nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* |
2 | * Copyright 2010 INRIA Saclay |
||
3 | * |
||
4 | * Use of this software is governed by the GNU LGPLv2.1 license |
||
5 | * |
||
6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
||
7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
||
8 | * 91893 Orsay, France |
||
9 | */ |
||
10 | |||
11 | #define ISL_DIM_H |
||
12 | #include <isl_map_private.h> |
||
13 | #include <isl_union_map_private.h> |
||
14 | #include <isl_polynomial_private.h> |
||
15 | #include <isl_point_private.h> |
||
16 | #include <isl_space_private.h> |
||
17 | #include <isl/lp.h> |
||
18 | #include <isl/seq.h> |
||
19 | #include <isl_mat_private.h> |
||
20 | #include <isl_config.h> |
||
21 | |||
22 | enum isl_fold isl_fold_type_negate(enum isl_fold type) |
||
23 | { |
||
24 | switch (type) { |
||
25 | case isl_fold_min: |
||
26 | return isl_fold_max; |
||
27 | case isl_fold_max: |
||
28 | return isl_fold_min; |
||
29 | case isl_fold_list: |
||
30 | return isl_fold_list; |
||
31 | } |
||
32 | |||
33 | isl_die(NULL, isl_error_internal, "unhandled isl_fold type", abort()); |
||
34 | } |
||
35 | |||
36 | static __isl_give isl_qpolynomial_fold *qpolynomial_fold_alloc( |
||
37 | enum isl_fold type, __isl_take isl_space *dim, int n) |
||
38 | { |
||
39 | isl_qpolynomial_fold *fold; |
||
40 | |||
41 | if (!dim) |
||
42 | goto error; |
||
43 | |||
44 | isl_assert(dim->ctx, n >= 0, goto error); |
||
45 | fold = isl_calloc(dim->ctx, struct isl_qpolynomial_fold, |
||
46 | sizeof(struct isl_qpolynomial_fold) + |
||
47 | (n - 1) * sizeof(struct isl_qpolynomial *)); |
||
48 | if (!fold) |
||
49 | goto error; |
||
50 | |||
51 | fold->ref = 1; |
||
52 | fold->size = n; |
||
53 | fold->n = 0; |
||
54 | fold->type = type; |
||
55 | fold->dim = dim; |
||
56 | |||
57 | return fold; |
||
58 | error: |
||
59 | isl_space_free(dim); |
||
60 | return NULL; |
||
61 | } |
||
62 | |||
63 | isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold) |
||
64 | { |
||
65 | return fold ? fold->dim->ctx : NULL; |
||
66 | } |
||
67 | |||
68 | __isl_give isl_space *isl_qpolynomial_fold_get_domain_space( |
||
69 | __isl_keep isl_qpolynomial_fold *fold) |
||
70 | { |
||
71 | return fold ? isl_space_copy(fold->dim) : NULL; |
||
72 | } |
||
73 | |||
74 | __isl_give isl_space *isl_qpolynomial_fold_get_space( |
||
75 | __isl_keep isl_qpolynomial_fold *fold) |
||
76 | { |
||
77 | isl_space *space; |
||
78 | if (!fold) |
||
79 | return NULL; |
||
80 | space = isl_space_copy(fold->dim); |
||
81 | space = isl_space_from_domain(space); |
||
82 | space = isl_space_add_dims(space, isl_dim_out, 1); |
||
83 | return space; |
||
84 | } |
||
85 | |||
86 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space( |
||
87 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim) |
||
88 | { |
||
89 | int i; |
||
90 | |||
91 | fold = isl_qpolynomial_fold_cow(fold); |
||
92 | if (!fold || !dim) |
||
93 | goto error; |
||
94 | |||
95 | for (i = 0; i < fold->n; ++i) { |
||
96 | fold->qp[i] = isl_qpolynomial_reset_domain_space(fold->qp[i], |
||
97 | isl_space_copy(dim)); |
||
98 | if (!fold->qp[i]) |
||
99 | goto error; |
||
100 | } |
||
101 | |||
102 | isl_space_free(fold->dim); |
||
103 | fold->dim = dim; |
||
104 | |||
105 | return fold; |
||
106 | error: |
||
107 | isl_qpolynomial_fold_free(fold); |
||
108 | isl_space_free(dim); |
||
109 | return NULL; |
||
110 | } |
||
111 | |||
112 | /* Reset the space of "fold". This function is called from isl_pw_templ.c |
||
113 | * and doesn't know if the space of an element object is represented |
||
114 | * directly or through its domain. It therefore passes along both. |
||
115 | */ |
||
116 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain( |
||
117 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space, |
||
118 | __isl_take isl_space *domain) |
||
119 | { |
||
120 | isl_space_free(space); |
||
121 | return isl_qpolynomial_fold_reset_domain_space(fold, domain); |
||
122 | } |
||
123 | |||
124 | int isl_qpolynomial_fold_involves_dims(__isl_keep isl_qpolynomial_fold *fold, |
||
125 | enum isl_dim_type type, unsigned first, unsigned n) |
||
126 | { |
||
127 | int i; |
||
128 | |||
129 | if (!fold) |
||
130 | return -1; |
||
131 | if (fold->n == 0 || n == 0) |
||
132 | return 0; |
||
133 | |||
134 | for (i = 0; i < fold->n; ++i) { |
||
135 | int involves = isl_qpolynomial_involves_dims(fold->qp[i], |
||
136 | type, first, n); |
||
137 | if (involves < 0 || involves) |
||
138 | return involves; |
||
139 | } |
||
140 | return 0; |
||
141 | } |
||
142 | |||
143 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_set_dim_name( |
||
144 | __isl_take isl_qpolynomial_fold *fold, |
||
145 | enum isl_dim_type type, unsigned pos, const char *s) |
||
146 | { |
||
147 | int i; |
||
148 | |||
149 | fold = isl_qpolynomial_fold_cow(fold); |
||
150 | if (!fold) |
||
151 | return NULL; |
||
152 | fold->dim = isl_space_set_dim_name(fold->dim, type, pos, s); |
||
153 | if (!fold->dim) |
||
154 | goto error; |
||
155 | |||
156 | for (i = 0; i < fold->n; ++i) { |
||
157 | fold->qp[i] = isl_qpolynomial_set_dim_name(fold->qp[i], |
||
158 | type, pos, s); |
||
159 | if (!fold->qp[i]) |
||
160 | goto error; |
||
161 | } |
||
162 | |||
163 | return fold; |
||
164 | error: |
||
165 | isl_qpolynomial_fold_free(fold); |
||
166 | return NULL; |
||
167 | } |
||
168 | |||
169 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_drop_dims( |
||
170 | __isl_take isl_qpolynomial_fold *fold, |
||
171 | enum isl_dim_type type, unsigned first, unsigned n) |
||
172 | { |
||
173 | int i; |
||
174 | enum isl_dim_type set_type; |
||
175 | |||
176 | if (!fold) |
||
177 | return NULL; |
||
178 | if (n == 0) |
||
179 | return fold; |
||
180 | |||
181 | set_type = type == isl_dim_in ? isl_dim_set : type; |
||
182 | |||
183 | fold = isl_qpolynomial_fold_cow(fold); |
||
184 | if (!fold) |
||
185 | return NULL; |
||
186 | fold->dim = isl_space_drop_dims(fold->dim, set_type, first, n); |
||
187 | if (!fold->dim) |
||
188 | goto error; |
||
189 | |||
190 | for (i = 0; i < fold->n; ++i) { |
||
191 | fold->qp[i] = isl_qpolynomial_drop_dims(fold->qp[i], |
||
192 | type, first, n); |
||
193 | if (!fold->qp[i]) |
||
194 | goto error; |
||
195 | } |
||
196 | |||
197 | return fold; |
||
198 | error: |
||
199 | isl_qpolynomial_fold_free(fold); |
||
200 | return NULL; |
||
201 | } |
||
202 | |||
203 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_insert_dims( |
||
204 | __isl_take isl_qpolynomial_fold *fold, |
||
205 | enum isl_dim_type type, unsigned first, unsigned n) |
||
206 | { |
||
207 | int i; |
||
208 | |||
209 | if (!fold) |
||
210 | return NULL; |
||
211 | if (n == 0 && !isl_space_is_named_or_nested(fold->dim, type)) |
||
212 | return fold; |
||
213 | |||
214 | fold = isl_qpolynomial_fold_cow(fold); |
||
215 | if (!fold) |
||
216 | return NULL; |
||
217 | fold->dim = isl_space_insert_dims(fold->dim, type, first, n); |
||
218 | if (!fold->dim) |
||
219 | goto error; |
||
220 | |||
221 | for (i = 0; i < fold->n; ++i) { |
||
222 | fold->qp[i] = isl_qpolynomial_insert_dims(fold->qp[i], |
||
223 | type, first, n); |
||
224 | if (!fold->qp[i]) |
||
225 | goto error; |
||
226 | } |
||
227 | |||
228 | return fold; |
||
229 | error: |
||
230 | isl_qpolynomial_fold_free(fold); |
||
231 | return NULL; |
||
232 | } |
||
233 | |||
234 | static int isl_qpolynomial_cst_sign(__isl_keep isl_qpolynomial *qp) |
||
235 | { |
||
236 | struct isl_upoly_cst *cst; |
||
237 | |||
238 | cst = isl_upoly_as_cst(qp->upoly); |
||
239 | if (!cst) |
||
240 | return 0; |
||
241 | |||
242 | return isl_int_sgn(cst->n) < 0 ? -1 : 1; |
||
243 | } |
||
244 | |||
245 | static int isl_qpolynomial_aff_sign(__isl_keep isl_set *set, |
||
246 | __isl_keep isl_qpolynomial *qp) |
||
247 | { |
||
248 | enum isl_lp_result res; |
||
249 | isl_vec *aff; |
||
250 | isl_int opt; |
||
251 | int sgn = 0; |
||
252 | |||
253 | aff = isl_qpolynomial_extract_affine(qp); |
||
254 | if (!aff) |
||
255 | return 0; |
||
256 | |||
257 | isl_int_init(opt); |
||
258 | |||
259 | res = isl_set_solve_lp(set, 0, aff->el + 1, aff->el[0], |
||
260 | &opt, NULL, NULL); |
||
261 | if (res == isl_lp_error) |
||
262 | goto done; |
||
263 | if (res == isl_lp_empty || |
||
264 | (res == isl_lp_ok && !isl_int_is_neg(opt))) { |
||
265 | sgn = 1; |
||
266 | goto done; |
||
267 | } |
||
268 | |||
269 | res = isl_set_solve_lp(set, 1, aff->el + 1, aff->el[0], |
||
270 | &opt, NULL, NULL); |
||
271 | if (res == isl_lp_ok && !isl_int_is_pos(opt)) |
||
272 | sgn = -1; |
||
273 | |||
274 | done: |
||
275 | isl_int_clear(opt); |
||
276 | isl_vec_free(aff); |
||
277 | return sgn; |
||
278 | } |
||
279 | |||
280 | /* Determine, if possible, the sign of the quasipolynomial "qp" on |
||
281 | * the domain "set". |
||
282 | * |
||
283 | * If qp is a constant, then the problem is trivial. |
||
284 | * If qp is linear, then we check if the minimum of the corresponding |
||
285 | * affine constraint is non-negative or if the maximum is non-positive. |
||
286 | * |
||
287 | * Otherwise, we check if the outermost variable "v" has a lower bound "l" |
||
288 | * in "set". If so, we write qp(v,v') as |
||
289 | * |
||
290 | * q(v,v') * (v - l) + r(v') |
||
291 | * |
||
292 | * if q(v,v') and r(v') have the same known sign, then the original |
||
293 | * quasipolynomial has the same sign as well. |
||
294 | * |
||
295 | * Return |
||
296 | * -1 if qp <= 0 |
||
297 | * 1 if qp >= 0 |
||
298 | * 0 if unknown |
||
299 | */ |
||
300 | static int isl_qpolynomial_sign(__isl_keep isl_set *set, |
||
301 | __isl_keep isl_qpolynomial *qp) |
||
302 | { |
||
303 | int d; |
||
304 | int i; |
||
305 | int is; |
||
306 | struct isl_upoly_rec *rec; |
||
307 | isl_vec *v; |
||
308 | isl_int l; |
||
309 | enum isl_lp_result res; |
||
310 | int sgn = 0; |
||
311 | |||
312 | is = isl_qpolynomial_is_cst(qp, NULL, NULL); |
||
313 | if (is < 0) |
||
314 | return 0; |
||
315 | if (is) |
||
316 | return isl_qpolynomial_cst_sign(qp); |
||
317 | |||
318 | is = isl_qpolynomial_is_affine(qp); |
||
319 | if (is < 0) |
||
320 | return 0; |
||
321 | if (is) |
||
322 | return isl_qpolynomial_aff_sign(set, qp); |
||
323 | |||
324 | if (qp->div->n_row > 0) |
||
325 | return 0; |
||
326 | |||
327 | rec = isl_upoly_as_rec(qp->upoly); |
||
328 | if (!rec) |
||
329 | return 0; |
||
330 | |||
331 | d = isl_space_dim(qp->dim, isl_dim_all); |
||
332 | v = isl_vec_alloc(set->ctx, 2 + d); |
||
333 | if (!v) |
||
334 | return 0; |
||
335 | |||
336 | isl_seq_clr(v->el + 1, 1 + d); |
||
337 | isl_int_set_si(v->el[0], 1); |
||
338 | isl_int_set_si(v->el[2 + qp->upoly->var], 1); |
||
339 | |||
340 | isl_int_init(l); |
||
341 | |||
342 | res = isl_set_solve_lp(set, 0, v->el + 1, v->el[0], &l, NULL, NULL); |
||
343 | if (res == isl_lp_ok) { |
||
344 | isl_qpolynomial *min; |
||
345 | isl_qpolynomial *base; |
||
346 | isl_qpolynomial *r, *q; |
||
347 | isl_qpolynomial *t; |
||
348 | |||
349 | min = isl_qpolynomial_cst_on_domain(isl_space_copy(qp->dim), l); |
||
350 | base = isl_qpolynomial_var_pow_on_domain(isl_space_copy(qp->dim), |
||
351 | qp->upoly->var, 1); |
||
352 | |||
353 | r = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0, |
||
354 | isl_upoly_copy(rec->p[rec->n - 1])); |
||
355 | q = isl_qpolynomial_copy(r); |
||
356 | |||
357 | for (i = rec->n - 2; i >= 0; --i) { |
||
358 | r = isl_qpolynomial_mul(r, isl_qpolynomial_copy(min)); |
||
359 | t = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0, |
||
360 | isl_upoly_copy(rec->p[i])); |
||
361 | r = isl_qpolynomial_add(r, t); |
||
362 | if (i == 0) |
||
363 | break; |
||
364 | q = isl_qpolynomial_mul(q, isl_qpolynomial_copy(base)); |
||
365 | q = isl_qpolynomial_add(q, isl_qpolynomial_copy(r)); |
||
366 | } |
||
367 | |||
368 | if (isl_qpolynomial_is_zero(q)) |
||
369 | sgn = isl_qpolynomial_sign(set, r); |
||
370 | else if (isl_qpolynomial_is_zero(r)) |
||
371 | sgn = isl_qpolynomial_sign(set, q); |
||
372 | else { |
||
373 | int sgn_q, sgn_r; |
||
374 | sgn_r = isl_qpolynomial_sign(set, r); |
||
375 | sgn_q = isl_qpolynomial_sign(set, q); |
||
376 | if (sgn_r == sgn_q) |
||
377 | sgn = sgn_r; |
||
378 | } |
||
379 | |||
380 | isl_qpolynomial_free(min); |
||
381 | isl_qpolynomial_free(base); |
||
382 | isl_qpolynomial_free(q); |
||
383 | isl_qpolynomial_free(r); |
||
384 | } |
||
385 | |||
386 | isl_int_clear(l); |
||
387 | |||
388 | isl_vec_free(v); |
||
389 | |||
390 | return sgn; |
||
391 | } |
||
392 | |||
393 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain( |
||
394 | __isl_keep isl_set *set, |
||
395 | __isl_take isl_qpolynomial_fold *fold1, |
||
396 | __isl_take isl_qpolynomial_fold *fold2) |
||
397 | { |
||
398 | int i, j; |
||
399 | int n1; |
||
400 | struct isl_qpolynomial_fold *res = NULL; |
||
401 | int better; |
||
402 | |||
403 | if (!fold1 || !fold2) |
||
404 | goto error; |
||
405 | |||
406 | isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error); |
||
407 | isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim), |
||
408 | goto error); |
||
409 | |||
410 | better = fold1->type == isl_fold_max ? -1 : 1; |
||
411 | |||
412 | if (isl_qpolynomial_fold_is_empty(fold1)) { |
||
413 | isl_qpolynomial_fold_free(fold1); |
||
414 | return fold2; |
||
415 | } |
||
416 | |||
417 | if (isl_qpolynomial_fold_is_empty(fold2)) { |
||
418 | isl_qpolynomial_fold_free(fold2); |
||
419 | return fold1; |
||
420 | } |
||
421 | |||
422 | res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim), |
||
423 | fold1->n + fold2->n); |
||
424 | if (!res) |
||
425 | goto error; |
||
426 | |||
427 | for (i = 0; i < fold1->n; ++i) { |
||
428 | res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]); |
||
429 | if (!res->qp[res->n]) |
||
430 | goto error; |
||
431 | res->n++; |
||
432 | } |
||
433 | n1 = res->n; |
||
434 | |||
435 | for (i = 0; i < fold2->n; ++i) { |
||
436 | for (j = n1 - 1; j >= 0; --j) { |
||
437 | isl_qpolynomial *d; |
||
438 | int sgn; |
||
439 | d = isl_qpolynomial_sub( |
||
440 | isl_qpolynomial_copy(res->qp[j]), |
||
441 | isl_qpolynomial_copy(fold2->qp[i])); |
||
442 | sgn = isl_qpolynomial_sign(set, d); |
||
443 | isl_qpolynomial_free(d); |
||
444 | if (sgn == 0) |
||
445 | continue; |
||
446 | if (sgn != better) |
||
447 | break; |
||
448 | isl_qpolynomial_free(res->qp[j]); |
||
449 | if (j != n1 - 1) |
||
450 | res->qp[j] = res->qp[n1 - 1]; |
||
451 | n1--; |
||
452 | if (n1 != res->n - 1) |
||
453 | res->qp[n1] = res->qp[res->n - 1]; |
||
454 | res->n--; |
||
455 | } |
||
456 | if (j >= 0) |
||
457 | continue; |
||
458 | res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]); |
||
459 | if (!res->qp[res->n]) |
||
460 | goto error; |
||
461 | res->n++; |
||
462 | } |
||
463 | |||
464 | isl_qpolynomial_fold_free(fold1); |
||
465 | isl_qpolynomial_fold_free(fold2); |
||
466 | |||
467 | return res; |
||
468 | error: |
||
469 | isl_qpolynomial_fold_free(res); |
||
470 | isl_qpolynomial_fold_free(fold1); |
||
471 | isl_qpolynomial_fold_free(fold2); |
||
472 | return NULL; |
||
473 | } |
||
474 | |||
475 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_qpolynomial( |
||
476 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_qpolynomial *qp) |
||
477 | { |
||
478 | int i; |
||
479 | |||
480 | if (!fold || !qp) |
||
481 | goto error; |
||
482 | |||
483 | if (isl_qpolynomial_is_zero(qp)) { |
||
484 | isl_qpolynomial_free(qp); |
||
485 | return fold; |
||
486 | } |
||
487 | |||
488 | fold = isl_qpolynomial_fold_cow(fold); |
||
489 | if (!fold) |
||
490 | goto error; |
||
491 | |||
492 | for (i = 0; i < fold->n; ++i) { |
||
493 | fold->qp[i] = isl_qpolynomial_add(fold->qp[i], |
||
494 | isl_qpolynomial_copy(qp)); |
||
495 | if (!fold->qp[i]) |
||
496 | goto error; |
||
497 | } |
||
498 | |||
499 | isl_qpolynomial_free(qp); |
||
500 | return fold; |
||
501 | error: |
||
502 | isl_qpolynomial_fold_free(fold); |
||
503 | isl_qpolynomial_free(qp); |
||
504 | return NULL; |
||
505 | } |
||
506 | |||
507 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain( |
||
508 | __isl_keep isl_set *dom, |
||
509 | __isl_take isl_qpolynomial_fold *fold1, |
||
510 | __isl_take isl_qpolynomial_fold *fold2) |
||
511 | { |
||
512 | int i; |
||
513 | isl_qpolynomial_fold *res = NULL; |
||
514 | |||
515 | if (!fold1 || !fold2) |
||
516 | goto error; |
||
517 | |||
518 | if (isl_qpolynomial_fold_is_empty(fold1)) { |
||
519 | isl_qpolynomial_fold_free(fold1); |
||
520 | return fold2; |
||
521 | } |
||
522 | |||
523 | if (isl_qpolynomial_fold_is_empty(fold2)) { |
||
524 | isl_qpolynomial_fold_free(fold2); |
||
525 | return fold1; |
||
526 | } |
||
527 | |||
528 | if (fold1->n == 1 && fold2->n != 1) |
||
529 | return isl_qpolynomial_fold_add_on_domain(dom, fold2, fold1); |
||
530 | |||
531 | if (fold2->n == 1) { |
||
532 | res = isl_qpolynomial_fold_add_qpolynomial(fold1, |
||
533 | isl_qpolynomial_copy(fold2->qp[0])); |
||
534 | isl_qpolynomial_fold_free(fold2); |
||
535 | return res; |
||
536 | } |
||
537 | |||
538 | res = isl_qpolynomial_fold_add_qpolynomial( |
||
539 | isl_qpolynomial_fold_copy(fold1), |
||
540 | isl_qpolynomial_copy(fold2->qp[0])); |
||
541 | |||
542 | for (i = 1; i < fold2->n; ++i) { |
||
543 | isl_qpolynomial_fold *res_i; |
||
544 | res_i = isl_qpolynomial_fold_add_qpolynomial( |
||
545 | isl_qpolynomial_fold_copy(fold1), |
||
546 | isl_qpolynomial_copy(fold2->qp[i])); |
||
547 | res = isl_qpolynomial_fold_fold_on_domain(dom, res, res_i); |
||
548 | } |
||
549 | |||
550 | isl_qpolynomial_fold_free(fold1); |
||
551 | isl_qpolynomial_fold_free(fold2); |
||
552 | return res; |
||
553 | error: |
||
554 | isl_qpolynomial_fold_free(res); |
||
555 | isl_qpolynomial_fold_free(fold1); |
||
556 | isl_qpolynomial_fold_free(fold2); |
||
557 | return NULL; |
||
558 | } |
||
559 | |||
560 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities( |
||
561 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq) |
||
562 | { |
||
563 | int i; |
||
564 | |||
565 | if (!fold || !eq) |
||
566 | goto error; |
||
567 | |||
568 | fold = isl_qpolynomial_fold_cow(fold); |
||
569 | if (!fold) |
||
570 | return NULL; |
||
571 | |||
572 | for (i = 0; i < fold->n; ++i) { |
||
573 | fold->qp[i] = isl_qpolynomial_substitute_equalities(fold->qp[i], |
||
574 | isl_basic_set_copy(eq)); |
||
575 | if (!fold->qp[i]) |
||
576 | goto error; |
||
577 | } |
||
578 | |||
579 | isl_basic_set_free(eq); |
||
580 | return fold; |
||
581 | error: |
||
582 | isl_basic_set_free(eq); |
||
583 | isl_qpolynomial_fold_free(fold); |
||
584 | return NULL; |
||
585 | } |
||
586 | |||
587 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( |
||
588 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context) |
||
589 | { |
||
590 | int i; |
||
591 | |||
592 | if (!fold || !context) |
||
593 | goto error; |
||
594 | |||
595 | fold = isl_qpolynomial_fold_cow(fold); |
||
596 | if (!fold) |
||
597 | return NULL; |
||
598 | |||
599 | for (i = 0; i < fold->n; ++i) { |
||
600 | fold->qp[i] = isl_qpolynomial_gist(fold->qp[i], |
||
601 | isl_set_copy(context)); |
||
602 | if (!fold->qp[i]) |
||
603 | goto error; |
||
604 | } |
||
605 | |||
606 | isl_set_free(context); |
||
607 | return fold; |
||
608 | error: |
||
609 | isl_set_free(context); |
||
610 | isl_qpolynomial_fold_free(fold); |
||
611 | return NULL; |
||
612 | } |
||
613 | |||
614 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params( |
||
615 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context) |
||
616 | { |
||
617 | isl_space *space = isl_qpolynomial_fold_get_domain_space(fold); |
||
618 | isl_set *dom_context = isl_set_universe(space); |
||
619 | dom_context = isl_set_intersect_params(dom_context, context); |
||
620 | return isl_qpolynomial_fold_gist(fold, dom_context); |
||
621 | } |
||
622 | |||
623 | #define HAS_TYPE |
||
624 | |||
625 | #undef PW |
||
626 | #define PW isl_pw_qpolynomial_fold |
||
627 | #undef EL |
||
628 | #define EL isl_qpolynomial_fold |
||
629 | #undef EL_IS_ZERO |
||
630 | #define EL_IS_ZERO is_empty |
||
631 | #undef ZERO |
||
632 | #define ZERO zero |
||
633 | #undef IS_ZERO |
||
634 | #define IS_ZERO is_zero |
||
635 | #undef FIELD |
||
636 | #define FIELD fold |
||
637 | #undef DEFAULT_IS_ZERO |
||
638 | #define DEFAULT_IS_ZERO 1 |
||
639 | |||
640 | #define NO_NEG |
||
641 | |||
642 | #include <isl_pw_templ.c> |
||
643 | |||
644 | #undef UNION |
||
645 | #define UNION isl_union_pw_qpolynomial_fold |
||
646 | #undef PART |
||
647 | #define PART isl_pw_qpolynomial_fold |
||
648 | #undef PARTS |
||
649 | #define PARTS pw_qpolynomial_fold |
||
650 | #define ALIGN_DOMAIN |
||
651 | |||
652 | #include <isl_union_templ.c> |
||
653 | |||
654 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type, |
||
655 | __isl_take isl_space *dim) |
||
656 | { |
||
657 | return qpolynomial_fold_alloc(type, dim, 0); |
||
658 | } |
||
659 | |||
660 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc( |
||
661 | enum isl_fold type, __isl_take isl_qpolynomial *qp) |
||
662 | { |
||
663 | isl_qpolynomial_fold *fold; |
||
664 | |||
665 | if (!qp) |
||
666 | return NULL; |
||
667 | |||
668 | fold = qpolynomial_fold_alloc(type, isl_space_copy(qp->dim), 1); |
||
669 | if (!fold) |
||
670 | goto error; |
||
671 | |||
672 | fold->qp[0] = qp; |
||
673 | fold->n++; |
||
674 | |||
675 | return fold; |
||
676 | error: |
||
677 | isl_qpolynomial_fold_free(fold); |
||
678 | isl_qpolynomial_free(qp); |
||
679 | return NULL; |
||
680 | } |
||
681 | |||
682 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy( |
||
683 | __isl_keep isl_qpolynomial_fold *fold) |
||
684 | { |
||
685 | if (!fold) |
||
686 | return NULL; |
||
687 | |||
688 | fold->ref++; |
||
689 | return fold; |
||
690 | } |
||
691 | |||
692 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup( |
||
693 | __isl_keep isl_qpolynomial_fold *fold) |
||
694 | { |
||
695 | int i; |
||
696 | isl_qpolynomial_fold *dup; |
||
697 | |||
698 | if (!fold) |
||
699 | return NULL; |
||
700 | dup = qpolynomial_fold_alloc(fold->type, |
||
701 | isl_space_copy(fold->dim), fold->n); |
||
702 | if (!dup) |
||
703 | return NULL; |
||
704 | |||
705 | dup->n = fold->n; |
||
706 | for (i = 0; i < fold->n; ++i) { |
||
707 | dup->qp[i] = isl_qpolynomial_copy(fold->qp[i]); |
||
708 | if (!dup->qp[i]) |
||
709 | goto error; |
||
710 | } |
||
711 | |||
712 | return dup; |
||
713 | error: |
||
714 | isl_qpolynomial_fold_free(dup); |
||
715 | return NULL; |
||
716 | } |
||
717 | |||
718 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow( |
||
719 | __isl_take isl_qpolynomial_fold *fold) |
||
720 | { |
||
721 | if (!fold) |
||
722 | return NULL; |
||
723 | |||
724 | if (fold->ref == 1) |
||
725 | return fold; |
||
726 | fold->ref--; |
||
727 | return isl_qpolynomial_fold_dup(fold); |
||
728 | } |
||
729 | |||
730 | void isl_qpolynomial_fold_free(__isl_take isl_qpolynomial_fold *fold) |
||
731 | { |
||
732 | int i; |
||
733 | |||
734 | if (!fold) |
||
735 | return; |
||
736 | if (--fold->ref > 0) |
||
737 | return; |
||
738 | |||
739 | for (i = 0; i < fold->n; ++i) |
||
740 | isl_qpolynomial_free(fold->qp[i]); |
||
741 | isl_space_free(fold->dim); |
||
742 | free(fold); |
||
743 | } |
||
744 | |||
745 | int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold) |
||
746 | { |
||
747 | if (!fold) |
||
748 | return -1; |
||
749 | |||
750 | return fold->n == 0; |
||
751 | } |
||
752 | |||
753 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold( |
||
754 | __isl_take isl_qpolynomial_fold *fold1, |
||
755 | __isl_take isl_qpolynomial_fold *fold2) |
||
756 | { |
||
757 | int i; |
||
758 | struct isl_qpolynomial_fold *res = NULL; |
||
759 | |||
760 | if (!fold1 || !fold2) |
||
761 | goto error; |
||
762 | |||
763 | isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error); |
||
764 | isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim), |
||
765 | goto error); |
||
766 | |||
767 | if (isl_qpolynomial_fold_is_empty(fold1)) { |
||
768 | isl_qpolynomial_fold_free(fold1); |
||
769 | return fold2; |
||
770 | } |
||
771 | |||
772 | if (isl_qpolynomial_fold_is_empty(fold2)) { |
||
773 | isl_qpolynomial_fold_free(fold2); |
||
774 | return fold1; |
||
775 | } |
||
776 | |||
777 | res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim), |
||
778 | fold1->n + fold2->n); |
||
779 | if (!res) |
||
780 | goto error; |
||
781 | |||
782 | for (i = 0; i < fold1->n; ++i) { |
||
783 | res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]); |
||
784 | if (!res->qp[res->n]) |
||
785 | goto error; |
||
786 | res->n++; |
||
787 | } |
||
788 | |||
789 | for (i = 0; i < fold2->n; ++i) { |
||
790 | res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]); |
||
791 | if (!res->qp[res->n]) |
||
792 | goto error; |
||
793 | res->n++; |
||
794 | } |
||
795 | |||
796 | isl_qpolynomial_fold_free(fold1); |
||
797 | isl_qpolynomial_fold_free(fold2); |
||
798 | |||
799 | return res; |
||
800 | error: |
||
801 | isl_qpolynomial_fold_free(res); |
||
802 | isl_qpolynomial_fold_free(fold1); |
||
803 | isl_qpolynomial_fold_free(fold2); |
||
804 | return NULL; |
||
805 | } |
||
806 | |||
807 | __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold( |
||
808 | __isl_take isl_pw_qpolynomial_fold *pw1, |
||
809 | __isl_take isl_pw_qpolynomial_fold *pw2) |
||
810 | { |
||
811 | int i, j, n; |
||
812 | struct isl_pw_qpolynomial_fold *res; |
||
813 | isl_set *set; |
||
814 | |||
815 | if (!pw1 || !pw2) |
||
816 | goto error; |
||
817 | |||
818 | isl_assert(pw1->dim->ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error); |
||
819 | |||
820 | if (isl_pw_qpolynomial_fold_is_zero(pw1)) { |
||
821 | isl_pw_qpolynomial_fold_free(pw1); |
||
822 | return pw2; |
||
823 | } |
||
824 | |||
825 | if (isl_pw_qpolynomial_fold_is_zero(pw2)) { |
||
826 | isl_pw_qpolynomial_fold_free(pw2); |
||
827 | return pw1; |
||
828 | } |
||
829 | |||
830 | if (pw1->type != pw2->type) |
||
831 | isl_die(pw1->dim->ctx, isl_error_invalid, |
||
832 | "fold types don't match", goto error); |
||
833 | |||
834 | n = (pw1->n + 1) * (pw2->n + 1); |
||
835 | res = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pw1->dim), |
||
836 | pw1->type, n); |
||
837 | |||
838 | for (i = 0; i < pw1->n; ++i) { |
||
839 | set = isl_set_copy(pw1->p[i].set); |
||
840 | for (j = 0; j < pw2->n; ++j) { |
||
841 | struct isl_set *common; |
||
842 | isl_qpolynomial_fold *sum; |
||
843 | set = isl_set_subtract(set, |
||
844 | isl_set_copy(pw2->p[j].set)); |
||
845 | common = isl_set_intersect(isl_set_copy(pw1->p[i].set), |
||
846 | isl_set_copy(pw2->p[j].set)); |
||
847 | if (isl_set_plain_is_empty(common)) { |
||
848 | isl_set_free(common); |
||
849 | continue; |
||
850 | } |
||
851 | |||
852 | sum = isl_qpolynomial_fold_fold_on_domain(common, |
||
853 | isl_qpolynomial_fold_copy(pw1->p[i].fold), |
||
854 | isl_qpolynomial_fold_copy(pw2->p[j].fold)); |
||
855 | |||
856 | res = isl_pw_qpolynomial_fold_add_piece(res, common, sum); |
||
857 | } |
||
858 | res = isl_pw_qpolynomial_fold_add_piece(res, set, |
||
859 | isl_qpolynomial_fold_copy(pw1->p[i].fold)); |
||
860 | } |
||
861 | |||
862 | for (j = 0; j < pw2->n; ++j) { |
||
863 | set = isl_set_copy(pw2->p[j].set); |
||
864 | for (i = 0; i < pw1->n; ++i) |
||
865 | set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set)); |
||
866 | res = isl_pw_qpolynomial_fold_add_piece(res, set, |
||
867 | isl_qpolynomial_fold_copy(pw2->p[j].fold)); |
||
868 | } |
||
869 | |||
870 | isl_pw_qpolynomial_fold_free(pw1); |
||
871 | isl_pw_qpolynomial_fold_free(pw2); |
||
872 | |||
873 | return res; |
||
874 | error: |
||
875 | isl_pw_qpolynomial_fold_free(pw1); |
||
876 | isl_pw_qpolynomial_fold_free(pw2); |
||
877 | return NULL; |
||
878 | } |
||
879 | |||
880 | __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( |
||
881 | __isl_take isl_union_pw_qpolynomial_fold *u, |
||
882 | __isl_take isl_pw_qpolynomial_fold *part) |
||
883 | { |
||
884 | uint32_t hash; |
||
885 | struct isl_hash_table_entry *entry; |
||
886 | |||
887 | u = isl_union_pw_qpolynomial_fold_cow(u); |
||
888 | |||
889 | if (!part || !u) |
||
890 | goto error; |
||
891 | |||
892 | isl_assert(u->dim->ctx, isl_space_match(part->dim, isl_dim_param, u->dim, |
||
893 | isl_dim_param), goto error); |
||
894 | |||
895 | hash = isl_space_get_hash(part->dim); |
||
896 | entry = isl_hash_table_find(u->dim->ctx, &u->table, hash, |
||
897 | &has_dim, part->dim, 1); |
||
898 | if (!entry) |
||
899 | goto error; |
||
900 | |||
901 | if (!entry->data) |
||
902 | entry->data = part; |
||
903 | else { |
||
904 | entry->data = isl_pw_qpolynomial_fold_fold(entry->data, |
||
905 | isl_pw_qpolynomial_fold_copy(part)); |
||
906 | if (!entry->data) |
||
907 | goto error; |
||
908 | isl_pw_qpolynomial_fold_free(part); |
||
909 | } |
||
910 | |||
911 | return u; |
||
912 | error: |
||
913 | isl_pw_qpolynomial_fold_free(part); |
||
914 | isl_union_pw_qpolynomial_fold_free(u); |
||
915 | return NULL; |
||
916 | } |
||
917 | |||
918 | static int fold_part(__isl_take isl_pw_qpolynomial_fold *part, void *user) |
||
919 | { |
||
920 | isl_union_pw_qpolynomial_fold **u; |
||
921 | u = (isl_union_pw_qpolynomial_fold **)user; |
||
922 | |||
923 | *u = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(*u, part); |
||
924 | |||
925 | return 0; |
||
926 | } |
||
927 | |||
928 | __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold( |
||
929 | __isl_take isl_union_pw_qpolynomial_fold *u1, |
||
930 | __isl_take isl_union_pw_qpolynomial_fold *u2) |
||
931 | { |
||
932 | u1 = isl_union_pw_qpolynomial_fold_cow(u1); |
||
933 | |||
934 | if (!u1 || !u2) |
||
935 | goto error; |
||
936 | |||
937 | if (isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(u2, |
||
938 | &fold_part, &u1) < 0) |
||
939 | goto error; |
||
940 | |||
941 | isl_union_pw_qpolynomial_fold_free(u2); |
||
942 | |||
943 | return u1; |
||
944 | error: |
||
945 | isl_union_pw_qpolynomial_fold_free(u1); |
||
946 | isl_union_pw_qpolynomial_fold_free(u2); |
||
947 | return NULL; |
||
948 | } |
||
949 | |||
950 | __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial( |
||
951 | enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp) |
||
952 | { |
||
953 | int i; |
||
954 | isl_pw_qpolynomial_fold *pwf; |
||
955 | |||
956 | if (!pwqp) |
||
957 | return NULL; |
||
958 | |||
959 | pwf = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pwqp->dim), |
||
960 | type, pwqp->n); |
||
961 | |||
962 | for (i = 0; i < pwqp->n; ++i) |
||
963 | pwf = isl_pw_qpolynomial_fold_add_piece(pwf, |
||
964 | isl_set_copy(pwqp->p[i].set), |
||
965 | isl_qpolynomial_fold_alloc(type, |
||
966 | isl_qpolynomial_copy(pwqp->p[i].qp))); |
||
967 | |||
968 | isl_pw_qpolynomial_free(pwqp); |
||
969 | |||
970 | return pwf; |
||
971 | } |
||
972 | |||
973 | __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add( |
||
974 | __isl_take isl_pw_qpolynomial_fold *pwf1, |
||
975 | __isl_take isl_pw_qpolynomial_fold *pwf2) |
||
976 | { |
||
977 | return isl_pw_qpolynomial_fold_union_add_(pwf1, pwf2); |
||
978 | } |
||
979 | |||
980 | int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1, |
||
981 | __isl_keep isl_qpolynomial_fold *fold2) |
||
982 | { |
||
983 | int i; |
||
984 | |||
985 | if (!fold1 || !fold2) |
||
986 | return -1; |
||
987 | |||
988 | if (fold1->n != fold2->n) |
||
989 | return 0; |
||
990 | |||
991 | /* We probably want to sort the qps first... */ |
||
992 | for (i = 0; i < fold1->n; ++i) { |
||
993 | int eq = isl_qpolynomial_plain_is_equal(fold1->qp[i], fold2->qp[i]); |
||
994 | if (eq < 0 || !eq) |
||
995 | return eq; |
||
996 | } |
||
997 | |||
998 | return 1; |
||
999 | } |
||
1000 | |||
1001 | __isl_give isl_qpolynomial *isl_qpolynomial_fold_eval( |
||
1002 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt) |
||
1003 | { |
||
1004 | isl_qpolynomial *qp; |
||
1005 | |||
1006 | if (!fold || !pnt) |
||
1007 | goto error; |
||
1008 | isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, fold->dim), goto error); |
||
1009 | isl_assert(pnt->dim->ctx, |
||
1010 | fold->type == isl_fold_max || fold->type == isl_fold_min, |
||
1011 | goto error); |
||
1012 | |||
1013 | if (fold->n == 0) |
||
1014 | qp = isl_qpolynomial_zero_on_domain(isl_space_copy(fold->dim)); |
||
1015 | else { |
||
1016 | int i; |
||
1017 | qp = isl_qpolynomial_eval(isl_qpolynomial_copy(fold->qp[0]), |
||
1018 | isl_point_copy(pnt)); |
||
1019 | for (i = 1; i < fold->n; ++i) { |
||
1020 | isl_qpolynomial *qp_i; |
||
1021 | qp_i = isl_qpolynomial_eval( |
||
1022 | isl_qpolynomial_copy(fold->qp[i]), |
||
1023 | isl_point_copy(pnt)); |
||
1024 | if (fold->type == isl_fold_max) |
||
1025 | qp = isl_qpolynomial_max_cst(qp, qp_i); |
||
1026 | else |
||
1027 | qp = isl_qpolynomial_min_cst(qp, qp_i); |
||
1028 | } |
||
1029 | } |
||
1030 | isl_qpolynomial_fold_free(fold); |
||
1031 | isl_point_free(pnt); |
||
1032 | |||
1033 | return qp; |
||
1034 | error: |
||
1035 | isl_qpolynomial_fold_free(fold); |
||
1036 | isl_point_free(pnt); |
||
1037 | return NULL; |
||
1038 | } |
||
1039 | |||
1040 | size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf) |
||
1041 | { |
||
1042 | int i; |
||
1043 | size_t n = 0; |
||
1044 | |||
1045 | for (i = 0; i < pwf->n; ++i) |
||
1046 | n += pwf->p[i].fold->n; |
||
1047 | |||
1048 | return n; |
||
1049 | } |
||
1050 | |||
1051 | __isl_give isl_qpolynomial *isl_qpolynomial_fold_opt_on_domain( |
||
1052 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max) |
||
1053 | { |
||
1054 | int i; |
||
1055 | isl_qpolynomial *opt; |
||
1056 | |||
1057 | if (!set || !fold) |
||
1058 | goto error; |
||
1059 | |||
1060 | if (fold->n == 0) { |
||
1061 | isl_space *dim = isl_space_copy(fold->dim); |
||
1062 | isl_set_free(set); |
||
1063 | isl_qpolynomial_fold_free(fold); |
||
1064 | return isl_qpolynomial_zero_on_domain(dim); |
||
1065 | } |
||
1066 | |||
1067 | opt = isl_qpolynomial_opt_on_domain(isl_qpolynomial_copy(fold->qp[0]), |
||
1068 | isl_set_copy(set), max); |
||
1069 | for (i = 1; i < fold->n; ++i) { |
||
1070 | isl_qpolynomial *opt_i; |
||
1071 | opt_i = isl_qpolynomial_opt_on_domain( |
||
1072 | isl_qpolynomial_copy(fold->qp[i]), |
||
1073 | isl_set_copy(set), max); |
||
1074 | if (max) |
||
1075 | opt = isl_qpolynomial_max_cst(opt, opt_i); |
||
1076 | else |
||
1077 | opt = isl_qpolynomial_min_cst(opt, opt_i); |
||
1078 | } |
||
1079 | |||
1080 | isl_set_free(set); |
||
1081 | isl_qpolynomial_fold_free(fold); |
||
1082 | |||
1083 | return opt; |
||
1084 | error: |
||
1085 | isl_set_free(set); |
||
1086 | isl_qpolynomial_fold_free(fold); |
||
1087 | return NULL; |
||
1088 | } |
||
1089 | |||
1090 | /* Check whether for each quasi-polynomial in "fold2" there is |
||
1091 | * a quasi-polynomial in "fold1" that dominates it on "set". |
||
1092 | */ |
||
1093 | static int qpolynomial_fold_covers_on_domain(__isl_keep isl_set *set, |
||
1094 | __isl_keep isl_qpolynomial_fold *fold1, |
||
1095 | __isl_keep isl_qpolynomial_fold *fold2) |
||
1096 | { |
||
1097 | int i, j; |
||
1098 | int covers; |
||
1099 | |||
1100 | if (!set || !fold1 || !fold2) |
||
1101 | return -1; |
||
1102 | |||
1103 | covers = fold1->type == isl_fold_max ? 1 : -1; |
||
1104 | |||
1105 | for (i = 0; i < fold2->n; ++i) { |
||
1106 | for (j = 0; j < fold1->n; ++j) { |
||
1107 | isl_qpolynomial *d; |
||
1108 | int sgn; |
||
1109 | |||
1110 | d = isl_qpolynomial_sub( |
||
1111 | isl_qpolynomial_copy(fold1->qp[j]), |
||
1112 | isl_qpolynomial_copy(fold2->qp[i])); |
||
1113 | sgn = isl_qpolynomial_sign(set, d); |
||
1114 | isl_qpolynomial_free(d); |
||
1115 | if (sgn == covers) |
||
1116 | break; |
||
1117 | } |
||
1118 | if (j >= fold1->n) |
||
1119 | return 0; |
||
1120 | } |
||
1121 | |||
1122 | return 1; |
||
1123 | } |
||
1124 | |||
1125 | /* Check whether "pwf1" dominated "pwf2", i.e., the domain of "pwf1" contains |
||
1126 | * that of "pwf2" and on each cell, the corresponding fold from pwf1 dominates |
||
1127 | * that of pwf2. |
||
1128 | */ |
||
1129 | int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1, |
||
1130 | __isl_keep isl_pw_qpolynomial_fold *pwf2) |
||
1131 | { |
||
1132 | int i, j; |
||
1133 | isl_set *dom1, *dom2; |
||
1134 | int is_subset; |
||
1135 | |||
1136 | if (!pwf1 || !pwf2) |
||
1137 | return -1; |
||
1138 | |||
1139 | if (pwf2->n == 0) |
||
1140 | return 1; |
||
1141 | if (pwf1->n == 0) |
||
1142 | return 0; |
||
1143 | |||
1144 | dom1 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf1)); |
||
1145 | dom2 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf2)); |
||
1146 | is_subset = isl_set_is_subset(dom2, dom1); |
||
1147 | isl_set_free(dom1); |
||
1148 | isl_set_free(dom2); |
||
1149 | |||
1150 | if (is_subset < 0 || !is_subset) |
||
1151 | return is_subset; |
||
1152 | |||
1153 | for (i = 0; i < pwf2->n; ++i) { |
||
1154 | for (j = 0; j < pwf1->n; ++j) { |
||
1155 | int is_empty; |
||
1156 | isl_set *common; |
||
1157 | int covers; |
||
1158 | |||
1159 | common = isl_set_intersect(isl_set_copy(pwf1->p[j].set), |
||
1160 | isl_set_copy(pwf2->p[i].set)); |
||
1161 | is_empty = isl_set_is_empty(common); |
||
1162 | if (is_empty < 0 || is_empty) { |
||
1163 | isl_set_free(common); |
||
1164 | if (is_empty < 0) |
||
1165 | return -1; |
||
1166 | continue; |
||
1167 | } |
||
1168 | covers = qpolynomial_fold_covers_on_domain(common, |
||
1169 | pwf1->p[j].fold, pwf2->p[i].fold); |
||
1170 | isl_set_free(common); |
||
1171 | if (covers < 0 || !covers) |
||
1172 | return covers; |
||
1173 | } |
||
1174 | } |
||
1175 | |||
1176 | return 1; |
||
1177 | } |
||
1178 | |||
1179 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain( |
||
1180 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph) |
||
1181 | { |
||
1182 | int i; |
||
1183 | isl_ctx *ctx; |
||
1184 | |||
1185 | if (!fold || !morph) |
||
1186 | goto error; |
||
1187 | |||
1188 | ctx = fold->dim->ctx; |
||
1189 | isl_assert(ctx, isl_space_is_equal(fold->dim, morph->dom->dim), goto error); |
||
1190 | |||
1191 | fold = isl_qpolynomial_fold_cow(fold); |
||
1192 | if (!fold) |
||
1193 | goto error; |
||
1194 | |||
1195 | isl_space_free(fold->dim); |
||
1196 | fold->dim = isl_space_copy(morph->ran->dim); |
||
1197 | if (!fold->dim) |
||
1198 | goto error; |
||
1199 | |||
1200 | for (i = 0; i < fold->n; ++i) { |
||
1201 | fold->qp[i] = isl_qpolynomial_morph_domain(fold->qp[i], |
||
1202 | isl_morph_copy(morph)); |
||
1203 | if (!fold->qp[i]) |
||
1204 | goto error; |
||
1205 | } |
||
1206 | |||
1207 | isl_morph_free(morph); |
||
1208 | |||
1209 | return fold; |
||
1210 | error: |
||
1211 | isl_qpolynomial_fold_free(fold); |
||
1212 | isl_morph_free(morph); |
||
1213 | return NULL; |
||
1214 | } |
||
1215 | |||
1216 | enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold) |
||
1217 | { |
||
1218 | if (!fold) |
||
1219 | return isl_fold_list; |
||
1220 | return fold->type; |
||
1221 | } |
||
1222 | |||
1223 | enum isl_fold isl_union_pw_qpolynomial_fold_get_type( |
||
1224 | __isl_keep isl_union_pw_qpolynomial_fold *upwf) |
||
1225 | { |
||
1226 | if (!upwf) |
||
1227 | return isl_fold_list; |
||
1228 | return upwf->type; |
||
1229 | } |
||
1230 | |||
1231 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift( |
||
1232 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim) |
||
1233 | { |
||
1234 | int i; |
||
1235 | |||
1236 | if (!fold || !dim) |
||
1237 | goto error; |
||
1238 | |||
1239 | if (isl_space_is_equal(fold->dim, dim)) { |
||
1240 | isl_space_free(dim); |
||
1241 | return fold; |
||
1242 | } |
||
1243 | |||
1244 | fold = isl_qpolynomial_fold_cow(fold); |
||
1245 | if (!fold) |
||
1246 | goto error; |
||
1247 | |||
1248 | isl_space_free(fold->dim); |
||
1249 | fold->dim = isl_space_copy(dim); |
||
1250 | if (!fold->dim) |
||
1251 | goto error; |
||
1252 | |||
1253 | for (i = 0; i < fold->n; ++i) { |
||
1254 | fold->qp[i] = isl_qpolynomial_lift(fold->qp[i], |
||
1255 | isl_space_copy(dim)); |
||
1256 | if (!fold->qp[i]) |
||
1257 | goto error; |
||
1258 | } |
||
1259 | |||
1260 | isl_space_free(dim); |
||
1261 | |||
1262 | return fold; |
||
1263 | error: |
||
1264 | isl_qpolynomial_fold_free(fold); |
||
1265 | isl_space_free(dim); |
||
1266 | return NULL; |
||
1267 | } |
||
1268 | |||
1269 | int isl_qpolynomial_fold_foreach_qpolynomial( |
||
1270 | __isl_keep isl_qpolynomial_fold *fold, |
||
1271 | int (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user) |
||
1272 | { |
||
1273 | int i; |
||
1274 | |||
1275 | if (!fold) |
||
1276 | return -1; |
||
1277 | |||
1278 | for (i = 0; i < fold->n; ++i) |
||
1279 | if (fn(isl_qpolynomial_copy(fold->qp[i]), user) < 0) |
||
1280 | return -1; |
||
1281 | |||
1282 | return 0; |
||
1283 | } |
||
1284 | |||
1285 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims( |
||
1286 | __isl_take isl_qpolynomial_fold *fold, |
||
1287 | enum isl_dim_type dst_type, unsigned dst_pos, |
||
1288 | enum isl_dim_type src_type, unsigned src_pos, unsigned n) |
||
1289 | { |
||
1290 | int i; |
||
1291 | |||
1292 | if (n == 0) |
||
1293 | return fold; |
||
1294 | |||
1295 | fold = isl_qpolynomial_fold_cow(fold); |
||
1296 | if (!fold) |
||
1297 | return NULL; |
||
1298 | |||
1299 | fold->dim = isl_space_move_dims(fold->dim, dst_type, dst_pos, |
||
1300 | src_type, src_pos, n); |
||
1301 | if (!fold->dim) |
||
1302 | goto error; |
||
1303 | |||
1304 | for (i = 0; i < fold->n; ++i) { |
||
1305 | fold->qp[i] = isl_qpolynomial_move_dims(fold->qp[i], |
||
1306 | dst_type, dst_pos, src_type, src_pos, n); |
||
1307 | if (!fold->qp[i]) |
||
1308 | goto error; |
||
1309 | } |
||
1310 | |||
1311 | return fold; |
||
1312 | error: |
||
1313 | isl_qpolynomial_fold_free(fold); |
||
1314 | return NULL; |
||
1315 | } |
||
1316 | |||
1317 | /* For each 0 <= i < "n", replace variable "first" + i of type "type" |
||
1318 | * in fold->qp[k] by subs[i]. |
||
1319 | */ |
||
1320 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute( |
||
1321 | __isl_take isl_qpolynomial_fold *fold, |
||
1322 | enum isl_dim_type type, unsigned first, unsigned n, |
||
1323 | __isl_keep isl_qpolynomial **subs) |
||
1324 | { |
||
1325 | int i; |
||
1326 | |||
1327 | if (n == 0) |
||
1328 | return fold; |
||
1329 | |||
1330 | fold = isl_qpolynomial_fold_cow(fold); |
||
1331 | if (!fold) |
||
1332 | return NULL; |
||
1333 | |||
1334 | for (i = 0; i < fold->n; ++i) { |
||
1335 | fold->qp[i] = isl_qpolynomial_substitute(fold->qp[i], |
||
1336 | type, first, n, subs); |
||
1337 | if (!fold->qp[i]) |
||
1338 | goto error; |
||
1339 | } |
||
1340 | |||
1341 | return fold; |
||
1342 | error: |
||
1343 | isl_qpolynomial_fold_free(fold); |
||
1344 | return NULL; |
||
1345 | } |
||
1346 | |||
1347 | static int add_pwqp(__isl_take isl_pw_qpolynomial *pwqp, void *user) |
||
1348 | { |
||
1349 | isl_ctx *ctx; |
||
1350 | isl_pw_qpolynomial_fold *pwf; |
||
1351 | isl_union_pw_qpolynomial_fold **upwf; |
||
1352 | uint32_t hash; |
||
1353 | struct isl_hash_table_entry *entry; |
||
1354 | |||
1355 | upwf = (isl_union_pw_qpolynomial_fold **)user; |
||
1356 | |||
1357 | ctx = pwqp->dim->ctx; |
||
1358 | hash = isl_space_get_hash(pwqp->dim); |
||
1359 | entry = isl_hash_table_find(ctx, &(*upwf)->table, |
||
1360 | hash, &has_dim, pwqp->dim, 1); |
||
1361 | if (!entry) |
||
1362 | goto error; |
||
1363 | |||
1364 | pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial((*upwf)->type, pwqp); |
||
1365 | if (!entry->data) |
||
1366 | entry->data = pwf; |
||
1367 | else { |
||
1368 | entry->data = isl_pw_qpolynomial_fold_add(entry->data, pwf); |
||
1369 | if (!entry->data) |
||
1370 | return -1; |
||
1371 | if (isl_pw_qpolynomial_fold_is_zero(entry->data)) { |
||
1372 | isl_pw_qpolynomial_fold_free(entry->data); |
||
1373 | isl_hash_table_remove(ctx, &(*upwf)->table, entry); |
||
1374 | } |
||
1375 | } |
||
1376 | |||
1377 | return 0; |
||
1378 | error: |
||
1379 | isl_pw_qpolynomial_free(pwqp); |
||
1380 | return -1; |
||
1381 | } |
||
1382 | |||
1383 | __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial( |
||
1384 | __isl_take isl_union_pw_qpolynomial_fold *upwf, |
||
1385 | __isl_take isl_union_pw_qpolynomial *upwqp) |
||
1386 | { |
||
1387 | upwf = isl_union_pw_qpolynomial_fold_align_params(upwf, |
||
1388 | isl_union_pw_qpolynomial_get_space(upwqp)); |
||
1389 | upwqp = isl_union_pw_qpolynomial_align_params(upwqp, |
||
1390 | isl_union_pw_qpolynomial_fold_get_space(upwf)); |
||
1391 | |||
1392 | upwf = isl_union_pw_qpolynomial_fold_cow(upwf); |
||
1393 | if (!upwf || !upwqp) |
||
1394 | goto error; |
||
1395 | |||
1396 | if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &add_pwqp, |
||
1397 | &upwf) < 0) |
||
1398 | goto error; |
||
1399 | |||
1400 | isl_union_pw_qpolynomial_free(upwqp); |
||
1401 | |||
1402 | return upwf; |
||
1403 | error: |
||
1404 | isl_union_pw_qpolynomial_fold_free(upwf); |
||
1405 | isl_union_pw_qpolynomial_free(upwqp); |
||
1406 | return NULL; |
||
1407 | } |
||
1408 | |||
1409 | static int join_compatible(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2) |
||
1410 | { |
||
1411 | int m; |
||
1412 | m = isl_space_match(dim1, isl_dim_param, dim2, isl_dim_param); |
||
1413 | if (m < 0 || !m) |
||
1414 | return m; |
||
1415 | return isl_space_tuple_match(dim1, isl_dim_out, dim2, isl_dim_in); |
||
1416 | } |
||
1417 | |||
1418 | /* Compute the intersection of the range of the map and the domain |
||
1419 | * of the piecewise quasipolynomial reduction and then compute a bound |
||
1420 | * on the associated quasipolynomial reduction over all elements |
||
1421 | * in this intersection. |
||
1422 | * |
||
1423 | * We first introduce some unconstrained dimensions in the |
||
1424 | * piecewise quasipolynomial, intersect the resulting domain |
||
1425 | * with the wrapped map and the compute the sum. |
||
1426 | */ |
||
1427 | __isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold( |
||
1428 | __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf, |
||
1429 | int *tight) |
||
1430 | { |
||
1431 | isl_ctx *ctx; |
||
1432 | isl_set *dom; |
||
1433 | isl_space *map_dim; |
||
1434 | isl_space *pwf_dim; |
||
1435 | unsigned n_in; |
||
1436 | int ok; |
||
1437 | |||
1438 | ctx = isl_map_get_ctx(map); |
||
1439 | if (!ctx) |
||
1440 | goto error; |
||
1441 | |||
1442 | map_dim = isl_map_get_space(map); |
||
1443 | pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf); |
||
1444 | ok = join_compatible(map_dim, pwf_dim); |
||
1445 | isl_space_free(map_dim); |
||
1446 | isl_space_free(pwf_dim); |
||
1447 | if (!ok) |
||
1448 | isl_die(ctx, isl_error_invalid, "incompatible dimensions", |
||
1449 | goto error); |
||
1450 | |||
1451 | n_in = isl_map_dim(map, isl_dim_in); |
||
1452 | pwf = isl_pw_qpolynomial_fold_insert_dims(pwf, isl_dim_in, 0, n_in); |
||
1453 | |||
1454 | dom = isl_map_wrap(map); |
||
1455 | pwf = isl_pw_qpolynomial_fold_reset_domain_space(pwf, |
||
1456 | isl_set_get_space(dom)); |
||
1457 | |||
1458 | pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, dom); |
||
1459 | pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); |
||
1460 | |||
1461 | return pwf; |
||
1462 | error: |
||
1463 | isl_map_free(map); |
||
1464 | isl_pw_qpolynomial_fold_free(pwf); |
||
1465 | return NULL; |
||
1466 | } |
||
1467 | |||
1468 | __isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold( |
||
1469 | __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf, |
||
1470 | int *tight) |
||
1471 | { |
||
1472 | return isl_map_apply_pw_qpolynomial_fold(set, pwf, tight); |
||
1473 | } |
||
1474 | |||
1475 | struct isl_apply_fold_data { |
||
1476 | isl_union_pw_qpolynomial_fold *upwf; |
||
1477 | isl_union_pw_qpolynomial_fold *res; |
||
1478 | isl_map *map; |
||
1479 | int tight; |
||
1480 | }; |
||
1481 | |||
1482 | static int pw_qpolynomial_fold_apply(__isl_take isl_pw_qpolynomial_fold *pwf, |
||
1483 | void *user) |
||
1484 | { |
||
1485 | isl_space *map_dim; |
||
1486 | isl_space *pwf_dim; |
||
1487 | struct isl_apply_fold_data *data = user; |
||
1488 | int ok; |
||
1489 | |||
1490 | map_dim = isl_map_get_space(data->map); |
||
1491 | pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf); |
||
1492 | ok = join_compatible(map_dim, pwf_dim); |
||
1493 | isl_space_free(map_dim); |
||
1494 | isl_space_free(pwf_dim); |
||
1495 | |||
1496 | if (ok) { |
||
1497 | pwf = isl_map_apply_pw_qpolynomial_fold(isl_map_copy(data->map), |
||
1498 | pwf, data->tight ? &data->tight : NULL); |
||
1499 | data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( |
||
1500 | data->res, pwf); |
||
1501 | } else |
||
1502 | isl_pw_qpolynomial_fold_free(pwf); |
||
1503 | |||
1504 | return 0; |
||
1505 | } |
||
1506 | |||
1507 | static int map_apply(__isl_take isl_map *map, void *user) |
||
1508 | { |
||
1509 | struct isl_apply_fold_data *data = user; |
||
1510 | int r; |
||
1511 | |||
1512 | data->map = map; |
||
1513 | r = isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold( |
||
1514 | data->upwf, &pw_qpolynomial_fold_apply, data); |
||
1515 | |||
1516 | isl_map_free(map); |
||
1517 | return r; |
||
1518 | } |
||
1519 | |||
1520 | __isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold( |
||
1521 | __isl_take isl_union_map *umap, |
||
1522 | __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight) |
||
1523 | { |
||
1524 | isl_space *dim; |
||
1525 | enum isl_fold type; |
||
1526 | struct isl_apply_fold_data data; |
||
1527 | |||
1528 | upwf = isl_union_pw_qpolynomial_fold_align_params(upwf, |
||
1529 | isl_union_map_get_space(umap)); |
||
1530 | umap = isl_union_map_align_params(umap, |
||
1531 | isl_union_pw_qpolynomial_fold_get_space(upwf)); |
||
1532 | |||
1533 | data.upwf = upwf; |
||
1534 | data.tight = tight ? 1 : 0; |
||
1535 | dim = isl_union_pw_qpolynomial_fold_get_space(upwf); |
||
1536 | type = isl_union_pw_qpolynomial_fold_get_type(upwf); |
||
1537 | data.res = isl_union_pw_qpolynomial_fold_zero(dim, type); |
||
1538 | if (isl_union_map_foreach_map(umap, &map_apply, &data) < 0) |
||
1539 | goto error; |
||
1540 | |||
1541 | isl_union_map_free(umap); |
||
1542 | isl_union_pw_qpolynomial_fold_free(upwf); |
||
1543 | |||
1544 | if (tight) |
||
1545 | *tight = data.tight; |
||
1546 | |||
1547 | return data.res; |
||
1548 | error: |
||
1549 | isl_union_map_free(umap); |
||
1550 | isl_union_pw_qpolynomial_fold_free(upwf); |
||
1551 | isl_union_pw_qpolynomial_fold_free(data.res); |
||
1552 | return NULL; |
||
1553 | } |
||
1554 | |||
1555 | __isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold( |
||
1556 | __isl_take isl_union_set *uset, |
||
1557 | __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight) |
||
1558 | { |
||
1559 | return isl_union_map_apply_union_pw_qpolynomial_fold(uset, upwf, tight); |
||
1560 | } |
||
1561 | |||
1562 | /* Reorder the dimension of "fold" according to the given reordering. |
||
1563 | */ |
||
1564 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain( |
||
1565 | __isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r) |
||
1566 | { |
||
1567 | int i; |
||
1568 | |||
1569 | fold = isl_qpolynomial_fold_cow(fold); |
||
1570 | if (!fold || !r) |
||
1571 | goto error; |
||
1572 | |||
1573 | for (i = 0; i < fold->n; ++i) { |
||
1574 | fold->qp[i] = isl_qpolynomial_realign_domain(fold->qp[i], |
||
1575 | isl_reordering_copy(r)); |
||
1576 | if (!fold->qp[i]) |
||
1577 | goto error; |
||
1578 | } |
||
1579 | |||
1580 | fold = isl_qpolynomial_fold_reset_domain_space(fold, |
||
1581 | isl_space_copy(r->dim)); |
||
1582 | |||
1583 | isl_reordering_free(r); |
||
1584 | |||
1585 | return fold; |
||
1586 | error: |
||
1587 | isl_qpolynomial_fold_free(fold); |
||
1588 | isl_reordering_free(r); |
||
1589 | return NULL; |
||
1590 | } |
||
1591 | |||
1592 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int( |
||
1593 | __isl_take isl_qpolynomial_fold *fold, isl_int v) |
||
1594 | { |
||
1595 | int i; |
||
1596 | |||
1597 | if (isl_int_is_one(v)) |
||
1598 | return fold; |
||
1599 | if (fold && isl_int_is_zero(v)) { |
||
1600 | isl_qpolynomial_fold *zero; |
||
1601 | isl_space *dim = isl_space_copy(fold->dim); |
||
1602 | zero = isl_qpolynomial_fold_empty(fold->type, dim); |
||
1603 | isl_qpolynomial_fold_free(fold); |
||
1604 | return zero; |
||
1605 | } |
||
1606 | |||
1607 | fold = isl_qpolynomial_fold_cow(fold); |
||
1608 | if (!fold) |
||
1609 | return NULL; |
||
1610 | |||
1611 | if (isl_int_is_neg(v)) |
||
1612 | fold->type = isl_fold_type_negate(fold->type); |
||
1613 | for (i = 0; i < fold->n; ++i) { |
||
1614 | fold->qp[i] = isl_qpolynomial_mul_isl_int(fold->qp[i], v); |
||
1615 | if (!fold->qp[i]) |
||
1616 | goto error; |
||
1617 | } |
||
1618 | |||
1619 | return fold; |
||
1620 | error: |
||
1621 | isl_qpolynomial_fold_free(fold); |
||
1622 | return NULL; |
||
1623 | } |
||
1624 | |||
1625 | __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale( |
||
1626 | __isl_take isl_qpolynomial_fold *fold, isl_int v) |
||
1627 | { |
||
1628 | return isl_qpolynomial_fold_mul_isl_int(fold, v); |
||
1629 | } |