nexmon – Blame information for rev 1

Subversion Repositories:
Rev:
Rev Author Line No. Line
1 office 1 /*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
6 *
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
11 *
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
16 */
17  
18 /* Brutally hacked by John Walker back from ANSI C to K&R (no
19 prototypes) to maintain the tradition that Netfone will compile
20 with Sun's original "cc". */
21 /* Ripped out ugly K&R again ;) --mbuesch */
22 /* killed stupid endianness thing --jmberg */
23  
24 #include <memory.h> /* for memcpy() */
25 #include "md5.h"
26  
27 /* This function does the Right Thing (tm) on LittleEndian and BigEndian. */
28 static void byteReverse(unsigned char *buf, unsigned longs)
29 {
30 uint32_t t;
31  
32 do {
33 t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
34 ((unsigned) buf[1] << 8 | buf[0]);
35 *(uint32_t *) buf = t;
36 buf += 4;
37 } while (--longs);
38 }
39  
40 /* The four core functions - F1 is optimized somewhat */
41  
42 /* #define F1(x, y, z) (x & y | ~x & z) */
43 #define F1(x, y, z) (z ^ (x & (y ^ z)))
44 #define F2(x, y, z) F1(z, x, y)
45 #define F3(x, y, z) (x ^ y ^ z)
46 #define F4(x, y, z) (y ^ (x | ~z))
47  
48 /* This is the central step in the MD5 algorithm. */
49 #define MD5STEP(f, w, x, y, z, data, s) \
50 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
51  
52 /*
53 * The core of the MD5 algorithm, this alters an existing MD5 hash to
54 * reflect the addition of 16 longwords of new data. MD5Update blocks
55 * the data and converts bytes into longwords for this routine.
56 */
57 static void MD5Transform(uint32_t *buf, uint32_t *in)
58 {
59 register uint32_t a, b, c, d;
60  
61 a = buf[0];
62 b = buf[1];
63 c = buf[2];
64 d = buf[3];
65  
66 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
67 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
68 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
69 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
70 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
71 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
72 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
73 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
74 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
75 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
76 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
77 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
78 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
79 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
80 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
81 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
82  
83 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
84 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
85 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
86 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
87 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
88 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
89 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
90 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
91 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
92 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
93 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
94 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
95 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
96 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
97 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
98 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
99  
100 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
101 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
102 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
103 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
104 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
105 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
106 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
107 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
108 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
109 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
110 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
111 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
112 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
113 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
114 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
115 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
116  
117 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
118 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
119 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
120 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
121 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
122 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
123 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
124 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
125 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
126 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
127 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
128 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
129 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
130 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
131 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
132 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
133  
134 buf[0] += a;
135 buf[1] += b;
136 buf[2] += c;
137 buf[3] += d;
138 }
139  
140 /*
141 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
142 * initialization constants.
143 */
144 void MD5Init(struct MD5Context *ctx)
145 {
146 ctx->buf[0] = 0x67452301;
147 ctx->buf[1] = 0xefcdab89;
148 ctx->buf[2] = 0x98badcfe;
149 ctx->buf[3] = 0x10325476;
150  
151 ctx->bits[0] = 0;
152 ctx->bits[1] = 0;
153 }
154  
155 /*
156 * Update context to reflect the concatenation of another buffer full
157 * of bytes.
158 */
159 void MD5Update(struct MD5Context *ctx, unsigned char *buf, unsigned len)
160 {
161 uint32_t t;
162  
163 /* Update bitcount */
164  
165 t = ctx->bits[0];
166 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
167 ctx->bits[1]++; /* Carry from low to high */
168 ctx->bits[1] += len >> 29;
169  
170 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
171  
172 /* Handle any leading odd-sized chunks */
173  
174 if (t) {
175 unsigned char *p = (unsigned char *) ctx->in + t;
176  
177 t = 64 - t;
178 if (len < t) {
179 memcpy(p, buf, len);
180 return;
181 }
182 memcpy(p, buf, t);
183 byteReverse(ctx->in, 16);
184 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
185 buf += t;
186 len -= t;
187 }
188 /* Process data in 64-byte chunks */
189  
190 while (len >= 64) {
191 memcpy(ctx->in, buf, 64);
192 byteReverse(ctx->in, 16);
193 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
194 buf += 64;
195 len -= 64;
196 }
197  
198 /* Handle any remaining bytes of data. */
199  
200 memcpy(ctx->in, buf, len);
201 }
202  
203 /*
204 * Final wrapup - pad to 64-byte boundary with the bit pattern
205 * 1 0* (64-bit count of bits processed, MSB-first)
206 */
207 void MD5Final(unsigned char *digest, struct MD5Context *ctx)
208 {
209 unsigned count;
210 unsigned char *p;
211  
212 /* Compute number of bytes mod 64 */
213 count = (ctx->bits[0] >> 3) & 0x3F;
214  
215 /* Set the first char of padding to 0x80. This is safe since there is
216 always at least one byte free */
217 p = ctx->in + count;
218 *p++ = 0x80;
219  
220 /* Bytes of padding needed to make 64 bytes */
221 count = 64 - 1 - count;
222  
223 /* Pad out to 56 mod 64 */
224 if (count < 8) {
225 /* Two lots of padding: Pad the first block to 64 bytes */
226 memset(p, 0, count);
227 byteReverse(ctx->in, 16);
228 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
229  
230 /* Now fill the next block with 56 bytes */
231 memset(ctx->in, 0, 56);
232 } else {
233 /* Pad block to 56 bytes */
234 memset(p, 0, count - 8);
235 }
236 byteReverse(ctx->in, 14);
237  
238 /* Append length in bits and transform */
239 ((uint32_t *) ctx->in)[14] = ctx->bits[0];
240 ((uint32_t *) ctx->in)[15] = ctx->bits[1];
241  
242 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
243 byteReverse((unsigned char *) ctx->buf, 4);
244 memcpy(digest, ctx->buf, 16);
245 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
246 }