nexmon – Blame information for rev 1
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
1 | office | 1 | /* |
2 | * Copyright 2010 INRIA Saclay |
||
3 | * |
||
4 | * Use of this software is governed by the GNU LGPLv2.1 license |
||
5 | * |
||
6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
||
7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
||
8 | * 91893 Orsay, France |
||
9 | */ |
||
10 | |||
11 | #include <isl_map_private.h> |
||
12 | #include <isl/set.h> |
||
13 | #include <isl_space_private.h> |
||
14 | #include <isl/seq.h> |
||
15 | |||
16 | /* |
||
17 | * Let C be a cone and define |
||
18 | * |
||
19 | * C' := { y | forall x in C : y x >= 0 } |
||
20 | * |
||
21 | * C' contains the coefficients of all linear constraints |
||
22 | * that are valid for C. |
||
23 | * Furthermore, C'' = C. |
||
24 | * |
||
25 | * If C is defined as { x | A x >= 0 } |
||
26 | * then any element in C' must be a non-negative combination |
||
27 | * of the rows of A, i.e., y = t A with t >= 0. That is, |
||
28 | * |
||
29 | * C' = { y | exists t >= 0 : y = t A } |
||
30 | * |
||
31 | * If any of the rows in A actually represents an equality, then |
||
32 | * also negative combinations of this row are allowed and so the |
||
33 | * non-negativity constraint on the corresponding element of t |
||
34 | * can be dropped. |
||
35 | * |
||
36 | * A polyhedron P = { x | b + A x >= 0 } can be represented |
||
37 | * in homogeneous coordinates by the cone |
||
38 | * C = { [z,x] | b z + A x >= and z >= 0 } |
||
39 | * The valid linear constraints on C correspond to the valid affine |
||
40 | * constraints on P. |
||
41 | * This is essentially Farkas' lemma. |
||
42 | * |
||
43 | * Let A' = [b A], then, since |
||
44 | * [ 1 0 ] |
||
45 | * [ w y ] = [t_0 t] [ b A ] |
||
46 | * |
||
47 | * we have |
||
48 | * |
||
49 | * C' = { w, y | exists t_0, t >= 0 : y = t A' and w = t_0 + t b } |
||
50 | * or |
||
51 | * |
||
52 | * C' = { w, y | exists t >= 0 : y = t A' and w - t b >= 0 } |
||
53 | * |
||
54 | * In practice, we introduce an extra variable (w), shifting all |
||
55 | * other variables to the right, and an extra inequality |
||
56 | * (w - t b >= 0) corresponding to the positivity constraint on |
||
57 | * the homogeneous coordinate. |
||
58 | * |
||
59 | * When going back from coefficients to solutions, we immediately |
||
60 | * plug in 1 for z, which corresponds to shifting all variables |
||
61 | * to the left, with the leftmost ending up in the constant position. |
||
62 | */ |
||
63 | |||
64 | /* Add the given prefix to all named isl_dim_set dimensions in "dim". |
||
65 | */ |
||
66 | static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *dim, |
||
67 | const char *prefix) |
||
68 | { |
||
69 | int i; |
||
70 | isl_ctx *ctx; |
||
71 | unsigned nvar; |
||
72 | size_t prefix_len = strlen(prefix); |
||
73 | |||
74 | if (!dim) |
||
75 | return NULL; |
||
76 | |||
77 | ctx = isl_space_get_ctx(dim); |
||
78 | nvar = isl_space_dim(dim, isl_dim_set); |
||
79 | |||
80 | for (i = 0; i < nvar; ++i) { |
||
81 | const char *name; |
||
82 | char *prefix_name; |
||
83 | |||
84 | name = isl_space_get_dim_name(dim, isl_dim_set, i); |
||
85 | if (!name) |
||
86 | continue; |
||
87 | |||
88 | prefix_name = isl_alloc_array(ctx, char, |
||
89 | prefix_len + strlen(name) + 1); |
||
90 | if (!prefix_name) |
||
91 | goto error; |
||
92 | memcpy(prefix_name, prefix, prefix_len); |
||
93 | strcpy(prefix_name + prefix_len, name); |
||
94 | |||
95 | dim = isl_space_set_dim_name(dim, isl_dim_set, i, prefix_name); |
||
96 | free(prefix_name); |
||
97 | } |
||
98 | |||
99 | return dim; |
||
100 | error: |
||
101 | isl_space_free(dim); |
||
102 | return NULL; |
||
103 | } |
||
104 | |||
105 | /* Given a dimension specification of the solutions space, construct |
||
106 | * a dimension specification for the space of coefficients. |
||
107 | * |
||
108 | * In particular transform |
||
109 | * |
||
110 | * [params] -> { S } |
||
111 | * |
||
112 | * to |
||
113 | * |
||
114 | * { coefficients[[cst, params] -> S] } |
||
115 | * |
||
116 | * and prefix each dimension name with "c_". |
||
117 | */ |
||
118 | static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *dim) |
||
119 | { |
||
120 | isl_space *dim_param; |
||
121 | unsigned nvar; |
||
122 | unsigned nparam; |
||
123 | |||
124 | nvar = isl_space_dim(dim, isl_dim_set); |
||
125 | nparam = isl_space_dim(dim, isl_dim_param); |
||
126 | dim_param = isl_space_copy(dim); |
||
127 | dim_param = isl_space_drop_dims(dim_param, isl_dim_set, 0, nvar); |
||
128 | dim_param = isl_space_move_dims(dim_param, isl_dim_set, 0, |
||
129 | isl_dim_param, 0, nparam); |
||
130 | dim_param = isl_space_prefix(dim_param, "c_"); |
||
131 | dim_param = isl_space_insert_dims(dim_param, isl_dim_set, 0, 1); |
||
132 | dim_param = isl_space_set_dim_name(dim_param, isl_dim_set, 0, "c_cst"); |
||
133 | dim = isl_space_drop_dims(dim, isl_dim_param, 0, nparam); |
||
134 | dim = isl_space_prefix(dim, "c_"); |
||
135 | dim = isl_space_join(isl_space_from_domain(dim_param), |
||
136 | isl_space_from_range(dim)); |
||
137 | dim = isl_space_wrap(dim); |
||
138 | dim = isl_space_set_tuple_name(dim, isl_dim_set, "coefficients"); |
||
139 | |||
140 | return dim; |
||
141 | } |
||
142 | |||
143 | /* Drop the given prefix from all named dimensions of type "type" in "dim". |
||
144 | */ |
||
145 | static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *dim, |
||
146 | enum isl_dim_type type, const char *prefix) |
||
147 | { |
||
148 | int i; |
||
149 | unsigned n; |
||
150 | size_t prefix_len = strlen(prefix); |
||
151 | |||
152 | n = isl_space_dim(dim, type); |
||
153 | |||
154 | for (i = 0; i < n; ++i) { |
||
155 | const char *name; |
||
156 | |||
157 | name = isl_space_get_dim_name(dim, type, i); |
||
158 | if (!name) |
||
159 | continue; |
||
160 | if (strncmp(name, prefix, prefix_len)) |
||
161 | continue; |
||
162 | |||
163 | dim = isl_space_set_dim_name(dim, type, i, name + prefix_len); |
||
164 | } |
||
165 | |||
166 | return dim; |
||
167 | } |
||
168 | |||
169 | /* Given a dimension specification of the space of coefficients, construct |
||
170 | * a dimension specification for the space of solutions. |
||
171 | * |
||
172 | * In particular transform |
||
173 | * |
||
174 | * { coefficients[[cst, params] -> S] } |
||
175 | * |
||
176 | * to |
||
177 | * |
||
178 | * [params] -> { S } |
||
179 | * |
||
180 | * and drop the "c_" prefix from the dimension names. |
||
181 | */ |
||
182 | static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *dim) |
||
183 | { |
||
184 | unsigned nparam; |
||
185 | |||
186 | dim = isl_space_unwrap(dim); |
||
187 | dim = isl_space_drop_dims(dim, isl_dim_in, 0, 1); |
||
188 | dim = isl_space_unprefix(dim, isl_dim_in, "c_"); |
||
189 | dim = isl_space_unprefix(dim, isl_dim_out, "c_"); |
||
190 | nparam = isl_space_dim(dim, isl_dim_in); |
||
191 | dim = isl_space_move_dims(dim, isl_dim_param, 0, isl_dim_in, 0, nparam); |
||
192 | dim = isl_space_range(dim); |
||
193 | |||
194 | return dim; |
||
195 | } |
||
196 | |||
197 | /* Compute the dual of "bset" by applying Farkas' lemma. |
||
198 | * As explained above, we add an extra dimension to represent |
||
199 | * the coefficient of the constant term when going from solutions |
||
200 | * to coefficients (shift == 1) and we drop the extra dimension when going |
||
201 | * in the opposite direction (shift == -1). "dim" is the space in which |
||
202 | * the dual should be created. |
||
203 | */ |
||
204 | static __isl_give isl_basic_set *farkas(__isl_take isl_space *dim, |
||
205 | __isl_take isl_basic_set *bset, int shift) |
||
206 | { |
||
207 | int i, j, k; |
||
208 | isl_basic_set *dual = NULL; |
||
209 | unsigned total; |
||
210 | |||
211 | total = isl_basic_set_total_dim(bset); |
||
212 | |||
213 | dual = isl_basic_set_alloc_space(dim, bset->n_eq + bset->n_ineq, |
||
214 | total, bset->n_ineq + (shift > 0)); |
||
215 | dual = isl_basic_set_set_rational(dual); |
||
216 | |||
217 | for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) { |
||
218 | k = isl_basic_set_alloc_div(dual); |
||
219 | if (k < 0) |
||
220 | goto error; |
||
221 | isl_int_set_si(dual->div[k][0], 0); |
||
222 | } |
||
223 | |||
224 | for (i = 0; i < total; ++i) { |
||
225 | k = isl_basic_set_alloc_equality(dual); |
||
226 | if (k < 0) |
||
227 | goto error; |
||
228 | isl_seq_clr(dual->eq[k], 1 + shift + total); |
||
229 | isl_int_set_si(dual->eq[k][1 + shift + i], -1); |
||
230 | for (j = 0; j < bset->n_eq; ++j) |
||
231 | isl_int_set(dual->eq[k][1 + shift + total + j], |
||
232 | bset->eq[j][1 + i]); |
||
233 | for (j = 0; j < bset->n_ineq; ++j) |
||
234 | isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j], |
||
235 | bset->ineq[j][1 + i]); |
||
236 | } |
||
237 | |||
238 | for (i = 0; i < bset->n_ineq; ++i) { |
||
239 | k = isl_basic_set_alloc_inequality(dual); |
||
240 | if (k < 0) |
||
241 | goto error; |
||
242 | isl_seq_clr(dual->ineq[k], |
||
243 | 1 + shift + total + bset->n_eq + bset->n_ineq); |
||
244 | isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1); |
||
245 | } |
||
246 | |||
247 | if (shift > 0) { |
||
248 | k = isl_basic_set_alloc_inequality(dual); |
||
249 | if (k < 0) |
||
250 | goto error; |
||
251 | isl_seq_clr(dual->ineq[k], 2 + total); |
||
252 | isl_int_set_si(dual->ineq[k][1], 1); |
||
253 | for (j = 0; j < bset->n_eq; ++j) |
||
254 | isl_int_neg(dual->ineq[k][2 + total + j], |
||
255 | bset->eq[j][0]); |
||
256 | for (j = 0; j < bset->n_ineq; ++j) |
||
257 | isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j], |
||
258 | bset->ineq[j][0]); |
||
259 | } |
||
260 | |||
261 | dual = isl_basic_set_remove_divs(dual); |
||
262 | isl_basic_set_simplify(dual); |
||
263 | isl_basic_set_finalize(dual); |
||
264 | |||
265 | isl_basic_set_free(bset); |
||
266 | return dual; |
||
267 | error: |
||
268 | isl_basic_set_free(bset); |
||
269 | isl_basic_set_free(dual); |
||
270 | return NULL; |
||
271 | } |
||
272 | |||
273 | /* Construct a basic set containing the tuples of coefficients of all |
||
274 | * valid affine constraints on the given basic set. |
||
275 | */ |
||
276 | __isl_give isl_basic_set *isl_basic_set_coefficients( |
||
277 | __isl_take isl_basic_set *bset) |
||
278 | { |
||
279 | isl_space *dim; |
||
280 | |||
281 | if (!bset) |
||
282 | return NULL; |
||
283 | if (bset->n_div) |
||
284 | isl_die(bset->ctx, isl_error_invalid, |
||
285 | "input set not allowed to have local variables", |
||
286 | goto error); |
||
287 | |||
288 | dim = isl_basic_set_get_space(bset); |
||
289 | dim = isl_space_coefficients(dim); |
||
290 | |||
291 | return farkas(dim, bset, 1); |
||
292 | error: |
||
293 | isl_basic_set_free(bset); |
||
294 | return NULL; |
||
295 | } |
||
296 | |||
297 | /* Construct a basic set containing the elements that satisfy all |
||
298 | * affine constraints whose coefficient tuples are |
||
299 | * contained in the given basic set. |
||
300 | */ |
||
301 | __isl_give isl_basic_set *isl_basic_set_solutions( |
||
302 | __isl_take isl_basic_set *bset) |
||
303 | { |
||
304 | isl_space *dim; |
||
305 | |||
306 | if (!bset) |
||
307 | return NULL; |
||
308 | if (bset->n_div) |
||
309 | isl_die(bset->ctx, isl_error_invalid, |
||
310 | "input set not allowed to have local variables", |
||
311 | goto error); |
||
312 | |||
313 | dim = isl_basic_set_get_space(bset); |
||
314 | dim = isl_space_solutions(dim); |
||
315 | |||
316 | return farkas(dim, bset, -1); |
||
317 | error: |
||
318 | isl_basic_set_free(bset); |
||
319 | return NULL; |
||
320 | } |
||
321 | |||
322 | /* Construct a basic set containing the tuples of coefficients of all |
||
323 | * valid affine constraints on the given set. |
||
324 | */ |
||
325 | __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set) |
||
326 | { |
||
327 | int i; |
||
328 | isl_basic_set *coeff; |
||
329 | |||
330 | if (!set) |
||
331 | return NULL; |
||
332 | if (set->n == 0) { |
||
333 | isl_space *dim = isl_set_get_space(set); |
||
334 | dim = isl_space_coefficients(dim); |
||
335 | coeff = isl_basic_set_universe(dim); |
||
336 | coeff = isl_basic_set_set_rational(coeff); |
||
337 | isl_set_free(set); |
||
338 | return coeff; |
||
339 | } |
||
340 | |||
341 | coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0])); |
||
342 | |||
343 | for (i = 1; i < set->n; ++i) { |
||
344 | isl_basic_set *bset, *coeff_i; |
||
345 | bset = isl_basic_set_copy(set->p[i]); |
||
346 | coeff_i = isl_basic_set_coefficients(bset); |
||
347 | coeff = isl_basic_set_intersect(coeff, coeff_i); |
||
348 | } |
||
349 | |||
350 | isl_set_free(set); |
||
351 | return coeff; |
||
352 | } |
||
353 | |||
354 | /* Construct a basic set containing the elements that satisfy all |
||
355 | * affine constraints whose coefficient tuples are |
||
356 | * contained in the given set. |
||
357 | */ |
||
358 | __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set) |
||
359 | { |
||
360 | int i; |
||
361 | isl_basic_set *sol; |
||
362 | |||
363 | if (!set) |
||
364 | return NULL; |
||
365 | if (set->n == 0) { |
||
366 | isl_space *dim = isl_set_get_space(set); |
||
367 | dim = isl_space_solutions(dim); |
||
368 | sol = isl_basic_set_universe(dim); |
||
369 | sol = isl_basic_set_set_rational(sol); |
||
370 | isl_set_free(set); |
||
371 | return sol; |
||
372 | } |
||
373 | |||
374 | sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0])); |
||
375 | |||
376 | for (i = 1; i < set->n; ++i) { |
||
377 | isl_basic_set *bset, *sol_i; |
||
378 | bset = isl_basic_set_copy(set->p[i]); |
||
379 | sol_i = isl_basic_set_solutions(bset); |
||
380 | sol = isl_basic_set_intersect(sol, sol_i); |
||
381 | } |
||
382 | |||
383 | isl_set_free(set); |
||
384 | return sol; |
||
385 | } |