -1; |
||
3222 | } |
||
3223 | |||
3224 | /* Return total degree in variables first (inclusive) up to last (exclusive). |
||
3225 | */ |
||
3226 | int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last) |
||
3227 | { |
||
3228 | int deg = -1; |
||
3229 | int i; |
||
3230 | struct isl_upoly_rec *rec; |
||
3231 | |||
3232 | if (!up) |
||
3233 | return -2; |
||
3234 | if (isl_upoly_is_zero(up)) |
||
3235 | return -1; |
||
3236 | if (isl_upoly_is_cst(up) || up->var < first) |
||
3237 | return 0; |
||
3238 | |||
3239 | rec = isl_upoly_as_rec(up); |
||
3240 | if (!rec) |
||
3241 | return -2; |
||
3242 | |||
3243 | for (i = 0; i < rec->n; ++i) { |
||
3244 | int d; |
||
3245 | |||
3246 | if (isl_upoly_is_zero(rec->p[i])) |
||
3247 | continue; |
||
3248 | d = isl_upoly_degree(rec->p[i], first, last); |
||
3249 | if (up->var < last) |
||
3250 | d += i; |
||
3251 | if (d > deg) |
||
3252 | deg = d; |
||
3253 | } |
||
3254 | |||
3255 | return deg; |
||
3256 | } |
||
3257 | |||
3258 | /* Return total degree in set variables. |
||
3259 | */ |
||
3260 | int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly) |
||
3261 | { |
||
3262 | unsigned ovar; |
||
3263 | unsigned nvar; |
||
3264 | |||
3265 | if (!poly) |
||
3266 | return -2; |
||
3267 | |||
3268 | ovar = isl_space_offset(poly->dim, isl_dim_set); |
||
3269 | nvar = isl_space_dim(poly->dim, isl_dim_set); |
||
3270 | return isl_upoly_degree(poly->upoly, ovar, ovar + nvar); |
||
3271 | } |
||
3272 | |||
3273 | __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up, |
||
3274 | unsigned pos, int deg) |
||
3275 | { |
||
3276 | int i; |
||
3277 | struct isl_upoly_rec *rec; |
||
3278 | |||
3279 | if (!up) |
||
3280 | return NULL; |
||
3281 | |||
3282 | if (isl_upoly_is_cst(up) || up->var < pos) { |
||
3283 | if (deg == 0) |
||
3284 | return isl_upoly_copy(up); |
||
3285 | else |
||
3286 | return isl_upoly_zero(up->ctx); |
||
3287 | } |
||
3288 | |||
3289 | rec = isl_upoly_as_rec(up); |
||
3290 | if (!rec) |
||
3291 | return NULL; |
||
3292 | |||
3293 | if (up->var == pos) { |
||
3294 | if (deg < rec->n) |
||
3295 | return isl_upoly_copy(rec->p[deg]); |
||
3296 | else |
||
3297 | return isl_upoly_zero(up->ctx); |
||
3298 | } |
||
3299 | |||
3300 | up = isl_upoly_copy(up); |
||
3301 | up = isl_upoly_cow(up); |
||
3302 | rec = isl_upoly_as_rec(up); |
||
3303 | if (!rec) |
||
3304 | goto error; |
||
3305 | |||
3306 | for (i = 0; i < rec->n; ++i) { |
||
3307 | struct isl_upoly *t; |
||
3308 | t = isl_upoly_coeff(rec->p[i], pos, deg); |
||
3309 | if (!t) |
||
3310 | goto error; |
||
3311 | isl_upoly_free(rec->p[i]); |
||
3312 | rec->p[i] = t; |
||
3313 | } |
||
3314 | |||
3315 | return up; |
||
3316 | error: |
||
3317 | isl_upoly_free(up); |
||
3318 | return NULL; |
||
3319 | } |
||
3320 | |||
3321 | /* Return coefficient of power "deg" of variable "t_pos" of type "type". |
||
3322 | */ |
||
3323 | __isl_give isl_qpolynomial *isl_qpolynomial_coeff( |
||
3324 | __isl_keep isl_qpolynomial *qp, |
||
3325 | enum isl_dim_type type, unsigned t_pos, int deg) |
||
3326 | { |
||
3327 | unsigned g_pos; |
||
3328 | struct isl_upoly *up; |
||
3329 | isl_qpolynomial *c; |
||
3330 | |||
3331 | if (!qp) |
||
3332 | return NULL; |
||
3333 | |||
3334 | if (type == isl_dim_out) |
||
3335 | isl_die(qp->div->ctx, isl_error_invalid, |
||
3336 | "output/set dimension does not have a coefficient", |
||
3337 | return NULL); |
||
3338 | if (type == isl_dim_in) |
||
3339 | type = isl_dim_set; |
||
3340 | |||
3341 | isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type), |
||
3342 | return NULL); |
||
3343 | |||
3344 | g_pos = pos(qp->dim, type) + t_pos; |
||
3345 | up = isl_upoly_coeff(qp->upoly, g_pos, deg); |
||
3346 | |||
3347 | c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up); |
||
3348 | if (!c) |
||
3349 | return NULL; |
||
3350 | isl_mat_free(c->div); |
||
3351 | c->div = isl_mat_copy(qp->div); |
||
3352 | if (!c->div) |
||
3353 | goto error; |
||
3354 | return c; |
||
3355 | error: |
||
3356 | isl_qpolynomial_free(c); |
||
3357 | return NULL; |
||
3358 | } |
||
3359 | |||
3360 | /* Homogenize the polynomial in the variables first (inclusive) up to |
||
3361 | * last (exclusive) by inserting powers of variable first. |
||
3362 | * Variable first is assumed not to appear in the input. |
||
3363 | */ |
||
3364 | __isl_give struct isl_upoly *isl_upoly_homogenize( |
||
3365 | __isl_take struct isl_upoly *up, int deg, int target, |
||
3366 | int first, int last) |
||
3367 | { |
||
3368 | int i; |
||
3369 | struct isl_upoly_rec *rec; |
||
3370 | |||
3371 | if (!up) |
||
3372 | return NULL; |
||
3373 | if (isl_upoly_is_zero(up)) |
||
3374 | return up; |
||
3375 | if (deg == target) |
||
3376 | return up; |
||
3377 | if (isl_upoly_is_cst(up) || up->var < first) { |
||
3378 | struct isl_upoly *hom; |
||
3379 | |||
3380 | hom = isl_upoly_var_pow(up->ctx, first, target - deg); |
||
3381 | if (!hom) |
||
3382 | goto error; |
||
3383 | rec = isl_upoly_as_rec(hom); |
||
3384 | rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up); |
||
3385 | |||
3386 | return hom; |
||
3387 | } |
||
3388 | |||
3389 | up = isl_upoly_cow(up); |
||
3390 | rec = isl_upoly_as_rec(up); |
||
3391 | if (!rec) |
||
3392 | goto error; |
||
3393 | |||
3394 | for (i = 0; i < rec->n; ++i) { |
||
3395 | if (isl_upoly_is_zero(rec->p[i])) |
||
3396 | continue; |
||
3397 | rec->p[i] = isl_upoly_homogenize(rec->p[i], |
||
3398 | up->var < last ? deg + i : i, target, |
||
3399 | first, last); |
||
3400 | if (!rec->p[i]) |
||
3401 | goto error; |
||
3402 | } |
||
3403 | |||
3404 | return up; |
||
3405 | error: |
||
3406 | isl_upoly_free(up); |
||
3407 | return NULL; |
||
3408 | } |
||
3409 | |||
3410 | /* Homogenize the polynomial in the set variables by introducing |
||
3411 | * powers of an extra set variable at position 0. |
||
3412 | */ |
||
3413 | __isl_give isl_qpolynomial *isl_qpolynomial_homogenize( |
||
3414 | __isl_take isl_qpolynomial *poly) |
||
3415 | { |
||
3416 | unsigned ovar; |
||
3417 | unsigned nvar; |
||
3418 | int deg = isl_qpolynomial_degree(poly); |
||
3419 | |||
3420 | if (deg < -1) |
||
3421 | goto error; |
||
3422 | |||
3423 | poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1); |
||
3424 | poly = isl_qpolynomial_cow(poly); |
||
3425 | if (!poly) |
||
3426 | goto error; |
||
3427 | |||
3428 | ovar = isl_space_offset(poly->dim, isl_dim_set); |
||
3429 | nvar = isl_space_dim(poly->dim, isl_dim_set); |
||
3430 | poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg, |
||
3431 | ovar, ovar + nvar); |
||
3432 | if (!poly->upoly) |
||
3433 | goto error; |
||
3434 | |||
3435 | return poly; |
||
3436 | error: |
||
3437 | isl_qpolynomial_free(poly); |
||
3438 | return NULL; |
||
3439 | } |
||
3440 | |||
3441 | __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim, |
||
3442 | __isl_take isl_mat *div) |
||
3443 | { |
||
3444 | isl_term *term; |
||
3445 | int n; |
||
3446 | |||
3447 | if (!dim || !div) |
||
3448 | goto error; |
||
3449 | |||
3450 | n = isl_space_dim(dim, isl_dim_all) + div->n_row; |
||
3451 | |||
3452 | term = isl_calloc(dim->ctx, struct isl_term, |
||
3453 | sizeof(struct isl_term) + (n - 1) * sizeof(int)); |
||
3454 | if (!term) |
||
3455 | goto error; |
||
3456 | |||
3457 | term->ref = 1; |
||
3458 | term->dim = dim; |
||
3459 | term->div = div; |
||
3460 | isl_int_init(term->n); |
||
3461 | isl_int_init(term->d); |
||
3462 | |||
3463 | return term; |
||
3464 | error: |
||
3465 | isl_space_free(dim); |
||
3466 | isl_mat_free(div); |
||
3467 | return NULL; |
||
3468 | } |
||
3469 | |||
3470 | __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term) |
||
3471 | { |
||
3472 | if (!term) |
||
3473 | return NULL; |
||
3474 | |||
3475 | term->ref++; |
||
3476 | return term; |
||
3477 | } |
||
3478 | |||
3479 | __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term) |
||
3480 | { |
||
3481 | int i; |
||
3482 | isl_term *dup; |
||
3483 | unsigned total; |
||
3484 | |||
3485 | if (!term) |
||
3486 | return NULL; |
||
3487 | |||
3488 | total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; |
||
3489 | |||
3490 | dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div)); |
||
3491 | if (!dup) |
||
3492 | return NULL; |
||
3493 | |||
3494 | isl_int_set(dup->n, term->n); |
||
3495 | isl_int_set(dup->d, term->d); |
||
3496 | |||
3497 | for (i = 0; i < total; ++i) |
||
3498 | dup->pow[i] = term->pow[i]; |
||
3499 | |||
3500 | return dup; |
||
3501 | } |
||
3502 | |||
3503 | __isl_give isl_term *isl_term_cow(__isl_take isl_term *term) |
||
3504 | { |
||
3505 | if (!term) |
||
3506 | return NULL; |
||
3507 | |||
3508 | if (term->ref == 1) |
||
3509 | return term; |
||
3510 | term->ref--; |
||
3511 | return isl_term_dup(term); |
||
3512 | } |
||
3513 | |||
3514 | void isl_term_free(__isl_take isl_term *term) |
||
3515 | { |
||
3516 | if (!term) |
||
3517 | return; |
||
3518 | |||
3519 | if (--term->ref > 0) |
||
3520 | return; |
||
3521 | |||
3522 | isl_space_free(term->dim); |
||
3523 | isl_mat_free(term->div); |
||
3524 | isl_int_clear(term->n); |
||
3525 | isl_int_clear(term->d); |
||
3526 | free(term); |
||
3527 | } |
||
3528 | |||
3529 | unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type) |
||
3530 | { |
||
3531 | if (!term) |
||
3532 | return 0; |
||
3533 | |||
3534 | switch (type) { |
||
3535 | case isl_dim_param: |
||
3536 | case isl_dim_in: |
||
3537 | case isl_dim_out: return isl_space_dim(term->dim, type); |
||
3538 | case isl_dim_div: return term->div->n_row; |
||
3539 | case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) + |
||
3540 | term->div->n_row; |
||
3541 | default: return 0; |
||
3542 | } |
||
3543 | } |
||
3544 | |||
3545 | isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term) |
||
3546 | { |
||
3547 | return term ? term->dim->ctx : NULL; |
||
3548 | } |
||
3549 | |||
3550 | void isl_term_get_num(__isl_keep isl_term *term, isl_int *n) |
||
3551 | { |
||
3552 | if (!term) |
||
3553 | return; |
||
3554 | isl_int_set(*n, term->n); |
||
3555 | } |
||
3556 | |||
3557 | void isl_term_get_den(__isl_keep isl_term *term, isl_int *d) |
||
3558 | { |
||
3559 | if (!term) |
||
3560 | return; |
||
3561 | isl_int_set(*d, term->d); |
||
3562 | } |
||
3563 | |||
3564 | int isl_term_get_exp(__isl_keep isl_term *term, |
||
3565 | enum isl_dim_type type, unsigned pos) |
||
3566 | { |
||
3567 | if (!term) |
||
3568 | return -1; |
||
3569 | |||
3570 | isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1); |
||
3571 | |||
3572 | if (type >= isl_dim_set) |
||
3573 | pos += isl_space_dim(term->dim, isl_dim_param); |
||
3574 | if (type >= isl_dim_div) |
||
3575 | pos += isl_space_dim(term->dim, isl_dim_set); |
||
3576 | |||
3577 | return term->pow[pos]; |
||
3578 | } |
||
3579 | |||
3580 | __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos) |
||
3581 | { |
||
3582 | isl_local_space *ls; |
||
3583 | isl_aff *aff; |
||
3584 | |||
3585 | if (!term) |
||
3586 | return NULL; |
||
3587 | |||
3588 | isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div), |
||
3589 | return NULL); |
||
3590 | |||
3591 | ls = isl_local_space_alloc_div(isl_space_copy(term->dim), |
||
3592 | isl_mat_copy(term->div)); |
||
3593 | aff = isl_aff_alloc(ls); |
||
3594 | if (!aff) |
||
3595 | return NULL; |
||
3596 | |||
3597 | isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size); |
||
3598 | |||
3599 | aff = isl_aff_normalize(aff); |
||
3600 | |||
3601 | return aff; |
||
3602 | } |
||
3603 | |||
3604 | __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up, |
||
3605 | int (*fn)(__isl_take isl_term *term, void *user), |
||
3606 | __isl_take isl_term *term, void *user) |
||
3607 | { |
||
3608 | int i; |
||
3609 | struct isl_upoly_rec *rec; |
||
3610 | |||
3611 | if (!up || !term) |
||
3612 | goto error; |
||
3613 | |||
3614 | if (isl_upoly_is_zero(up)) |
||
3615 | return term; |
||
3616 | |||
3617 | isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error); |
||
3618 | isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error); |
||
3619 | isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error); |
||
3620 | |||
3621 | if (isl_upoly_is_cst(up)) { |
||
3622 | struct isl_upoly_cst *cst; |
||
3623 | cst = isl_upoly_as_cst(up); |
||
3624 | if (!cst) |
||
3625 | goto error; |
||
3626 | term = isl_term_cow(term); |
||
3627 | if (!term) |
||
3628 | goto error; |
||
3629 | isl_int_set(term->n, cst->n); |
||
3630 | isl_int_set(term->d, cst->d); |
||
3631 | if (fn(isl_term_copy(term), user) < 0) |
||
3632 | goto error; |
||
3633 | return term; |
||
3634 | } |
||
3635 | |||
3636 | rec = isl_upoly_as_rec(up); |
||
3637 | if (!rec) |
||
3638 | goto error; |
||
3639 | |||
3640 | for (i = 0; i < rec->n; ++i) { |
||
3641 | term = isl_term_cow(term); |
||
3642 | if (!term) |
||
3643 | goto error; |
||
3644 | term->pow[up->var] = i; |
||
3645 | term = isl_upoly_foreach_term(rec->p[i], fn, term, user); |
||
3646 | if (!term) |
||
3647 | goto error; |
||
3648 | } |
||
3649 | term->pow[up->var] = 0; |
||
3650 | |||
3651 | return term; |
||
3652 | error: |
||
3653 | isl_term_free(term); |
||
3654 | return NULL; |
||
3655 | } |
||
3656 | |||
3657 | int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp, |
||
3658 | int (*fn)(__isl_take isl_term *term, void *user), void *user) |
||
3659 | { |
||
3660 | isl_term *term; |
||
3661 | |||
3662 | if (!qp) |
||
3663 | return -1; |
||
3664 | |||
3665 | term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div)); |
||
3666 | if (!term) |
||
3667 | return -1; |
||
3668 | |||
3669 | term = isl_upoly_foreach_term(qp->upoly, fn, term, user); |
||
3670 | |||
3671 | isl_term_free(term); |
||
3672 | |||
3673 | return term ? 0 : -1; |
||
3674 | } |
||
3675 | |||
3676 | __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term) |
||
3677 | { |
||
3678 | struct isl_upoly *up; |
||
3679 | isl_qpolynomial *qp; |
||
3680 | int i, n; |
||
3681 | |||
3682 | if (!term) |
||
3683 | return NULL; |
||
3684 | |||
3685 | n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; |
||
3686 | |||
3687 | up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d); |
||
3688 | for (i = 0; i < n; ++i) { |
||
3689 | if (!term->pow[i]) |
||
3690 | continue; |
||
3691 | up = isl_upoly_mul(up, |
||
3692 | isl_upoly_var_pow(term->dim->ctx, i, term->pow[i])); |
||
3693 | } |
||
3694 | |||
3695 | qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up); |
||
3696 | if (!qp) |
||
3697 | goto error; |
||
3698 | isl_mat_free(qp->div); |
||
3699 | qp->div = isl_mat_copy(term->div); |
||
3700 | if (!qp->div) |
||
3701 | goto error; |
||
3702 | |||
3703 | isl_term_free(term); |
||
3704 | return qp; |
||
3705 | error: |
||
3706 | isl_qpolynomial_free(qp); |
||
3707 | isl_term_free(term); |
||
3708 | return NULL; |
||
3709 | } |
||
3710 | |||
3711 | __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp, |
||
3712 | __isl_take isl_space *dim) |
||
3713 | { |
||
3714 | int i; |
||
3715 | int extra; |
||
3716 | unsigned total; |
||
3717 | |||
3718 | if (!qp || !dim) |
||
3719 | goto error; |
||
3720 | |||
3721 | if (isl_space_is_equal(qp->dim, dim)) { |
||
3722 | isl_space_free(dim); |
||
3723 | return qp; |
||
3724 | } |
||
3725 | |||
3726 | qp = isl_qpolynomial_cow(qp); |
||
3727 | if (!qp) |
||
3728 | goto error; |
||
3729 | |||
3730 | extra = isl_space_dim(dim, isl_dim_set) - |
||
3731 | isl_space_dim(qp->dim, isl_dim_set); |
||
3732 | total = isl_space_dim(qp->dim, isl_dim_all); |
||
3733 | if (qp->div->n_row) { |
||
3734 | int *exp; |
||
3735 | |||
3736 | exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
||
3737 | if (!exp) |
||
3738 | goto error; |
||
3739 | for (i = 0; i < qp->div->n_row; ++i) |
||
3740 | exp[i] = extra + i; |
||
3741 | qp->upoly = expand(qp->upoly, exp, total); |
||
3742 | free(exp); |
||
3743 | if (!qp->upoly) |
||
3744 | goto error; |
||
3745 | } |
||
3746 | qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra); |
||
3747 | if (!qp->div) |
||
3748 | goto error; |
||
3749 | for (i = 0; i < qp->div->n_row; ++i) |
||
3750 | isl_seq_clr(qp->div->row[i] + 2 + total, extra); |
||
3751 | |||
3752 | isl_space_free(qp->dim); |
||
3753 | qp->dim = dim; |
||
3754 | |||
3755 | return qp; |
||
3756 | error: |
||
3757 | isl_space_free(dim); |
||
3758 | isl_qpolynomial_free(qp); |
||
3759 | return NULL; |
||
3760 | } |
||
3761 | |||
3762 | /* For each parameter or variable that does not appear in qp, |
||
3763 | * first eliminate the variable from all constraints and then set it to zero. |
||
3764 | */ |
||
3765 | static __isl_give isl_set *fix_inactive(__isl_take isl_set *set, |
||
3766 | __isl_keep isl_qpolynomial *qp) |
||
3767 | { |
||
3768 | int *active = NULL; |
||
3769 | int i; |
||
3770 | int d; |
||
3771 | unsigned nparam; |
||
3772 | unsigned nvar; |
||
3773 | |||
3774 | if (!set || !qp) |
||
3775 | goto error; |
||
3776 | |||
3777 | d = isl_space_dim(set->dim, isl_dim_all); |
||
3778 | active = isl_calloc_array(set->ctx, int, d); |
||
3779 | if (set_active(qp, active) < 0) |
||
3780 | goto error; |
||
3781 | |||
3782 | for (i = 0; i < d; ++i) |
||
3783 | if (!active[i]) |
||
3784 | break; |
||
3785 | |||
3786 | if (i == d) { |
||
3787 | free(active); |
||
3788 | return set; |
||
3789 | } |
||
3790 | |||
3791 | nparam = isl_space_dim(set->dim, isl_dim_param); |
||
3792 | nvar = isl_space_dim(set->dim, isl_dim_set); |
||
3793 | for (i = 0; i < nparam; ++i) { |
||
3794 | if (active[i]) |
||
3795 | continue; |
||
3796 | set = isl_set_eliminate(set, isl_dim_param, i, 1); |
||
3797 | set = isl_set_fix_si(set, isl_dim_param, i, 0); |
||
3798 | } |
||
3799 | for (i = 0; i < nvar; ++i) { |
||
3800 | if (active[nparam + i]) |
||
3801 | continue; |
||
3802 | set = isl_set_eliminate(set, isl_dim_set, i, 1); |
||
3803 | set = isl_set_fix_si(set, isl_dim_set, i, 0); |
||
3804 | } |
||
3805 | |||
3806 | free(active); |
||
3807 | |||
3808 | return set; |
||
3809 | error: |
||
3810 | free(active); |
||
3811 | isl_set_free(set); |
||
3812 | return NULL; |
||
3813 | } |
||
3814 | |||
3815 | struct isl_opt_data { |
||
3816 | isl_qpolynomial *qp; |
||
3817 | int first; |
||
3818 | isl_qpolynomial *opt; |
||
3819 | int max; |
||
3820 | }; |
||
3821 | |||
3822 | static int opt_fn(__isl_take isl_point *pnt, void *user) |
||
3823 | { |
||
3824 | struct isl_opt_data *data = (struct isl_opt_data *)user; |
||
3825 | isl_qpolynomial *val; |
||
3826 | |||
3827 | val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt); |
||
3828 | if (data->first) { |
||
3829 | data->first = 0; |
||
3830 | data->opt = val; |
||
3831 | } else if (data->max) { |
||
3832 | data->opt = isl_qpolynomial_max_cst(data->opt, val); |
||
3833 | } else { |
||
3834 | data->opt = isl_qpolynomial_min_cst(data->opt, val); |
||
3835 | } |
||
3836 | |||
3837 | return 0; |
||
3838 | } |
||
3839 | |||
3840 | __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain( |
||
3841 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max) |
||
3842 | { |
||
3843 | struct isl_opt_data data = { NULL, 1, NULL, max }; |
||
3844 | |||
3845 | if (!set || !qp) |
||
3846 | goto error; |
||
3847 | |||
3848 | if (isl_upoly_is_cst(qp->upoly)) { |
||
3849 | isl_set_free(set); |
||
3850 | return qp; |
||
3851 | } |
||
3852 | |||
3853 | set = fix_inactive(set, qp); |
||
3854 | |||
3855 | data.qp = qp; |
||
3856 | if (isl_set_foreach_point(set, opt_fn, &data) < 0) |
||
3857 | goto error; |
||
3858 | |||
3859 | if (data.first) { |
||
3860 | isl_space *space = isl_qpolynomial_get_domain_space(qp); |
||
3861 | data.opt = isl_qpolynomial_zero_on_domain(space); |
||
3862 | } |
||
3863 | |||
3864 | isl_set_free(set); |
||
3865 | isl_qpolynomial_free(qp); |
||
3866 | return data.opt; |
||
3867 | error: |
||
3868 | isl_set_free(set); |
||
3869 | isl_qpolynomial_free(qp); |
||
3870 | isl_qpolynomial_free(data.opt); |
||
3871 | return NULL; |
||
3872 | } |
||
3873 | |||
3874 | __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain( |
||
3875 | __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph) |
||
3876 | { |
||
3877 | int i; |
||
3878 | int n_sub; |
||
3879 | isl_ctx *ctx; |
||
3880 | struct isl_upoly **subs; |
||
3881 | isl_mat *mat, *diag; |
||
3882 | |||
3883 | qp = isl_qpolynomial_cow(qp); |
||
3884 | if (!qp || !morph) |
||
3885 | goto error; |
||
3886 | |||
3887 | ctx = qp->dim->ctx; |
||
3888 | isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error); |
||
3889 | |||
3890 | n_sub = morph->inv->n_row - 1; |
||
3891 | if (morph->inv->n_row != morph->inv->n_col) |
||
3892 | n_sub += qp->div->n_row; |
||
3893 | subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub); |
||
3894 | if (!subs) |
||
3895 | goto error; |
||
3896 | |||
3897 | for (i = 0; 1 + i < morph->inv->n_row; ++i) |
||
3898 | subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i], |
||
3899 | morph->inv->row[0][0], morph->inv->n_col); |
||
3900 | if (morph->inv->n_row != morph->inv->n_col) |
||
3901 | for (i = 0; i < qp->div->n_row; ++i) |
||
3902 | subs[morph->inv->n_row - 1 + i] = |
||
3903 | isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1); |
||
3904 | |||
3905 | qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs); |
||
3906 | |||
3907 | for (i = 0; i < n_sub; ++i) |
||
3908 | isl_upoly_free(subs[i]); |
||
3909 | free(subs); |
||
3910 | |||
3911 | diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]); |
||
3912 | mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv)); |
||
3913 | diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]); |
||
3914 | mat = isl_mat_diagonal(mat, diag); |
||
3915 | qp->div = isl_mat_product(qp->div, mat); |
||
3916 | isl_space_free(qp->dim); |
||
3917 | qp->dim = isl_space_copy(morph->ran->dim); |
||
3918 | |||
3919 | if (!qp->upoly || !qp->div || !qp->dim) |
||
3920 | goto error; |
||
3921 | |||
3922 | isl_morph_free(morph); |
||
3923 | |||
3924 | return qp; |
||
3925 | error: |
||
3926 | isl_qpolynomial_free(qp); |
||
3927 | isl_morph_free(morph); |
||
3928 | return NULL; |
||
3929 | } |
||
3930 | |||
3931 | static int neg_entry(void **entry, void *user) |
||
3932 | { |
||
3933 | isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry; |
||
3934 | |||
3935 | *pwqp = isl_pw_qpolynomial_neg(*pwqp); |
||
3936 | |||
3937 | return *pwqp ? 0 : -1; |
||
3938 | } |
||
3939 | |||
3940 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg( |
||
3941 | __isl_take isl_union_pw_qpolynomial *upwqp) |
||
3942 | { |
||
3943 | upwqp = isl_union_pw_qpolynomial_cow(upwqp); |
||
3944 | if (!upwqp) |
||
3945 | return NULL; |
||
3946 | |||
3947 | if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table, |
||
3948 | &neg_entry, NULL) < 0) |
||
3949 | goto error; |
||
3950 | |||
3951 | return upwqp; |
||
3952 | error: |
||
3953 | isl_union_pw_qpolynomial_free(upwqp); |
||
3954 | return NULL; |
||
3955 | } |
||
3956 | |||
3957 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub( |
||
3958 | __isl_take isl_union_pw_qpolynomial *upwqp1, |
||
3959 | __isl_take isl_union_pw_qpolynomial *upwqp2) |
||
3960 | { |
||
3961 | return isl_union_pw_qpolynomial_add(upwqp1, |
||
3962 | isl_union_pw_qpolynomial_neg(upwqp2)); |
||
3963 | } |
||
3964 | |||
3965 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( |
||
3966 | __isl_take isl_union_pw_qpolynomial *upwqp1, |
||
3967 | __isl_take isl_union_pw_qpolynomial *upwqp2) |
||
3968 | { |
||
3969 | return match_bin_op(upwqp1, upwqp2, &isl_pw_qpolynomial_mul); |
||
3970 | } |
||
3971 | |||
3972 | /* Reorder the columns of the given div definitions according to the |
||
3973 | * given reordering. |
||
3974 | */ |
||
3975 | static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div, |
||
3976 | __isl_take isl_reordering *r) |
||
3977 | { |
||
3978 | int i, j; |
||
3979 | isl_mat *mat; |
||
3980 | int extra; |
||
3981 | |||
3982 | if (!div || !r) |
||
3983 | goto error; |
||
3984 | |||
3985 | extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len; |
||
3986 | mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra); |
||
3987 | if (!mat) |
||
3988 | goto error; |
||
3989 | |||
3990 | for (i = 0; i < div->n_row; ++i) { |
||
3991 | isl_seq_cpy(mat->row[i], div->row[i], 2); |
||
3992 | isl_seq_clr(mat->row[i] + 2, mat->n_col - 2); |
||
3993 | for (j = 0; j < r->len; ++j) |
||
3994 | isl_int_set(mat->row[i][2 + r->pos[j]], |
||
3995 | div->row[i][2 + j]); |
||
3996 | } |
||
3997 | |||
3998 | isl_reordering_free(r); |
||
3999 | isl_mat_free(div); |
||
4000 | return mat; |
||
4001 | error: |
||
4002 | isl_reordering_free(r); |
||
4003 | isl_mat_free(div); |
||
4004 | return NULL; |
||
4005 | } |
||
4006 | |||
4007 | /* Reorder the dimension of "qp" according to the given reordering. |
||
4008 | */ |
||
4009 | __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain( |
||
4010 | __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r) |
||
4011 | { |
||
4012 | qp = isl_qpolynomial_cow(qp); |
||
4013 | if (!qp) |
||
4014 | goto error; |
||
4015 | |||
4016 | r = isl_reordering_extend(r, qp->div->n_row); |
||
4017 | if (!r) |
||
4018 | goto error; |
||
4019 | |||
4020 | qp->div = reorder_divs(qp->div, isl_reordering_copy(r)); |
||
4021 | if (!qp->div) |
||
4022 | goto error; |
||
4023 | |||
4024 | qp->upoly = reorder(qp->upoly, r->pos); |
||
4025 | if (!qp->upoly) |
||
4026 | goto error; |
||
4027 | |||
4028 | qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim)); |
||
4029 | |||
4030 | isl_reordering_free(r); |
||
4031 | return qp; |
||
4032 | error: |
||
4033 | isl_qpolynomial_free(qp); |
||
4034 | isl_reordering_free(r); |
||
4035 | return NULL; |
||
4036 | } |
||
4037 | |||
4038 | __isl_give isl_qpolynomial *isl_qpolynomial_align_params( |
||
4039 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *model) |
||
4040 | { |
||
4041 | if (!qp || !model) |
||
4042 | goto error; |
||
4043 | |||
4044 | if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) { |
||
4045 | isl_reordering *exp; |
||
4046 | |||
4047 | model = isl_space_drop_dims(model, isl_dim_in, |
||
4048 | 0, isl_space_dim(model, isl_dim_in)); |
||
4049 | model = isl_space_drop_dims(model, isl_dim_out, |
||
4050 | 0, isl_space_dim(model, isl_dim_out)); |
||
4051 | exp = isl_parameter_alignment_reordering(qp->dim, model); |
||
4052 | exp = isl_reordering_extend_space(exp, |
||
4053 | isl_qpolynomial_get_domain_space(qp)); |
||
4054 | qp = isl_qpolynomial_realign_domain(qp, exp); |
||
4055 | } |
||
4056 | |||
4057 | isl_space_free(model); |
||
4058 | return qp; |
||
4059 | error: |
||
4060 | isl_space_free(model); |
||
4061 | isl_qpolynomial_free(qp); |
||
4062 | return NULL; |
||
4063 | } |
||
4064 | |||
4065 | struct isl_split_periods_data { |
||
4066 | int max_periods; |
||
4067 | isl_pw_qpolynomial *res; |
||
4068 | }; |
||
4069 | |||
4070 | /* Create a slice where the integer division "div" has the fixed value "v". |
||
4071 | * In particular, if "div" refers to floor(f/m), then create a slice |
||
4072 | * |
||
4073 | * m v <= f <= m v + (m - 1) |
||
4074 | * |
||
4075 | * or |
||
4076 | * |
||
4077 | * f - m v >= 0 |
||
4078 | * -f + m v + (m - 1) >= 0 |
||
4079 | */ |
||
4080 | static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim, |
||
4081 | __isl_keep isl_qpolynomial *qp, int div, isl_int v) |
||
4082 | { |
||
4083 | int total; |
||
4084 | isl_basic_set *bset = NULL; |
||
4085 | int k; |
||
4086 | |||
4087 | if (!dim || !qp) |
||
4088 | goto error; |
||
4089 | |||
4090 | total = isl_space_dim(dim, isl_dim_all); |
||
4091 | bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2); |
||
4092 | |||
4093 | k = isl_basic_set_alloc_inequality(bset); |
||
4094 | if (k < 0) |
||
4095 | goto error; |
||
4096 | isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total); |
||
4097 | isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]); |
||
4098 | |||
4099 | k = isl_basic_set_alloc_inequality(bset); |
||
4100 | if (k < 0) |
||
4101 | goto error; |
||
4102 | isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total); |
||
4103 | isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]); |
||
4104 | isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]); |
||
4105 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
||
4106 | |||
4107 | isl_space_free(dim); |
||
4108 | return isl_set_from_basic_set(bset); |
||
4109 | error: |
||
4110 | isl_basic_set_free(bset); |
||
4111 | isl_space_free(dim); |
||
4112 | return NULL; |
||
4113 | } |
||
4114 | |||
4115 | static int split_periods(__isl_take isl_set *set, |
||
4116 | __isl_take isl_qpolynomial *qp, void *user); |
||
4117 | |||
4118 | /* Create a slice of the domain "set" such that integer division "div" |
||
4119 | * has the fixed value "v" and add the results to data->res, |
||
4120 | * replacing the integer division by "v" in "qp". |
||
4121 | */ |
||
4122 | static int set_div(__isl_take isl_set *set, |
||
4123 | __isl_take isl_qpolynomial *qp, int div, isl_int v, |
||
4124 | struct isl_split_periods_data *data) |
||
4125 | { |
||
4126 | int i; |
||
4127 | int total; |
||
4128 | isl_set *slice; |
||
4129 | struct isl_upoly *cst; |
||
4130 | |||
4131 | slice = set_div_slice(isl_set_get_space(set), qp, div, v); |
||
4132 | set = isl_set_intersect(set, slice); |
||
4133 | |||
4134 | if (!qp) |
||
4135 | goto error; |
||
4136 | |||
4137 | total = isl_space_dim(qp->dim, isl_dim_all); |
||
4138 | |||
4139 | for (i = div + 1; i < qp->div->n_row; ++i) { |
||
4140 | if (isl_int_is_zero(qp->div->row[i][2 + total + div])) |
||
4141 | continue; |
||
4142 | isl_int_addmul(qp->div->row[i][1], |
||
4143 | qp->div->row[i][2 + total + div], v); |
||
4144 | isl_int_set_si(qp->div->row[i][2 + total + div], 0); |
||
4145 | } |
||
4146 | |||
4147 | cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one); |
||
4148 | qp = substitute_div(qp, div, cst); |
||
4149 | |||
4150 | return split_periods(set, qp, data); |
||
4151 | error: |
||
4152 | isl_set_free(set); |
||
4153 | isl_qpolynomial_free(qp); |
||
4154 | return -1; |
||
4155 | } |
||
4156 | |||
4157 | /* Split the domain "set" such that integer division "div" |
||
4158 | * has a fixed value (ranging from "min" to "max") on each slice |
||
4159 | * and add the results to data->res. |
||
4160 | */ |
||
4161 | static int split_div(__isl_take isl_set *set, |
||
4162 | __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max, |
||
4163 | struct isl_split_periods_data *data) |
||
4164 | { |
||
4165 | for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) { |
||
4166 | isl_set *set_i = isl_set_copy(set); |
||
4167 | isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp); |
||
4168 | |||
4169 | if (set_div(set_i, qp_i, div, min, data) < 0) |
||
4170 | goto error; |
||
4171 | } |
||
4172 | isl_set_free(set); |
||
4173 | isl_qpolynomial_free(qp); |
||
4174 | return 0; |
||
4175 | error: |
||
4176 | isl_set_free(set); |
||
4177 | isl_qpolynomial_free(qp); |
||
4178 | return -1; |
||
4179 | } |
||
4180 | |||
4181 | /* If "qp" refers to any integer division |
||
4182 | * that can only attain "max_periods" distinct values on "set" |
||
4183 | * then split the domain along those distinct values. |
||
4184 | * Add the results (or the original if no splitting occurs) |
||
4185 | * to data->res. |
||
4186 | */ |
||
4187 | static int split_periods(__isl_take isl_set *set, |
||
4188 | __isl_take isl_qpolynomial *qp, void *user) |
||
4189 | { |
||
4190 | int i; |
||
4191 | isl_pw_qpolynomial *pwqp; |
||
4192 | struct isl_split_periods_data *data; |
||
4193 | isl_int min, max; |
||
4194 | int total; |
||
4195 | int r = 0; |
||
4196 | |||
4197 | data = (struct isl_split_periods_data *)user; |
||
4198 | |||
4199 | if (!set || !qp) |
||
4200 | goto error; |
||
4201 | |||
4202 | if (qp->div->n_row == 0) { |
||
4203 | pwqp = isl_pw_qpolynomial_alloc(set, qp); |
||
4204 | data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp); |
||
4205 | return 0; |
||
4206 | } |
||
4207 | |||
4208 | isl_int_init(min); |
||
4209 | isl_int_init(max); |
||
4210 | total = isl_space_dim(qp->dim, isl_dim_all); |
||
4211 | for (i = 0; i < qp->div->n_row; ++i) { |
||
4212 | enum isl_lp_result lp_res; |
||
4213 | |||
4214 | if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total, |
||
4215 | qp->div->n_row) != -1) |
||
4216 | continue; |
||
4217 | |||
4218 | lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1, |
||
4219 | set->ctx->one, &min, NULL, NULL); |
||
4220 | if (lp_res == isl_lp_error) |
||
4221 | goto error2; |
||
4222 | if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) |
||
4223 | continue; |
||
4224 | isl_int_fdiv_q(min, min, qp->div->row[i][0]); |
||
4225 | |||
4226 | lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1, |
||
4227 | set->ctx->one, &max, NULL, NULL); |
||
4228 | if (lp_res == isl_lp_error) |
||
4229 | goto error2; |
||
4230 | if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) |
||
4231 | continue; |
||
4232 | isl_int_fdiv_q(max, max, qp->div->row[i][0]); |
||
4233 | |||
4234 | isl_int_sub(max, max, min); |
||
4235 | if (isl_int_cmp_si(max, data->max_periods) < 0) { |
||
4236 | isl_int_add(max, max, min); |
||
4237 | break; |
||
4238 | } |
||
4239 | } |
||
4240 | |||
4241 | if (i < qp->div->n_row) { |
||
4242 | r = split_div(set, qp, i, min, max, data); |
||
4243 | } else { |
||
4244 | pwqp = isl_pw_qpolynomial_alloc(set, qp); |
||
4245 | data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp); |
||
4246 | } |
||
4247 | |||
4248 | isl_int_clear(max); |
||
4249 | isl_int_clear(min); |
||
4250 | |||
4251 | return r; |
||
4252 | error2: |
||
4253 | isl_int_clear(max); |
||
4254 | isl_int_clear(min); |
||
4255 | error: |
||
4256 | isl_set_free(set); |
||
4257 | isl_qpolynomial_free(qp); |
||
4258 | return -1; |
||
4259 | } |
||
4260 | |||
4261 | /* If any quasi-polynomial in pwqp refers to any integer division |
||
4262 | * that can only attain "max_periods" distinct values on its domain |
||
4263 | * then split the domain along those distinct values. |
||
4264 | */ |
||
4265 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods( |
||
4266 | __isl_take isl_pw_qpolynomial *pwqp, int max_periods) |
||
4267 | { |
||
4268 | struct isl_split_periods_data data; |
||
4269 | |||
4270 | data.max_periods = max_periods; |
||
4271 | data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp)); |
||
4272 | |||
4273 | if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0) |
||
4274 | goto error; |
||
4275 | |||
4276 | isl_pw_qpolynomial_free(pwqp); |
||
4277 | |||
4278 | return data.res; |
||
4279 | error: |
||
4280 | isl_pw_qpolynomial_free(data.res); |
||
4281 | isl_pw_qpolynomial_free(pwqp); |
||
4282 | return NULL; |
||
4283 | } |
||
4284 | |||
4285 | /* Construct a piecewise quasipolynomial that is constant on the given |
||
4286 | * domain. In particular, it is |
||
4287 | * 0 if cst == 0 |
||
4288 | * 1 if cst == 1 |
||
4289 | * infinity if cst == -1 |
||
4290 | */ |
||
4291 | static __isl_give isl_pw_qpolynomial *constant_on_domain( |
||
4292 | __isl_take isl_basic_set *bset, int cst) |
||
4293 | { |
||
4294 | isl_space *dim; |
||
4295 | isl_qpolynomial *qp; |
||
4296 | |||
4297 | if (!bset) |
||
4298 | return NULL; |
||
4299 | |||
4300 | bset = isl_basic_set_params(bset); |
||
4301 | dim = isl_basic_set_get_space(bset); |
||
4302 | if (cst < 0) |
||
4303 | qp = isl_qpolynomial_infty_on_domain(dim); |
||
4304 | else if (cst == 0) |
||
4305 | qp = isl_qpolynomial_zero_on_domain(dim); |
||
4306 | else |
||
4307 | qp = isl_qpolynomial_one_on_domain(dim); |
||
4308 | return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp); |
||
4309 | } |
||
4310 | |||
4311 | /* Factor bset, call fn on each of the factors and return the product. |
||
4312 | * |
||
4313 | * If no factors can be found, simply call fn on the input. |
||
4314 | * Otherwise, construct the factors based on the factorizer, |
||
4315 | * call fn on each factor and compute the product. |
||
4316 | */ |
||
4317 | static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call( |
||
4318 | __isl_take isl_basic_set *bset, |
||
4319 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
||
4320 | { |
||
4321 | int i, n; |
||
4322 | isl_space *dim; |
||
4323 | isl_set *set; |
||
4324 | isl_factorizer *f; |
||
4325 | isl_qpolynomial *qp; |
||
4326 | isl_pw_qpolynomial *pwqp; |
||
4327 | unsigned nparam; |
||
4328 | unsigned nvar; |
||
4329 | |||
4330 | f = isl_basic_set_factorizer(bset); |
||
4331 | if (!f) |
||
4332 | goto error; |
||
4333 | if (f->n_group == 0) { |
||
4334 | isl_factorizer_free(f); |
||
4335 | return fn(bset); |
||
4336 | } |
||
4337 | |||
4338 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
||
4339 | nvar = isl_basic_set_dim(bset, isl_dim_set); |
||
4340 | |||
4341 | dim = isl_basic_set_get_space(bset); |
||
4342 | dim = isl_space_domain(dim); |
||
4343 | set = isl_set_universe(isl_space_copy(dim)); |
||
4344 | qp = isl_qpolynomial_one_on_domain(dim); |
||
4345 | pwqp = isl_pw_qpolynomial_alloc(set, qp); |
||
4346 | |||
4347 | bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset); |
||
4348 | |||
4349 | for (i = 0, n = 0; i < f->n_group; ++i) { |
||
4350 | isl_basic_set *bset_i; |
||
4351 | isl_pw_qpolynomial *pwqp_i; |
||
4352 | |||
4353 | bset_i = isl_basic_set_copy(bset); |
||
4354 | bset_i = isl_basic_set_drop_constraints_involving(bset_i, |
||
4355 | nparam + n + f->len[i], nvar - n - f->len[i]); |
||
4356 | bset_i = isl_basic_set_drop_constraints_involving(bset_i, |
||
4357 | nparam, n); |
||
4358 | bset_i = isl_basic_set_drop(bset_i, isl_dim_set, |
||
4359 | n + f->len[i], nvar - n - f->len[i]); |
||
4360 | bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n); |
||
4361 | |||
4362 | pwqp_i = fn(bset_i); |
||
4363 | pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i); |
||
4364 | |||
4365 | n += f->len[i]; |
||
4366 | } |
||
4367 | |||
4368 | isl_basic_set_free(bset); |
||
4369 | isl_factorizer_free(f); |
||
4370 | |||
4371 | return pwqp; |
||
4372 | error: |
||
4373 | isl_basic_set_free(bset); |
||
4374 | return NULL; |
||
4375 | } |
||
4376 | |||
4377 | /* Factor bset, call fn on each of the factors and return the product. |
||
4378 | * The function is assumed to evaluate to zero on empty domains, |
||
4379 | * to one on zero-dimensional domains and to infinity on unbounded domains |
||
4380 | * and will not be called explicitly on zero-dimensional or unbounded domains. |
||
4381 | * |
||
4382 | * We first check for some special cases and remove all equalities. |
||
4383 | * Then we hand over control to compressed_multiplicative_call. |
||
4384 | */ |
||
4385 | __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call( |
||
4386 | __isl_take isl_basic_set *bset, |
||
4387 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
||
4388 | { |
||
4389 | int bounded; |
||
4390 | isl_morph *morph; |
||
4391 | isl_pw_qpolynomial *pwqp; |
||
4392 | |||
4393 | if (!bset) |
||
4394 | return NULL; |
||
4395 | |||
4396 | if (isl_basic_set_plain_is_empty(bset)) |
||
4397 | return constant_on_domain(bset, 0); |
||
4398 | |||
4399 | if (isl_basic_set_dim(bset, isl_dim_set) == 0) |
||
4400 | return constant_on_domain(bset, 1); |
||
4401 | |||
4402 | bounded = isl_basic_set_is_bounded(bset); |
||
4403 | if (bounded < 0) |
||
4404 | goto error; |
||
4405 | if (!bounded) |
||
4406 | return constant_on_domain(bset, -1); |
||
4407 | |||
4408 | if (bset->n_eq == 0) |
||
4409 | return compressed_multiplicative_call(bset, fn); |
||
4410 | |||
4411 | morph = isl_basic_set_full_compression(bset); |
||
4412 | bset = isl_morph_basic_set(isl_morph_copy(morph), bset); |
||
4413 | |||
4414 | pwqp = compressed_multiplicative_call(bset, fn); |
||
4415 | |||
4416 | morph = isl_morph_dom_params(morph); |
||
4417 | morph = isl_morph_ran_params(morph); |
||
4418 | morph = isl_morph_inverse(morph); |
||
4419 | |||
4420 | pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph); |
||
4421 | |||
4422 | return pwqp; |
||
4423 | error: |
||
4424 | isl_basic_set_free(bset); |
||
4425 | return NULL; |
||
4426 | } |
||
4427 | |||
4428 | /* Drop all floors in "qp", turning each integer division [a/m] into |
||
4429 | * a rational division a/m. If "down" is set, then the integer division |
||
4430 | * is replaces by (a-(m-1))/m instead. |
||
4431 | */ |
||
4432 | static __isl_give isl_qpolynomial *qp_drop_floors( |
||
4433 | __isl_take isl_qpolynomial *qp, int down) |
||
4434 | { |
||
4435 | int i; |
||
4436 | struct isl_upoly *s; |
||
4437 | |||
4438 | if (!qp) |
||
4439 | return NULL; |
||
4440 | if (qp->div->n_row == 0) |
||
4441 | return qp; |
||
4442 | |||
4443 | qp = isl_qpolynomial_cow(qp); |
||
4444 | if (!qp) |
||
4445 | return NULL; |
||
4446 | |||
4447 | for (i = qp->div->n_row - 1; i >= 0; --i) { |
||
4448 | if (down) { |
||
4449 | isl_int_sub(qp->div->row[i][1], |
||
4450 | qp->div->row[i][1], qp->div->row[i][0]); |
||
4451 | isl_int_add_ui(qp->div->row[i][1], |
||
4452 | qp->div->row[i][1], 1); |
||
4453 | } |
||
4454 | s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1, |
||
4455 | qp->div->row[i][0], qp->div->n_col - 1); |
||
4456 | qp = substitute_div(qp, i, s); |
||
4457 | if (!qp) |
||
4458 | return NULL; |
||
4459 | } |
||
4460 | |||
4461 | return qp; |
||
4462 | } |
||
4463 | |||
4464 | /* Drop all floors in "pwqp", turning each integer division [a/m] into |
||
4465 | * a rational division a/m. |
||
4466 | */ |
||
4467 | static __isl_give isl_pw_qpolynomial *pwqp_drop_floors( |
||
4468 | __isl_take isl_pw_qpolynomial *pwqp) |
||
4469 | { |
||
4470 | int i; |
||
4471 | |||
4472 | if (!pwqp) |
||
4473 | return NULL; |
||
4474 | |||
4475 | if (isl_pw_qpolynomial_is_zero(pwqp)) |
||
4476 | return pwqp; |
||
4477 | |||
4478 | pwqp = isl_pw_qpolynomial_cow(pwqp); |
||
4479 | if (!pwqp) |
||
4480 | return NULL; |
||
4481 | |||
4482 | for (i = 0; i < pwqp->n; ++i) { |
||
4483 | pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0); |
||
4484 | if (!pwqp->p[i].qp) |
||
4485 | goto error; |
||
4486 | } |
||
4487 | |||
4488 | return pwqp; |
||
4489 | error: |
||
4490 | isl_pw_qpolynomial_free(pwqp); |
||
4491 | return NULL; |
||
4492 | } |
||
4493 | |||
4494 | /* Adjust all the integer divisions in "qp" such that they are at least |
||
4495 | * one over the given orthant (identified by "signs"). This ensures |
||
4496 | * that they will still be non-negative even after subtracting (m-1)/m. |
||
4497 | * |
||
4498 | * In particular, f is replaced by f' + v, changing f = [a/m] |
||
4499 | * to f' = [(a - m v)/m]. |
||
4500 | * If the constant term k in a is smaller than m, |
||
4501 | * the constant term of v is set to floor(k/m) - 1. |
||
4502 | * For any other term, if the coefficient c and the variable x have |
||
4503 | * the same sign, then no changes are needed. |
||
4504 | * Otherwise, if the variable is positive (and c is negative), |
||
4505 | * then the coefficient of x in v is set to floor(c/m). |
||
4506 | * If the variable is negative (and c is positive), |
||
4507 | * then the coefficient of x in v is set to ceil(c/m). |
||
4508 | */ |
||
4509 | static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp, |
||
4510 | int *signs) |
||
4511 | { |
||
4512 | int i, j; |
||
4513 | int total; |
||
4514 | isl_vec *v = NULL; |
||
4515 | struct isl_upoly *s; |
||
4516 | |||
4517 | qp = isl_qpolynomial_cow(qp); |
||
4518 | if (!qp) |
||
4519 | return NULL; |
||
4520 | qp->div = isl_mat_cow(qp->div); |
||
4521 | if (!qp->div) |
||
4522 | goto error; |
||
4523 | |||
4524 | total = isl_space_dim(qp->dim, isl_dim_all); |
||
4525 | v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1); |
||
4526 | |||
4527 | for (i = 0; i < qp->div->n_row; ++i) { |
||
4528 | isl_int *row = qp->div->row[i]; |
||
4529 | v = isl_vec_clr(v); |
||
4530 | if (!v) |
||
4531 | goto error; |
||
4532 | if (isl_int_lt(row[1], row[0])) { |
||
4533 | isl_int_fdiv_q(v->el[0], row[1], row[0]); |
||
4534 | isl_int_sub_ui(v->el[0], v->el[0], 1); |
||
4535 | isl_int_submul(row[1], row[0], v->el[0]); |
||
4536 | } |
||
4537 | for (j = 0; j < total; ++j) { |
||
4538 | if (isl_int_sgn(row[2 + j]) * signs[j] >= 0) |
||
4539 | continue; |
||
4540 | if (signs[j] < 0) |
||
4541 | isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]); |
||
4542 | else |
||
4543 | isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]); |
||
4544 | isl_int_submul(row[2 + j], row[0], v->el[1 + j]); |
||
4545 | } |
||
4546 | for (j = 0; j < i; ++j) { |
||
4547 | if (isl_int_sgn(row[2 + total + j]) >= 0) |
||
4548 | continue; |
||
4549 | isl_int_fdiv_q(v->el[1 + total + j], |
||
4550 | row[2 + total + j], row[0]); |
||
4551 | isl_int_submul(row[2 + total + j], |
||
4552 | row[0], v->el[1 + total + j]); |
||
4553 | } |
||
4554 | for (j = i + 1; j < qp->div->n_row; ++j) { |
||
4555 | if (isl_int_is_zero(qp->div->row[j][2 + total + i])) |
||
4556 | continue; |
||
4557 | isl_seq_combine(qp->div->row[j] + 1, |
||
4558 | qp->div->ctx->one, qp->div->row[j] + 1, |
||
4559 | qp->div->row[j][2 + total + i], v->el, v->size); |
||
4560 | } |
||
4561 | isl_int_set_si(v->el[1 + total + i], 1); |
||
4562 | s = isl_upoly_from_affine(qp->dim->ctx, v->el, |
||
4563 | qp->div->ctx->one, v->size); |
||
4564 | qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s); |
||
4565 | isl_upoly_free(s); |
||
4566 | if (!qp->upoly) |
||
4567 | goto error; |
||
4568 | } |
||
4569 | |||
4570 | isl_vec_free(v); |
||
4571 | return qp; |
||
4572 | error: |
||
4573 | isl_vec_free(v); |
||
4574 | isl_qpolynomial_free(qp); |
||
4575 | return NULL; |
||
4576 | } |
||
4577 | |||
4578 | struct isl_to_poly_data { |
||
4579 | int sign; |
||
4580 | isl_pw_qpolynomial *res; |
||
4581 | isl_qpolynomial *qp; |
||
4582 | }; |
||
4583 | |||
4584 | /* Appoximate data->qp by a polynomial on the orthant identified by "signs". |
||
4585 | * We first make all integer divisions positive and then split the |
||
4586 | * quasipolynomials into terms with sign data->sign (the direction |
||
4587 | * of the requested approximation) and terms with the opposite sign. |
||
4588 | * In the first set of terms, each integer division [a/m] is |
||
4589 | * overapproximated by a/m, while in the second it is underapproximated |
||
4590 | * by (a-(m-1))/m. |
||
4591 | */ |
||
4592 | static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs, |
||
4593 | void *user) |
||
4594 | { |
||
4595 | struct isl_to_poly_data *data = user; |
||
4596 | isl_pw_qpolynomial *t; |
||
4597 | isl_qpolynomial *qp, *up, *down; |
||
4598 | |||
4599 | qp = isl_qpolynomial_copy(data->qp); |
||
4600 | qp = make_divs_pos(qp, signs); |
||
4601 | |||
4602 | up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign); |
||
4603 | up = qp_drop_floors(up, 0); |
||
4604 | down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign); |
||
4605 | down = qp_drop_floors(down, 1); |
||
4606 | |||
4607 | isl_qpolynomial_free(qp); |
||
4608 | qp = isl_qpolynomial_add(up, down); |
||
4609 | |||
4610 | t = isl_pw_qpolynomial_alloc(orthant, qp); |
||
4611 | data->res = isl_pw_qpolynomial_add_disjoint(data->res, t); |
||
4612 | |||
4613 | return 0; |
||
4614 | } |
||
4615 | |||
4616 | /* Approximate each quasipolynomial by a polynomial. If "sign" is positive, |
||
4617 | * the polynomial will be an overapproximation. If "sign" is negative, |
||
4618 | * it will be an underapproximation. If "sign" is zero, the approximation |
||
4619 | * will lie somewhere in between. |
||
4620 | * |
||
4621 | * In particular, is sign == 0, we simply drop the floors, turning |
||
4622 | * the integer divisions into rational divisions. |
||
4623 | * Otherwise, we split the domains into orthants, make all integer divisions |
||
4624 | * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m, |
||
4625 | * depending on the requested sign and the sign of the term in which |
||
4626 | * the integer division appears. |
||
4627 | */ |
||
4628 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( |
||
4629 | __isl_take isl_pw_qpolynomial *pwqp, int sign) |
||
4630 | { |
||
4631 | int i; |
||
4632 | struct isl_to_poly_data data; |
||
4633 | |||
4634 | if (sign == 0) |
||
4635 | return pwqp_drop_floors(pwqp); |
||
4636 | |||
4637 | if (!pwqp) |
||
4638 | return NULL; |
||
4639 | |||
4640 | data.sign = sign; |
||
4641 | data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp)); |
||
4642 | |||
4643 | for (i = 0; i < pwqp->n; ++i) { |
||
4644 | if (pwqp->p[i].qp->div->n_row == 0) { |
||
4645 | isl_pw_qpolynomial *t; |
||
4646 | t = isl_pw_qpolynomial_alloc( |
||
4647 | isl_set_copy(pwqp->p[i].set), |
||
4648 | isl_qpolynomial_copy(pwqp->p[i].qp)); |
||
4649 | data.res = isl_pw_qpolynomial_add_disjoint(data.res, t); |
||
4650 | continue; |
||
4651 | } |
||
4652 | data.qp = pwqp->p[i].qp; |
||
4653 | if (isl_set_foreach_orthant(pwqp->p[i].set, |
||
4654 | &to_polynomial_on_orthant, &data) < 0) |
||
4655 | goto error; |
||
4656 | } |
||
4657 | |||
4658 | isl_pw_qpolynomial_free(pwqp); |
||
4659 | |||
4660 | return data.res; |
||
4661 | error: |
||
4662 | isl_pw_qpolynomial_free(pwqp); |
||
4663 | isl_pw_qpolynomial_free(data.res); |
||
4664 | return NULL; |
||
4665 | } |
||
4666 | |||
4667 | static int poly_entry(void **entry, void *user) |
||
4668 | { |
||
4669 | int *sign = user; |
||
4670 | isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry; |
||
4671 | |||
4672 | *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign); |
||
4673 | |||
4674 | return *pwqp ? 0 : -1; |
||
4675 | } |
||
4676 | |||
4677 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial( |
||
4678 | __isl_take isl_union_pw_qpolynomial *upwqp, int sign) |
||
4679 | { |
||
4680 | upwqp = isl_union_pw_qpolynomial_cow(upwqp); |
||
4681 | if (!upwqp) |
||
4682 | return NULL; |
||
4683 | |||
4684 | if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table, |
||
4685 | &poly_entry, &sign) < 0) |
||
4686 | goto error; |
||
4687 | |||
4688 | return upwqp; |
||
4689 | error: |
||
4690 | isl_union_pw_qpolynomial_free(upwqp); |
||
4691 | return NULL; |
||
4692 | } |
||
4693 | |||
4694 | __isl_give isl_basic_map *isl_basic_map_from_qpolynomial( |
||
4695 | __isl_take isl_qpolynomial *qp) |
||
4696 | { |
||
4697 | int i, k; |
||
4698 | isl_space *dim; |
||
4699 | isl_vec *aff = NULL; |
||
4700 | isl_basic_map *bmap = NULL; |
||
4701 | unsigned pos; |
||
4702 | unsigned n_div; |
||
4703 | |||
4704 | if (!qp) |
||
4705 | return NULL; |
||
4706 | if (!isl_upoly_is_affine(qp->upoly)) |
||
4707 | isl_die(qp->dim->ctx, isl_error_invalid, |
||
4708 | "input quasi-polynomial not affine", goto error); |
||
4709 | aff = isl_qpolynomial_extract_affine(qp); |
||
4710 | if (!aff) |
||
4711 | goto error; |
||
4712 | dim = isl_qpolynomial_get_space(qp); |
||
4713 | pos = 1 + isl_space_offset(dim, isl_dim_out); |
||
4714 | n_div = qp->div->n_row; |
||
4715 | bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div); |
||
4716 | |||
4717 | for (i = 0; i < n_div; ++i) { |
||
4718 | k = isl_basic_map_alloc_div(bmap); |
||
4719 | if (k < 0) |
||
4720 | goto error; |
||
4721 | isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col); |
||
4722 | isl_int_set_si(bmap->div[k][qp->div->n_col], 0); |
||
4723 | if (isl_basic_map_add_div_constraints(bmap, k) < 0) |
||
4724 | goto error; |
||
4725 | } |
||
4726 | k = isl_basic_map_alloc_equality(bmap); |
||
4727 | if (k < 0) |
||
4728 | goto error; |
||
4729 | isl_int_neg(bmap->eq[k][pos], aff->el[0]); |
||
4730 | isl_seq_cpy(bmap->eq[k], aff->el + 1, pos); |
||
4731 | isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div); |
||
4732 | |||
4733 | isl_vec_free(aff); |
||
4734 | isl_qpolynomial_free(qp); |
||
4735 | bmap = isl_basic_map_finalize(bmap); |
||
4736 | return bmap; |
||
4737 | error: |
||
4738 | isl_vec_free(aff); |
||
4739 | isl_qpolynomial_free(qp); |
||
4740 | isl_basic_map_free(bmap); |
||
4741 | return NULL; |
||
4742 | } |