OpenWrt – Blame information for rev 4
?pathlinks?
Rev | Author | Line No. | Line |
---|---|---|---|
4 | office | 1 | /* |
2 | * Copyright (c) 1997-1999 The Stanford SRP Authentication Project |
||
3 | * All Rights Reserved. |
||
4 | * |
||
5 | * Permission is hereby granted, free of charge, to any person obtaining |
||
6 | * a copy of this software and associated documentation files (the |
||
7 | * "Software"), to deal in the Software without restriction, including |
||
8 | * without limitation the rights to use, copy, modify, merge, publish, |
||
9 | * distribute, sublicense, and/or sell copies of the Software, and to |
||
10 | * permit persons to whom the Software is furnished to do so, subject to |
||
11 | * the following conditions: |
||
12 | * |
||
13 | * The above copyright notice and this permission notice shall be |
||
14 | * included in all copies or substantial portions of the Software. |
||
15 | * |
||
16 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
||
17 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
||
18 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
||
19 | * |
||
20 | * IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
||
21 | * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
||
22 | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
||
23 | * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
||
24 | * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
||
25 | * |
||
26 | * In addition, the following conditions apply: |
||
27 | * |
||
28 | * 1. Any software that incorporates the SRP authentication technology |
||
29 | * must display the following acknowlegment: |
||
30 | * "This product uses the 'Secure Remote Password' cryptographic |
||
31 | * authentication system developed by Tom Wu (tjw@CS.Stanford.EDU)." |
||
32 | * |
||
33 | * 2. Any software that incorporates all or part of the SRP distribution |
||
34 | * itself must also display the following acknowledgment: |
||
35 | * "This product includes software developed by Tom Wu and Eugene |
||
36 | * Jhong for the SRP Distribution (http://srp.stanford.edu/srp/)." |
||
37 | * |
||
38 | * 3. Redistributions in source or binary form must retain an intact copy |
||
39 | * of this copyright notice and list of conditions. |
||
40 | */ |
||
41 | |||
42 | #include "t_defines.h" |
||
43 | |||
44 | #ifdef HAVE_UNISTD_H |
||
45 | #include <unistd.h> |
||
46 | #endif /* HAVE_UNISTD_H */ |
||
47 | |||
48 | #include <stdio.h> |
||
49 | #include <sys/types.h> |
||
50 | #include <sys/stat.h> |
||
51 | #include <fcntl.h> |
||
52 | |||
53 | #include "t_sha.h" |
||
54 | |||
55 | #ifndef NULL |
||
56 | #define NULL 0 |
||
57 | #endif |
||
58 | |||
59 | static unsigned char randpool[SHA_DIGESTSIZE], randout[SHA_DIGESTSIZE]; |
||
60 | static unsigned long randcnt = 0; |
||
61 | static unsigned int outpos = 0; |
||
62 | SHA1_CTX randctxt; |
||
63 | |||
64 | /* |
||
65 | * t_envhash - Generate a 160-bit SHA hash of the environment |
||
66 | * |
||
67 | * This routine performs an SHA hash of all the "name=value" pairs |
||
68 | * in the environment concatenated together and dumps them in the |
||
69 | * output. While it is true that anyone on the system can see |
||
70 | * your environment, someone not on the system will have a very |
||
71 | * difficult time guessing it, especially since some systems play |
||
72 | * tricks with variable ordering and sometimes define quirky |
||
73 | * environment variables like $WINDOWID or $_. |
||
74 | */ |
||
75 | extern char ** environ; |
||
76 | |||
77 | static void |
||
78 | t_envhash(out) |
||
79 | unsigned char * out; |
||
80 | { |
||
81 | char ** ptr; |
||
82 | char ebuf[256]; |
||
83 | SHA1_CTX ctxt; |
||
84 | |||
85 | SHA1Init(&ctxt); |
||
86 | for(ptr = environ; *ptr; ++ptr) { |
||
87 | strncpy(ebuf, *ptr, 255); |
||
88 | ebuf[255] = '\0'; |
||
89 | SHA1Update(&ctxt, ebuf, strlen(ebuf)); |
||
90 | } |
||
91 | SHA1Final(out, &ctxt); |
||
92 | } |
||
93 | |||
94 | /* |
||
95 | * t_fshash - Generate a 160-bit SHA hash from the file system |
||
96 | * |
||
97 | * This routine climbs up the directory tree from the current |
||
98 | * directory, running stat() on each directory until it hits the |
||
99 | * root directory. This information is sensitive to the last |
||
100 | * access/modification times of all the directories above you, |
||
101 | * so someone who lists one of those directories injects some |
||
102 | * entropy into the system. Obviously, this hash is very sensitive |
||
103 | * to your current directory when the program is run. |
||
104 | * |
||
105 | * For good measure, it also performs an fstat on the standard input, |
||
106 | * usually your tty, throws that into the buffer, creates a file in |
||
107 | * /tmp (the inode is unpredictable on a busy system), and runs stat() |
||
108 | * on that before deleting it. |
||
109 | * |
||
110 | * The entire buffer is run once through SHA to obtain the final result. |
||
111 | */ |
||
112 | static void |
||
113 | t_fshash(out) |
||
114 | unsigned char * out; |
||
115 | { |
||
116 | char dotpath[128]; |
||
117 | struct stat st; |
||
118 | SHA1_CTX ctxt; |
||
119 | int i, pinode; |
||
120 | dev_t pdev; |
||
121 | |||
122 | SHA1Init(&ctxt); |
||
123 | if(stat(".", &st) >= 0) { |
||
124 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
||
125 | pinode = st.st_ino; |
||
126 | pdev = st.st_dev; |
||
127 | strcpy(dotpath, ".."); |
||
128 | for(i = 0; i < 40; ++i) { |
||
129 | if(stat(dotpath, &st) < 0) |
||
130 | break; |
||
131 | if(st.st_ino == pinode && st.st_dev == pdev) |
||
132 | break; |
||
133 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
||
134 | pinode = st.st_ino; |
||
135 | pdev = st.st_dev; |
||
136 | strcat(dotpath, "/.."); |
||
137 | } |
||
138 | } |
||
139 | |||
140 | if(fstat(0, &st) >= 0) |
||
141 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
||
142 | |||
143 | sprintf(dotpath, "/tmp/rnd.%d", getpid()); |
||
144 | if(creat(dotpath, 0600) >= 0 && stat(dotpath, &st) >= 0) |
||
145 | SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
||
146 | unlink(dotpath); |
||
147 | |||
148 | SHA1Final(out, &ctxt); |
||
149 | } |
||
150 | |||
151 | /* |
||
152 | * Generate a high-entropy seed for the strong random number generator. |
||
153 | * This uses a wide variety of quickly gathered and somewhat unpredictable |
||
154 | * system information. The 'preseed' structure is assembled from: |
||
155 | * |
||
156 | * The system time in seconds |
||
157 | * The system time in microseconds |
||
158 | * The current process ID |
||
159 | * The parent process ID |
||
160 | * A hash of the user's environment |
||
161 | * A hash gathered from the file system |
||
162 | * Input from a random device, if available |
||
163 | * Timings of system interrupts |
||
164 | * |
||
165 | * The entire structure (60 bytes on most systems) is fed to SHA to produce |
||
166 | * a 160-bit seed for the strong random number generator. It is believed |
||
167 | * that in the worst case (on a quiet system with no random device versus |
||
168 | * an attacker who has access to the system already), the seed contains at |
||
169 | * least about 80 bits of entropy. Versus an attacker who does not have |
||
170 | * access to the system, the entropy should be slightly over 128 bits. |
||
171 | */ |
||
172 | static char initialized = 0; |
||
173 | |||
174 | static struct { |
||
175 | unsigned int trand1; |
||
176 | time_t sec; |
||
177 | time_t usec; |
||
178 | short pid; |
||
179 | short ppid; |
||
180 | unsigned char envh[SHA_DIGESTSIZE]; |
||
181 | unsigned char fsh[SHA_DIGESTSIZE]; |
||
182 | unsigned char devrand[20]; |
||
183 | unsigned int trand2; |
||
184 | } preseed; |
||
185 | |||
186 | unsigned long raw_truerand(); |
||
187 | |||
188 | void |
||
189 | t_initrand() |
||
190 | { |
||
191 | SHA1_CTX ctxt; |
||
192 | #ifdef USE_FTIME |
||
193 | struct timeb t; |
||
194 | #else |
||
195 | struct timeval t; |
||
196 | #endif |
||
197 | int i, r=0; |
||
198 | |||
199 | if(initialized) |
||
200 | return; |
||
201 | |||
202 | initialized = 1; |
||
203 | |||
204 | i = open("/dev/urandom", O_RDONLY); |
||
205 | if(i > 0) { |
||
206 | r += read(i, preseed.devrand, sizeof(preseed.devrand)); |
||
207 | close(i); |
||
208 | } |
||
209 | |||
210 | /* Resort to truerand only if desperate for some Real entropy */ |
||
211 | if(r == 0) |
||
212 | preseed.trand1 = raw_truerand(); |
||
213 | |||
214 | #ifdef USE_FTIME |
||
215 | ftime(&t); |
||
216 | #else |
||
217 | gettimeofday(&t, NULL); |
||
218 | #endif |
||
219 | |||
220 | #ifdef USE_FTIME |
||
221 | preseed.sec = t.time; |
||
222 | preseed.usec = t.millitm; |
||
223 | #else |
||
224 | preseed.sec = t.tv_sec; |
||
225 | preseed.usec = t.tv_usec; |
||
226 | #endif |
||
227 | preseed.pid = getpid(); |
||
228 | preseed.ppid = getppid(); |
||
229 | t_envhash(preseed.envh); |
||
230 | t_fshash(preseed.fsh); |
||
231 | |||
232 | if(r == 0) |
||
233 | preseed.trand2 = raw_truerand(); |
||
234 | |||
235 | SHA1Init(&ctxt); |
||
236 | SHA1Update(&ctxt, (unsigned char *) &preseed, sizeof(preseed)); |
||
237 | SHA1Final(randpool, &ctxt); |
||
238 | outpos = 0; |
||
239 | memset((unsigned char *) &preseed, 0, sizeof(preseed)); |
||
240 | memset((unsigned char *) &ctxt, 0, sizeof(ctxt)); |
||
241 | } |
||
242 | |||
243 | #define NUM_RANDOMS 12 |
||
244 | |||
245 | /* |
||
246 | * The strong random number generator. This uses a 160-bit seed |
||
247 | * and uses SHA-1 in a feedback configuration to generate successive |
||
248 | * outputs. If S[0] is set to the initial seed, then: |
||
249 | * |
||
250 | * S[i+1] = SHA-1(i || S[i]) |
||
251 | * A[i] = SHA-1(S[i]) |
||
252 | * |
||
253 | * where the A[i] are the output blocks starting with i=0. |
||
254 | * Each cycle generates 20 bytes of new output. |
||
255 | */ |
||
256 | _TYPE( void ) |
||
257 | t_random(data, size) |
||
258 | unsigned char * data; |
||
259 | unsigned size; |
||
260 | { |
||
261 | if(!initialized) |
||
262 | t_initrand(); |
||
263 | |||
264 | if(size <= 0) /* t_random(NULL, 0) forces seed initialization */ |
||
265 | return; |
||
266 | |||
267 | while(size > outpos) { |
||
268 | if(outpos > 0) { |
||
269 | memcpy(data, randout + (sizeof(randout) - outpos), outpos); |
||
270 | data += outpos; |
||
271 | size -= outpos; |
||
272 | } |
||
273 | |||
274 | /* Recycle */ |
||
275 | SHA1Init(&randctxt); |
||
276 | SHA1Update(&randctxt, randpool, sizeof(randpool)); |
||
277 | SHA1Final(randout, &randctxt); |
||
278 | SHA1Init(&randctxt); |
||
279 | SHA1Update(&randctxt, (unsigned char *) &randcnt, sizeof(randcnt)); |
||
280 | SHA1Update(&randctxt, randpool, sizeof(randpool)); |
||
281 | SHA1Final(randpool, &randctxt); |
||
282 | ++randcnt; |
||
283 | outpos = sizeof(randout); |
||
284 | } |
||
285 | |||
286 | if(size > 0) { |
||
287 | memcpy(data, randout + (sizeof(randout) - outpos), size); |
||
288 | outpos -= size; |
||
289 | } |
||
290 | } |
||
291 | |||
292 | /* |
||
293 | * The interleaved session-key hash. This separates the even and the odd |
||
294 | * bytes of the input (ignoring the first byte if the input length is odd), |
||
295 | * hashes them separately, and re-interleaves the two outputs to form a |
||
296 | * single 320-bit value. |
||
297 | */ |
||
298 | _TYPE( unsigned char * ) |
||
299 | t_sessionkey(key, sk, sklen) |
||
300 | unsigned char * key; |
||
301 | unsigned char * sk; |
||
302 | unsigned sklen; |
||
303 | { |
||
304 | unsigned i, klen; |
||
305 | unsigned char * hbuf; |
||
306 | unsigned char hout[SHA_DIGESTSIZE]; |
||
307 | SHA1_CTX ctxt; |
||
308 | |||
309 | while(sklen > 0 && *sk == 0) { /* Skip leading 0's */ |
||
310 | --sklen; |
||
311 | ++sk; |
||
312 | } |
||
313 | |||
314 | klen = sklen / 2; |
||
315 | if((hbuf = malloc(klen * sizeof(char))) == 0) |
||
316 | return 0; |
||
317 | |||
318 | for(i = 0; i < klen; ++i) |
||
319 | hbuf[i] = sk[sklen - 2 * i - 1]; |
||
320 | SHA1Init(&ctxt); |
||
321 | SHA1Update(&ctxt, hbuf, klen); |
||
322 | SHA1Final(hout, &ctxt); |
||
323 | for(i = 0; i < sizeof(hout); ++i) |
||
324 | key[2 * i] = hout[i]; |
||
325 | |||
326 | for(i = 0; i < klen; ++i) |
||
327 | hbuf[i] = sk[sklen - 2 * i - 2]; |
||
328 | SHA1Init(&ctxt); |
||
329 | SHA1Update(&ctxt, hbuf, klen); |
||
330 | SHA1Final(hout, &ctxt); |
||
331 | for(i = 0; i < sizeof(hout); ++i) |
||
332 | key[2 * i + 1] = hout[i]; |
||
333 | |||
334 | memset(hout, 0, sizeof(hout)); |
||
335 | memset(hbuf, 0, klen); |
||
336 | free(hbuf); |
||
337 | return key; |
||
338 | } |